教案的編寫需要考慮學(xué)生的學(xué)情、教學(xué)資源和教學(xué)環(huán)境等因素,以確保教學(xué)的有效性和實施的順利進行。教案的書寫要規(guī)范、清晰,方便他人查閱和理解。以下是一些教師編寫教案的常用模板和教學(xué)活動設(shè)計,希望能夠為大家提供參考。
高中數(shù)學(xué)必修教案設(shè)計篇一
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
等比數(shù)列性質(zhì)請同學(xué)們類比得出.
【方法規(guī)律】。
1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學(xué)思想和方法.
2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。
a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。
3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.
【示范舉例】。
例1:(1)設(shè)等差數(shù)列的`前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).
例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.
高中數(shù)學(xué)必修教案設(shè)計篇二
掌握三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:。
(1)根據(jù)圖象建立解析式;。
(2)根據(jù)解析式作出圖象;。
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
將本文的word文檔下載到電腦,方便收藏和打印。
高中數(shù)學(xué)必修教案設(shè)計篇三
教學(xué)目標
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
教學(xué)重難點
.利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
教學(xué)過程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的 “思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型.
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型.
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高中數(shù)學(xué)必修教案設(shè)計篇四
1、數(shù)學(xué)知識:掌握等比數(shù)列的概念,通項公式,及其有關(guān)性質(zhì);。
2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的'能力;。
歸納——猜想——證明的數(shù)學(xué)研究方法;。
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。
重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;。
難點:等比數(shù)列的性質(zhì)的探索過程。
教學(xué)過程:
1、問題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?
(學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。
已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。
2、新課:
1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。
師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)。
若設(shè)等比數(shù)列的公比為q和首項為a1,則有:
方法一:(累乘法)。
3)等比數(shù)列的性質(zhì):
下面我們一起來研究一下等比數(shù)列的性質(zhì)。
通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。
問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。
答案:1458或128。
例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)。
1、小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習(xí)。
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比——猜想——證明的科學(xué)思維的過程。
2、作業(yè):
p129:1,2,3。
1、教學(xué)目標和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學(xué)教學(xué)除了要傳授知識,更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點。
2、教學(xué)設(shè)計過程:本節(jié)課主要從以下幾個方面展開:
1)通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;。
2)等比數(shù)列的通項公式的推導(dǎo);。
3)等比數(shù)列的性質(zhì);。
有意識的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生回顧舊。
知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學(xué)生產(chǎn)生不得不考慮通項公式的心理傾向,造成學(xué)生認知上的沖突,從而使學(xué)生主動完成對知識的接受。
通過等差數(shù)列和等比數(shù)列的通項公式的比較使學(xué)生初步體會到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過類比。
關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。
高中數(shù)學(xué)必修教案設(shè)計篇五
一、教學(xué)目標:
知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義
過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義
情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。
二、重難點:
教學(xué)重點:曲線參數(shù)方程的定義及方法
教學(xué)難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.
三、教學(xué)方法:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
四、教學(xué)過程
(一)、復(fù)習(xí)引入:
1.寫出圓方程的標準式和對應(yīng)的參數(shù)方程。
圓參數(shù)方程(為參數(shù))
(2)圓參數(shù)方程為:(為參數(shù))
2.寫出橢圓參數(shù)方程.
(二)、講解新課:
如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),
那么又如何描述直線l上任意點的位置呢?
2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:
(1)過定點傾斜角為的直線的
參數(shù)方程
(為參數(shù))
【辨析直線的參數(shù)方程】:設(shè)m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.
(2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內(nèi)分點;當且時,m為外分點;當時,點m與q重合。
(三)、直線的參數(shù)方程應(yīng)用,強化理解。
1、例題:
學(xué)生練習(xí),教師準對問題講評。反思歸納:
1)求直線參數(shù)方程的方法;
2)利用直線參數(shù)方程求交點。
2、鞏固導(dǎo)練:
補充:
1)直線與圓相切,那么直線的傾斜角為(a)
a.或b.或c.或d.或
2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.
解:直線化為普通方程是,
該直線的斜率為,
直線(為參數(shù))化為普通方程是,
該直線的斜率為,
則由兩直線垂直的充要條件,得,。
(四)、小結(jié):
(1)直線參數(shù)方程求法;
(2)直線參數(shù)方程的特點;
(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。
(五)、作業(yè):
補充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為
【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。
解析:由題直線的普通方程為,故它與與的距離為。
五、教學(xué)反思:
高中數(shù)學(xué)必修教案設(shè)計篇六
本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當達到以下學(xué)習(xí)目標:
(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。
數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。
本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。
教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設(shè)置這些問題,都是為了加強數(shù)學(xué)思想方法的教學(xué)。
加強與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。
本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。
《課程標準》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,
位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。
在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”
學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強,創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機械地模仿一些常見數(shù)學(xué)問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。
1.1正弦定理和余弦定理(約3課時)
1.2應(yīng)用舉例(約4課時)
1.3實習(xí)作業(yè)(約1課時)
1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。
2.適當安排一些實習(xí)作業(yè),目的是讓學(xué)生進一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達實習(xí)過程和實習(xí)結(jié)果能力,增強學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。
高中數(shù)學(xué)必修教案設(shè)計篇七
(1)掌握與()型的絕對值不等式的解法.
