教案是教師在備課過程中制定的一種具體指導(dǎo)教學(xué)活動的書面計劃,它起著指導(dǎo)和規(guī)范教學(xué)的作用,幫助教師有條不紊地開展課堂教學(xué)。教案的編寫需要綜合考慮學(xué)科內(nèi)容、學(xué)生素質(zhì)、教學(xué)目標(biāo)等方面因素,并且要靈活調(diào)整和改進,以適應(yīng)不同課堂和學(xué)生的需求。教案還可以促使教師思考教學(xué)過程中的問題和教學(xué)效果,從而不斷提高自己的教學(xué)水平。教案應(yīng)考慮學(xué)生的學(xué)習(xí)難點和容易出錯的地方,提供相應(yīng)的輔導(dǎo)措施。以下教案范文能夠引導(dǎo)學(xué)生主動參與學(xué)習(xí),發(fā)展學(xué)生的自主學(xué)習(xí)能力。
教資勾股定理教案篇一
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對角線來判定平行四邊形的方法.
2.會綜合運用平行四邊形的判定方法和性質(zhì)來解決問題
教學(xué)重點:平行四邊形的判定方法及應(yīng)用
教學(xué)難點:平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
引
二.探
閱讀教材p44至p45
利用手中的學(xué)具——硬紙板條,通過觀察、測量、猜想、驗證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個平行四邊形嗎?
(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。
證一證
平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)
平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)
三.結(jié)
兩組對邊分別相等的四邊形是平行四邊形。
對角線互相平分的四邊形是平行四邊形。
四.用
教資勾股定理教案篇二
教學(xué)目標(biāo):
1、知識目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會利用勾股定理進行計算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
教學(xué)重點:勾股定理及其應(yīng)用
教學(xué)難點:通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育。
教學(xué)用具:直尺,微機
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
3、定理的證明方法
方法一:將四個全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明
4、定理與逆定理的應(yīng)用
5、課堂小結(jié):
(1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3
b、上交作業(yè)p132#1、3
教資勾股定理教案篇三
【知識與技能】
理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價值觀】
體會事物之間的聯(lián)系,感受幾何的魅力。
【重點】勾股定理的逆定理及其證明。
【難點】勾股定理的逆定理的證明。
(一)導(dǎo)入新課
復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
(二)講解新知
請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。
教資勾股定理教案篇四
本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
教資勾股定理教案篇五
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。
從學(xué)生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
(二)重點與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。
教資勾股定理教案篇六
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
2.學(xué)會用拼圖法驗證勾股定理
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
請讀者證明.
請同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到
頂點b,則它走過的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
教資勾股定理教案篇七
一、創(chuàng)設(shè)問屬情境,引入新課
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形.
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.
二、講授新課
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長?
教資勾股定理教案篇八
1.理解勾股定理的逆定理的證明方法和證明過程;
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;
二數(shù)學(xué)思考
1.通過勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生發(fā)展與形成的過程;
2.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合法的應(yīng)用.
三解決問題
通過勾股定理的逆定理的證明及其應(yīng)用,體會數(shù)形結(jié)合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題.
四情感態(tài)度
2.在探究勾股定理的逆定理的證明及應(yīng)用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.
教資勾股定理教案篇九
即直角三角形兩直角的平方和等于斜邊的平方.。
因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.。
請讀者證明.。
請同學(xué)們自己證明圖(2)、(3).。
132-52=144,所以另一條直角邊的長為12.。
所以這個直角三角形的面積是×12×5=30(cm2).。
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到。
頂點b,則它走過的最短路程為()。
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
各棱長相等,因此只有一種展開圖.。
解:將正方體側(cè)面展開。
教資勾股定理教案篇十
一、整個課堂設(shè)計完整、結(jié)構(gòu)緊湊、邏輯嚴密、前后呼應(yīng),準(zhǔn)備得比較充分,能引導(dǎo)學(xué)生循序漸進,思路很清晰,講解也很到位。
二、不搞題海戰(zhàn)術(shù),精講精練,舉一反三、觸類旁通。題型設(shè)計選題有針對性、典型性、層次性,亦有梯度,兩位老師都設(shè)計了分層練習(xí),作業(yè)分層設(shè)計精巧,適合滿足不同層次學(xué)生的要求。
三、兩位老師引入新課都很自然,兩位老師都能從學(xué)生的實際水平出發(fā),面向全體學(xué)生,因材施教,分層次開展教學(xué)工作,全面提高學(xué)習(xí)效率。
教師在整個教學(xué)過程中老師敢于讓學(xué)生探索、體驗,給了學(xué)生以最大的自由運用和探索規(guī)律的開闊的地帶。特別是新塘三中的曾老師在教學(xué)中,通過教師有序的導(dǎo)、學(xué)生積極的學(xué)習(xí)參與、體驗、討論與交流,培養(yǎng)學(xué)生具有主動、負責(zé)、開拓、創(chuàng)新的個性特征和科學(xué)的思維方式。將知識與技能,過程與方法,情感態(tài)度和價值觀完美結(jié)合。在整個教學(xué)活動中始終面對全體學(xué)生,讓每一個學(xué)生都有收獲,都得到成功的體驗,充分體現(xiàn)了全面育人的新課標(biāo)精神。建議新塘二中老師盡量少講,讓學(xué)生多思,多想,多做。......