(2)掌握與()型的絕對值不等式的解法.
(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;
教學(xué)重點:型的不等式的解法;
教學(xué)難點:利用絕對值的意義分析、解決問題.
教學(xué)過程設(shè)計
教師活動
學(xué)生活動
設(shè)計意圖
一、導(dǎo)入新課
【提問】正數(shù)的絕對值什么?負數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?
【概括】
口答
絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.
二、新課
【提問】如何解絕對值方程.
【質(zhì)疑】的解集有幾部分?為什么也是它的解集?
【練習(xí)】解下列不等式:
(1);
(2)
【設(shè)問】如果在中的,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.
所以,原不等式的解集是
【設(shè)問】如果中的是,也就是怎樣解?
【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.
,或,
由得
由得
所以,原不等式的解集是
口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).
畫出數(shù)軸,思考答案
不等式的解集表示為
畫出數(shù)軸
思考答案
不等式的解集為
或表示為,或
筆答
(1)
(2),或
筆答
筆答
根據(jù)絕對值的意義自然引出絕對值方程()的解法.
由淺入深,循序漸進,在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.
針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.
落實會正確解出與()絕對值不等式的教學(xué)目標.
在將看成一個整體的關(guān)鍵處點撥、啟發(fā),使學(xué)生主動地進行練習(xí).
繼續(xù)強化將看成一個整體繼續(xù)強化解不等式時不要犯丟掉這部分解的錯誤.
三、課堂練習(xí)
解下列不等式:
(1);
(2)
筆答
(1);
(2)
檢查教學(xué)目標落實情況.
四、小結(jié)
的解集是;的解集是
解絕對值不等式注意不要丟掉這部分解集.
五、作業(yè)
1.閱讀課本含絕對值不等式解法.
2.習(xí)題2、3、4
課堂教學(xué)設(shè)計說明
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.
高中數(shù)學(xué)必修教案設(shè)計篇八
【知識與能力】
1.掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】感受數(shù)形結(jié)合的.思想方法;
【教學(xué)重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點表示有理數(shù)。
一個學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右)邊的數(shù)總比(左)邊的數(shù)大;
(2)正數(shù)都(大于)0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的大小:-1.5,0.6,-3,-2
鞏固所學(xué)知識
(五)、歸納小結(jié),強化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.21、2、3
選作第4題
高中數(shù)學(xué)必修教案設(shè)計篇九
(一)兩角和與差公式
(二)倍角公式
2cos2α=1+cos2α2sin2α=1-cos2α
注意:倍角公式揭示了具有倍數(shù)關(guān)系的兩個角的三角函數(shù)的運算規(guī)律,可實現(xiàn)函數(shù)式的降冪的變化。
注:(1)兩角和與差的三角函數(shù)公式能夠解答的三類基本題型:求值題,化簡題,證明題。
(2)對公式會“正用”,“逆用”,“變形使用”;
(3)掌握“角的演變”規(guī)律,
(4)將公式和其它知識銜接起來使用。
重點難點
重點:幾組三角恒等式的應(yīng)用
難點:靈活應(yīng)用和、差、倍角等公式進行三角式化簡、求值、證明恒等式
高中數(shù)學(xué)必修教案設(shè)計篇十
【知識與能力】
1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。
2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。
【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系
【情感態(tài)度與價值觀】 感受數(shù)形結(jié)合的思想方法;
【教學(xué)重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
【教學(xué)難點】利用數(shù)軸比較有理數(shù)的大小。
(一)創(chuàng)設(shè)情境,引入課題
(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?
學(xué)生回答.
(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書課題)
(二)得出定義,揭示內(nèi)涵
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):
(1)畫直線,取原點
(2)標正方向
(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。
概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
(三)強化概念,深入理解
1、下列圖形哪些是數(shù)軸,哪些不是,為什么?
學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。
2、學(xué)生自己在練習(xí)本上畫一個數(shù)軸。教師在黑板上畫
(四)動手練習(xí),歸納總結(jié)
1、在數(shù)軸上的點表示有理數(shù)。
一個學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。
明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”
2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育
3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題
(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;
(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。
例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2
鞏固所學(xué)知識
(五)、歸納小結(jié),強化思想
師生總結(jié)本課內(nèi)容。
1、數(shù)軸的概念,數(shù)軸的三要素
2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系
3、所有的有理數(shù)都可以用數(shù)軸上的點來表示
師:你感到自己今天的表現(xiàn)怎樣?
習(xí)題2.2 1、2、3
選作第4題
高中數(shù)學(xué)必修教案設(shè)計篇十一
教學(xué)目標
(一)知識目標
理解世界多極化趨勢及國際競爭的實質(zhì),認識我國發(fā)展面臨的機遇與挑戰(zhàn)。
(二)能力目標
提高運用馬克思主義立場、觀點和方法分析判斷國際社會政治現(xiàn)象的能力,以及自主學(xué)習(xí)、探索的能力。
(三)情感、態(tài)度與價值觀目標
1、培養(yǎng)學(xué)生關(guān)心祖國在國際社會的地位、命運的民族責(zé)任感,以及熱愛和平,維護本國利益和維護各國人民共同利益相統(tǒng)一的理念。
2、認識我國與發(fā)達國家的差距,增強憂患意識和勇于挑戰(zhàn)意識。
教學(xué)重難點
教學(xué)重點、難點
當代國際競爭的實質(zhì)
教學(xué)工具
課件
教學(xué)過程
(一)引入新課
20世紀80年代末到90年代初,伴隨著東歐劇變,蘇聯(lián)解體,美蘇對峙的兩極格局被打破,世界各種力量在錯綜復(fù)雜的利益關(guān)系中出現(xiàn)新的分化和組合,國際格局相應(yīng)的發(fā)生重大變化。各國之間將呈現(xiàn)怎樣的關(guān)系呢?下面就學(xué)習(xí)這方面的問題。
(二)進行新課
一、-世界若干力量中心
教師活動:引導(dǎo)學(xué)生閱讀教材104頁,思考幾個探究性問題。
學(xué)生活動:積極思考并回答問題
教師點評:當今世界正在形成的政治經(jīng)濟力量中心反映出世界格局多極化趨勢,這與二戰(zhàn)后形成的美蘇對峙兩極格局有明顯不同。這種局面有利于世界的和平、穩(wěn)定、發(fā)展和國際關(guān)系-化。中國作為維護世界和平的重要力量,在當今國際事務(wù)中發(fā)揮著越來越重要的作用。
二、世界多極化的發(fā)展趨勢
1、當今國際形勢的一個突出特點是:世界多極化在曲折中發(fā)展
(1)第二次世界大戰(zhàn)后,形成了以美蘇對峙為標志的世界兩極格局。
(2)20世紀80年代末到90年代初,東歐劇變,蘇聯(lián)解體,美蘇對峙的兩極格局被打破。世界各種力量在錯綜復(fù)雜的利益關(guān)系中出現(xiàn)新的分化和組合,大國之間的關(guān)系經(jīng)歷著重大而又深刻的調(diào)整,國際格局向多極化發(fā)展。
學(xué)生活動:認真思考并積極討論,踴躍發(fā)言
教師點評:歐盟成員國的增加,有力的推動了歐洲一體化進程,使歐盟成為多極化力量中頭等實力單位,在世界格局中占據(jù)更加重要的地位。俄羅斯當今的實力雖有所削弱,但仍具有巨大的經(jīng)濟科技潛力和強大的軍事力量,其大國地位不容置疑;日本是僅次于美國的第二經(jīng)濟強國,目前正在保持經(jīng)濟大國基礎(chǔ)上謀求政治大國地位。
(3)目前世界正在形成的若干個政治經(jīng)濟力量中心。美國、歐盟、俄羅斯、中國、日本等大國和國際組織在國際社會中扮演著重要角色。
廣大發(fā)展中國家是反對霸權(quán)主義和強權(quán)政治、促進世界和平與發(fā)展的重要力量,是推動建立公正、合理的國際政治經(jīng)濟新秩序的主力軍,是我國在國際舞臺上的同盟軍。
(4)世界多極化的形成將是一個漫長曲折的充滿復(fù)雜斗爭的演變過程。
2、世界多極化進程中的國際競爭
(1)伴隨著世界多極化進程,國際競爭越來越激烈。
面對急劇變化的世界,許多國家都在調(diào)整目標,力圖為自己確立有利態(tài)勢。美國極力維護其世界超級大國地位;日本和德國正努力躋身政治大國行列;中國堅定地走中國特色社會主義道路。
(2)競爭的意義:世界走向多極化,是時代進步的要求,符合各國人民的利益。由于世界多極化建立在多種力量相互依存又相互制約的基礎(chǔ)上,因而有利于世界和平與發(fā)展。
總之,稱霸與反霸的斗爭將長期存在,這是影響國際和平與安全的一個基本因素。單極與多極的矛盾、稱霸與反霸的斗爭,將成為21世紀相當長一個時期內(nèi)國際斗爭的焦點。
三、抓住機遇,迎接挑戰(zhàn)
1、國際競爭及其實質(zhì)
世界格局的變化,各國目標的調(diào)整,形成了國家間既合作又競爭的局面。要對話與合作,不要對抗與沖突,已成為越來越多國家的共識。各國人民要求友好相處的呼聲日益高漲。國家間在加強合作的同時,競爭也在加劇。
國際競爭表現(xiàn)在各個領(lǐng)域,有經(jīng)濟競爭、文化競爭、軍備競爭、人才競爭、科技競爭等。
當前國際競爭的實質(zhì)是以經(jīng)濟和科技實力為基礎(chǔ)的綜合國力的較量。
教師活動:閱讀教材第106頁“專家點評”內(nèi)容,了解什么是綜合國力?