教資勾股定理教案篇十一
隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識的學(xué)習(xí),更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動進行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
八年級數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)
本節(jié)知識是在學(xué)生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實際生活中的重要作用,是進行愛國教育的重要題材!
本節(jié)課的教育對象是初二下的學(xué)生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
教資勾股定理教案篇十二
1、知識目標(biāo):
(2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、能力目標(biāo):
(1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
(2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力.
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
(2)通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.。
教學(xué)用具:直尺,微機。
教學(xué)方法:以學(xué)生為主體的討論探索法。
教資勾股定理教案篇十三
教學(xué)目標(biāo):
1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點:
引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
教學(xué)難點:
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。
已知一直角三角形的兩邊,如何求第三邊?
學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了
(二)學(xué)習(xí)新課
教資勾股定理教案篇十四
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。
本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。
一、知識與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡單的實際問題
3學(xué)會簡單的合情推理與數(shù)學(xué)說理
二、過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。
三、情感與態(tài)度目標(biāo)
通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。
四、重點與難點
1、探索和證明勾股定理
2、熟練運用勾股定理
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?/p>
2、教師展示圖片并介紹第二情景
畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結(jié)
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
教資勾股定理教案篇十五
(一)知識與技能目標(biāo):
1、掌握勾股定理及其證明
2、會利用勾股定理進行直角三角形的簡單計算。
3、了解有關(guān)勾股定理的歷史知識
(二)過程與方法目標(biāo)
經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗證并運用實踐的過程,了解數(shù)學(xué)知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。
(三)情感、態(tài)度和價值觀
1、通過自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問題的能力,體驗獲取數(shù)學(xué)知識的過程。
2、通過小組合作、探索培養(yǎng)學(xué)生的團隊精神,以及不畏艱難,實事求是的學(xué)習(xí)態(tài)度和嚴謹?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。
3、通過了解有關(guān)勾股定理的中西歷史知識,激發(fā)學(xué)生的愛國熱情,培養(yǎng)學(xué)生的民族自豪感。
教資勾股定理教案篇十六
課標(biāo)內(nèi)容:1、初步了解半導(dǎo)體的一些特點,了解半導(dǎo)體材料的發(fā)展對社會的影響。2、初步了解超導(dǎo)體的一些特點,了解超導(dǎo)體對人類生活和社會發(fā)展可能帶來的影響。3、通過實驗探究電流、電壓和電阻的關(guān)系,理解歐姆定律,并能進行簡單計算。
l經(jīng)歷改變電路中電流大小的各種嘗試,初步體會改變電流大小的兩類途徑。l初步形成電阻的概念,知道電阻是表示導(dǎo)體對電流阻礙作用的物理量。會讀寫電阻的單位。l經(jīng)歷探究影響電阻大小因素的活動,會用“轉(zhuǎn)化”的思想尋找比較電阻大小的.正確方法;會有意識地用“變量控制”的思想去尋找合適的導(dǎo)線、設(shè)計恰當(dāng)?shù)碾娐?、統(tǒng)籌規(guī)劃合理的實驗步驟。l進一步體會變量控制法并能認同教材中有關(guān)變量控制的介紹。l知道影響金屬電阻大小的因素,了解長度、橫截面積與電阻大小的定性關(guān)系,體會到電阻的大小由導(dǎo)體自身決定,直到電阻是導(dǎo)體的一種屬性。l初步了解半導(dǎo)體的一些特點,了解半導(dǎo)體材料的發(fā)展對社會的影響。
文件大?。?5k文件格式:rar下載地址:擊本地免費下載地址。
【本文地址:http://www.aiweibaby.com/zuowen/7418539.html】