學(xué)生活動:認真思考并踴躍發(fā)言
教師點評:綜合國力是指一個主權(quán)國家生存和發(fā)展所擁有的全部實力(即物質(zhì)力和精神力)及國際影響力的合力。經(jīng)濟實力、科技實力、國防實力,這些物質(zhì)力量是基礎(chǔ)。其中,經(jīng)濟力和科技力已經(jīng)成為決定性的因素。文化、經(jīng)濟、政治實力在綜合國力競爭中越來越突出,民族精神、民族凝聚力是綜合國力的重要組成部分。
教師活動:閱讀教材第106頁“相關(guān)鏈接”內(nèi)容,了解各國是如何展開競爭的?
學(xué)生活動:認真思考并踴躍發(fā)言
教師點評:當今世界,發(fā)展經(jīng)濟和科學(xué)技術(shù)是世界大多數(shù)國家關(guān)心的問題,各國之間的競爭也越來越多地轉(zhuǎn)向經(jīng)濟和科技領(lǐng)域。世界多數(shù)國家都以發(fā)展經(jīng)濟和科技作為國家的戰(zhàn)略重點,制定發(fā)展戰(zhàn)略,努力增強自己的綜合國力,力圖在世界格局中占據(jù)有利地位。
2、加快發(fā)展,增強我國的綜合國力
教師活動:閱讀教材第107頁圖表,并思考所提出的問題。
學(xué)生活動:認真思考并踴躍發(fā)言
教師點評:發(fā)展才是硬道理。大力加快我國社會主義現(xiàn)代化進程,全面建設(shè)小康社會,增強國家實力,這是我國自立于世界民族之林的根本。
當前,我們要落實科學(xué)發(fā)展觀,實現(xiàn)跨越式發(fā)展,尤其要著力于發(fā)展科學(xué)技術(shù)和提高國民素質(zhì),增強綜合國力,積極參與國際合作與競爭。
(三)課堂總結(jié)、點評
本節(jié)學(xué)習(xí)了世界多極化趨勢,以及當前國際競爭的實質(zhì),通過學(xué)習(xí)深刻領(lǐng)會我國現(xiàn)代化建設(shè)面臨的國際機遇和挑戰(zhàn),對于維護和實現(xiàn)我國人民的根本利益,促進我國經(jīng)濟發(fā)展和社會進步,提高我國的國際地位和影響力等,有重要意義。
課余作業(yè)
分析討論,面對當前的國際形勢,我國應(yīng)該如何抓住機遇、迎接挑戰(zhàn)?
課后小結(jié)
學(xué)了這節(jié)課,你有什么收獲?
課后習(xí)題
完成課后練習(xí)題。
板書
世界多極化:不可逆轉(zhuǎn)
高中數(shù)學(xué)必修教案設(shè)計篇十二
1.把握寫景抒情散文情景交融的特點,提高對情景交融意境的鑒賞能力。
2.學(xué)習(xí)作者運用語言的技巧:比喻、通感的巧妙運用,動詞、疊詞的精心選用。
3.訓(xùn)練整體感知、揣摩語言的能力。
過程與方法
1.本文語言精美,寫景狀物傳神,應(yīng)加強朗讀訓(xùn)練,讓學(xué)生自然地受到感染,體會文章的韻味。
2.理解關(guān)鍵語句,提高對作者在文中表達的思想感情的領(lǐng)悟能力。
情感態(tài)度與價值觀
1.引導(dǎo)學(xué)生關(guān)注社會,追求理想。
2.培養(yǎng)學(xué)生健康的審美情趣。教學(xué)重點體味作品寫景語言精練、優(yōu)美的特點及其表達效果。教學(xué)難點品味、領(lǐng)悟課文情景交融,“景語”“情語”渾然一體的寫作特點。
教學(xué)方法誦讀法、感知法、品味法
教具準備課文錄音帶、多媒體課件
教學(xué)時間安排二個課時
第一課時
一、導(dǎo)語設(shè)計
李白在《月下獨酌》里說:“花間一壺酒,獨酌無相親。舉杯邀明月,對影成三人。”——在這里,“月”成了詩人排遣內(nèi)心深處孤獨寂寞的一種載體。
二、文本解讀
(一)知識積累
1、朱自清的生平和創(chuàng)作。朱自清,原名自華,字佩弦,號秋實。祖籍浙江紹興,1898年生于江蘇東海。1903年隨家定居揚州。1916年中學(xué)畢業(yè)后,考入北京大學(xué)預(yù)科班,次年更名“自清”,考入本科哲學(xué)系。畢業(yè)后在江蘇、浙江等地的中學(xué)任教。上大學(xué)時,朱自清開始創(chuàng)作新詩,1923年發(fā)表的長詩《毀滅》,震動了當時的詩壇。1924年出版詩與散文集《蹤跡》,1925年任清華大學(xué)教授,創(chuàng)作轉(zhuǎn)向散文,同時開始研究古典。1928年出版散文集《背影》,成了著名的散文家。1948年8月病逝于北京。他是詩人、散文家、學(xué)者,又是民主戰(zhàn)士、愛國知識分子。毛澤東稱他“表現(xiàn)了我們民族的英雄氣概”。著作有《朱自清全集》。
3、借助注解和詞典讀懂《采蓮賦》。
(二)信息篩選播放錄音(或教師朗讀)
1、學(xué)生邊聽邊思考如何劃分層次,并歸納大意。
明確:全文分三部分:
第一部分(1):月夜漫步荷塘的緣由。(點明題旨)
第二部分(2-6):荷塘月色的恬靜迷人。(主體)
第三部分(7-10):荷塘月色的美景引動鄉(xiāng)思。(偏重抒情)
(三)合作探究
師生共同解析第四段,看作者是怎樣從多角度來描摹荷塘美景的?明確:先寫滿眼茂密的荷葉,次寫多姿多態(tài)的荷花、荷香,最后寫葉子和花的一絲顫動以及流水。層次井然,形象精確?!@是按觀察的角度,視線由近及遠、由上而下的空間順序來寫的。以上是順序特點,細分析,還可以看出作者的匠心:a.抓靜態(tài)與動態(tài)的結(jié)合,把荷塘寫“活”。而且,作者筆下的景物都是“動”的,“靜”不過是“動”的瞬間表現(xiàn),揚靜而情動。
b.抓可見與可想的結(jié)合,寫出了散文的神韻。所謂“可想”,是指由“可見”引起的合理聯(lián)想,把不可見的景物寫得很有風(fēng)采。
(四)能力提升
學(xué)生自己閱讀第五段,合作討論作者在這里是如何描寫月色的。
明確:作者把荷葉和荷花放在月光下面,一個“瀉”字,給人一種乳白色而又鮮艷欲滴的實感;一個“浮”字又表現(xiàn)出月光下荷葉、荷花那種縹緲輕柔的姿容。文章似乎仍在寫荷葉、荷花,其實不然,作者是通過寫葉、花的安謐、恬靜,襯托出月色的朦朧柔和。又如文章寫“黑影”和“倩影”,也是寫月色,因為影是月光照射在物體上產(chǎn)生的。樹影明暗掩映,錯落有致,反襯月光輕盈蕩漾。月色本是難以描摹的',所以作者透過不同的景物,從不同的角度去寫月色,使難狀之景如在眼前。
(五)分析鑒賞
1、第五段“酣眠”“小睡”各指什么?有無深層含義?
明確:“酣眠”比喻朗照,“小睡”比喻被一層淡淡的云遮住的月光。至于它的深層含義應(yīng)該聯(lián)系作者的心態(tài)來看,他不希望過于激烈的行為,他喜歡一種平和的心態(tài),正如我們前面分析的那樣,他做不到投筆從戎,他要尋找安寧平和的生活。對景物的喜好折射出作者的心態(tài)。
2、課文第五段,寫月光用“瀉”不用“照”“鋪”,其好處是什么?(解答這個問題,不妨請學(xué)生把“照”和“鋪”字代入句中讀一遍,學(xué)生就知道了。
明確:“瀉”是承上面比喻句“如流水一般”而來的,“瀉”字有向下傾的勢態(tài)?!罢铡弊趾汀颁仭弊志蜎]有這個效果。
3、作者為什么會由光和影聯(lián)想到名曲?
明確:這是使用通感的修辭手法,光與影是視覺形象,作者卻用聽覺形象來比喻,這就是通感的一種,其相似點就是和諧。第四段寫荷花的縷縷清香,微風(fēng)傳送,像遠方飄來歌聲一樣動人心懷,這幽雅淡遠的感受也只有在月夜獨處時才會有,這也是通感,把嗅覺形象轉(zhuǎn)化為聽覺形象,它們之間的相似點就是似有似無、時斷時續(xù)、捉摸不定。
三、課堂小結(jié)
所謂“意境”,指的是外界的人事景物(客觀)與人的思想感情(主觀)相融合而形成的一種天人合一、情景交融的境界。這種天人合一、情景交融越是天衣無縫、水乳交融,散文就越具有美感?!逗商猎律纷龅搅诉@一點,所以它具有一種意境美。
四、作業(yè)設(shè)計
背誦第四、五、六段。
第二課時
一、導(dǎo)語設(shè)計
二、文本解讀
(一)合作探究指導(dǎo)學(xué)生理解“通感”的特點及其作用。明確:通感:就是人的各種感覺之間的交流、溝通、轉(zhuǎn)移。錢鐘書先生說過,“在日常經(jīng)驗里,視覺、聽覺、觸覺、嗅覺、味覺往往可以彼此打通或交通,眼、耳、舌、鼻、身,各個官能的領(lǐng)域可以不分界限。顏色似乎會有溫度,聲音似乎會有形象,冷暖似乎會有重量,氣味似乎會有鋒芒……”(《通感》。)例如:“微風(fēng)過處,送來縷縷清香,仿佛遠處高樓上渺茫的歌聲似的?!?/p>
a.本體——花香(嗅覺)喻體——渺茫的歌聲(聽覺)b.作用:把花香的特點寫清了,生動形象。
c.相似點:立于微風(fēng)中嗅馨香(時有時無)——聽遠處高樓傳來的歌聲(時斷時續(xù))再如:“但光與影有著和諧的旋律,如梵婀玲上奏著的名曲?!?/p>
(二)能力提升
1、文章抒情的語句主要有哪些?
明確:第一段:這幾天心里頗不寧靜。
第二段:沒有月光的晚上,這路上陰森森的,有些怕人。今晚卻很好,雖然月光也還是淡淡的。
第三段:我也像超出了平常的自己,到了另一世界里。我愛熱鬧,也愛冷靜;愛群居,也愛獨處……便覺是個自由的人。……我且受用這無邊的荷香月色好了。
第六段:但熱鬧是它們的,我什么也沒有。
第八段:這真是有趣的事,可惜我們現(xiàn)在早已無福消受了。
第十段:這令我到底惦著江南了。
2、作者的思想感情在文中是怎樣變化的?
明確:因為這幾天心里頗不寧靜,忽然想起日日走過的荷塘,在滿月的光里,總該另有一番樣子,于是就想去看看,沿荷塘的路平常是有些怕人的,但今晚卻很好,我可以享受這無邊的荷香月色。荷塘月色的確很美,月光下的荷塘美景清幽淡雅,荷塘上的迷人月色朦朧和諧,令人心醉。荷塘四周非常幽靜,只有樹上的蟬聲和水里的蛙聲最熱鬧,而我什么也沒有。忽然又想起采蓮的事情來了,那真是有趣的事,可惜我們現(xiàn)在早已無福消受了。采蓮令我惦著江南了,這樣想著回到了家里。有人把這篇文章所表現(xiàn)的思想感情概括為“淡淡的喜悅,淡淡的哀愁”,是很貼切的,但作者的感情底色是“不寧靜”。
(三)分析鑒賞
1、第六段寫“熱鬧是它們的,我什么也沒有”,作者為什么會如此傷感?
明確:作者想尋找美景,使自己寧靜,平息自己矛盾的心情而不得,當然傷感。
2、第七段采蓮與文章主體有什么關(guān)系?為什么會想起采蓮的事情?
明確:以采蓮的熱鬧襯托自己的孤寂,且荷蓮?fù)铮髡哂质菗P州人,對江南習(xí)俗很了解。
明確:一方面有照應(yīng)文章開頭的作用,但主要目的還是以靜寫動,以靜來反襯自己心里的極不寧靜。心里的不寧靜,是社會現(xiàn)實的劇烈動蕩在作者心中引起的波瀾。全篇充滿著動與靜的對立統(tǒng)一:社會的動蕩與荷塘一隅的寂靜,內(nèi)心的動蕩與內(nèi)心的寧靜形成對立統(tǒng)一,文章開頭心里不寧靜,在月夜荷塘幽美的景色的感染下趨于心靜,走出荷塘又回到不寧靜的現(xiàn)實中來,也形成對立、轉(zhuǎn)化。
三、課堂小結(jié)
這篇作品獲得人們特別贊賞的原因,就在于它寫景特別工細。朱自清在表現(xiàn)月色下的荷塘和荷塘上的月色這兩個組成部分的時候,還進一步作更精細的分解剖析,把這兩個部分再分解剖析成許多更小的部分,然后逐一描寫并且從景物觀賞者的視覺、嗅覺、聽覺,以及景物的靜態(tài)、動態(tài)等角度,寫出它們的種種性狀,從而把景物表現(xiàn)得格外細膩。
四、作業(yè)設(shè)計
研究性學(xué)習(xí)參考論題。請你就以下論題中的一個或另擬論題,從網(wǎng)絡(luò)上尋找有關(guān)資料,寫出你的研究結(jié)果。
1、走近朱自清
2、朱自清為什么“不寧靜”?
3、談《荷塘月色》的寫景藝術(shù)
4、談《荷塘月色》的感情線索
高中數(shù)學(xué)必修教案設(shè)計篇十三
一)、課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應(yīng)盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二)、適當多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準,反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
三)、調(diào)整心態(tài),正確對待考試。
首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高中數(shù)學(xué)必修教案設(shè)計篇十四
初中新課程中數(shù)學(xué)知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數(shù)學(xué)教學(xué)的實踐來看,學(xué)生掌握了這些知識點對學(xué)習(xí)新的知識有一定的促進作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實際情況,做適當?shù)难a充,同時,初中學(xué)習(xí)的有理數(shù)乘方及運算性質(zhì)和二次函數(shù),這些知識也要進行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。
2、思維能力和運算能力的進一步強化。
初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實踐能力很強,但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時,由于初中大量使用計算器,學(xué)生的計算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學(xué)的實踐來看,學(xué)生作業(yè)中出現(xiàn)的大量錯誤與計算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實際情況,從高一開始就要切實提高學(xué)生的運算能力。
3、抓住學(xué)科特點,做好順利過渡。
高中數(shù)學(xué)知識量大,理論性、綜合性強,同時高中課時少,學(xué)生基礎(chǔ)差等,知識的難度和對學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強)。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實際情況及時調(diào)整教學(xué)方法和教學(xué)過程,使學(xué)生能順利進入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。
高中數(shù)學(xué)必修教案設(shè)計篇十五
要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。
想學(xué)好數(shù)學(xué),對數(shù)學(xué)感興趣
其實學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。
多做題反復(fù)做,有題感
其實學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。
高中數(shù)學(xué)必修教案設(shè)計篇十六
專題八當今世界經(jīng)濟的全球化趨勢。
通史概要:
當今世界經(jīng)濟發(fā)展有兩個明顯的趨勢:一是世界經(jīng)濟區(qū)域集團化,二是世界經(jīng)濟全球化。世界經(jīng)濟區(qū)域集團化是最終實現(xiàn)經(jīng)濟全球化的重要步驟和途徑,經(jīng)濟全球化則是區(qū)域經(jīng)濟集團化的最終歸宿。
世界經(jīng)濟區(qū)域集團化是生產(chǎn)力高度發(fā)展的必然產(chǎn)物,是生產(chǎn)國家化、國際分工向縱深發(fā)展需要加強合作的結(jié)果,也是世界經(jīng)濟競爭激烈的表現(xiàn)。它產(chǎn)生的原因有:現(xiàn)代科技的發(fā)展、國際間經(jīng)濟競爭和客觀上存在的分工。區(qū)域集團化的發(fā)展分為三個階段:第一階段為五六十年代,世界經(jīng)濟集團化的趨勢主要出現(xiàn)在歐洲,如歐洲煤炭共同體的出現(xiàn)。第二階段為六七十年代,區(qū)域集團化成為一種世界經(jīng)濟現(xiàn)象。歐洲區(qū)域集團化趨勢進一步發(fā)展,如歐共體的建立;一些發(fā)展中國家的地區(qū)性經(jīng)濟集團也紛紛出現(xiàn),如東盟的出現(xiàn)。第三階段為80年代至今,區(qū)域集團化掀起新的浪潮,進入了較高層次的經(jīng)濟一體化時期,出現(xiàn)了歐盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織三大區(qū)域經(jīng)濟集團。
世界經(jīng)濟全球化是世界生產(chǎn)力發(fā)展的要求和結(jié)果,是不以人的意志為轉(zhuǎn)移的歷史趨勢。它突出的表現(xiàn)在國際貿(mào)易、國際投資、國際金融和跨國公司的發(fā)展。經(jīng)濟全球化的過程中的問題是:在經(jīng)濟全球化的過程中,不可避免地把資本主義固有的矛盾擴展到全球,造成南北矛盾、貧富分化、環(huán)境問題、能源危機、全球性的經(jīng)濟金融危機、恐怖組織活動猖獗等等,直接影響到人類的生存與發(fā)展。
我國在當今世界經(jīng)濟發(fā)展趨勢中,作為發(fā)展中國家,應(yīng)該如何面對機遇和挑戰(zhàn),成了新時期經(jīng)濟發(fā)展人們共同關(guān)心的話題。從中國加入亞太經(jīng)合組織、加入世界貿(mào)易組織,加強同東盟的聯(lián)系的史實中,我們的態(tài)度是:在堅持獨立自主、自力更生的前提下,擁有“雙贏”的思維,抱著開放的心態(tài),加強國際的合作與交流,參與國際競爭,抓住機遇,接受挑戰(zhàn),在國際的競爭和合作中,提高我國的經(jīng)濟發(fā)展水平,跟隨世界發(fā)展的潮流。概括而言,就是辯證地看待世界經(jīng)濟發(fā)展趨勢這一經(jīng)濟現(xiàn)象,樹立正確的.發(fā)展觀。
一歐洲的聯(lián)合。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學(xué)目標:
(1)知識與能力:分析第二次世界大戰(zhàn)后西歐經(jīng)濟進入“黃金時代”的原因;簡述歐洲國家從“歐共體”走向歐盟的歷程,認識歐洲聯(lián)盟成立對世界經(jīng)濟和政治格局的影響。
概述歐元產(chǎn)生的影響,培養(yǎng)多角度、多層次理解問題的能力。
(2)過程與方法:通過討論西歐經(jīng)濟在二戰(zhàn)后進入“黃金時代”的共同原因,進一步思考中國的社會主義建設(shè)應(yīng)如何借鑒其合理的方法與正確的經(jīng)驗,學(xué)習(xí)用聯(lián)系的方法看待問題,提高理論指導(dǎo)實踐的能力;通過分組學(xué)習(xí),搜集“歐共體”及“歐盟”成立的資料,了解整個歐洲走向聯(lián)合的過程,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
(3)情感、態(tài)度與價值觀:通過對歐洲走向聯(lián)合這段歷史的學(xué)習(xí),認識當今國際社會國家間團結(jié)協(xié)作的重要性,樹立國際意識;通過對歐洲走向聯(lián)合的史實的歸納,得出一個別國家或地區(qū)怎樣才能快速發(fā)展的一般規(guī)律;并結(jié)合我國的實際,進一步探討一下我們可以借鑒哪些做法,從而樹立為我國社會主義現(xiàn)代化建設(shè)而奮斗的責(zé)任感。
教學(xué)課時:1課時。
重點難點:
重點:歐洲走向聯(lián)合過程及影響。
難點:歐洲走向聯(lián)合的原因。
教學(xué)建議:
1、本課共有三個方面的內(nèi)容,“西歐經(jīng)濟的'黃金時代'”主要講述:二戰(zhàn)后的20世紀50年代到60年代,西歐各國經(jīng)濟在恢復(fù)的基礎(chǔ)上,進入調(diào)整增長期,被稱為西歐經(jīng)濟的“黃金時代”;“從'歐共體到'歐洲聯(lián)盟'”主要是歐洲從經(jīng)濟一體化到政治一體化的發(fā)展趨勢;“貨幣王國的世界公民”主要以歐元的流通為例,進一步表明歐洲走向聯(lián)合的趨勢。
2、西歐經(jīng)濟高速發(fā)展的共同原因:第一,西歐各國進行社會改革和政策調(diào)整。進行社會改革,例如:推行福利制度,適當改善人民的生活條件,緩和社會矛盾,穩(wěn)定社會秩序;進行政策調(diào)整,如:將一些私人壟斷企業(yè)國有化,并建立有關(guān)國計民生的重要工業(yè)部門。這些政策的推行,促進了西歐經(jīng)濟的穩(wěn)定持續(xù)高速發(fā)展,從而出現(xiàn)前所未有的繁榮。第二,馬歇爾計劃的實施,解決了西歐戰(zhàn)后經(jīng)濟發(fā)展的啟動資金,西歐重工業(yè)在短時期內(nèi)完成了新的裝備,并有能力購買足夠的工業(yè)原料。第三,戰(zhàn)后西歐廣泛使用第三次科技革命的成果,并對產(chǎn)業(yè)部門進行了改造,使勞動生產(chǎn)率大大提高,從而有力地推動了經(jīng)濟的高速發(fā)展。
3、伴隨著歐洲經(jīng)濟合作的成功,歐洲經(jīng)濟不斷的恢復(fù),要求在國際上發(fā)揮更重要的作用。因而要加強在政治領(lǐng)域的合作成為歐洲各國的一致要求。面對二戰(zhàn)結(jié)束后以美蘇為首的兩極爭霸的冷戰(zhàn)格局,歐洲各國迫切要求組成一個更加強大的團體來維護自己的利益。于是在政治領(lǐng)域的合作很快便實施開來。
4、為進一步加強歐洲共同體之間的經(jīng)濟合作與交流,減少共同體內(nèi)部成員國存在的貿(mào)易壁壘,用統(tǒng)一的貨幣在歐共體各國之間流通,實現(xiàn)經(jīng)濟的聯(lián)合,從而進一步加強歐洲各國之間的政治合作。
二、發(fā)展的亞太。
課標要求:以歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織為例,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
教學(xué)目標:
(1)知識與能力:了解東盟的發(fā)展歷程,說說中國與東盟的交往情況;分析北美自由貿(mào)易區(qū)建立的原因和影響,比較北美自由貿(mào)易區(qū)與歐盟的異同;概述亞太經(jīng)濟合作組織建立的過程,探討亞太國家加強合作的途徑與方式。
(2)過程與方法:通過搜集中國與東盟交往的材料,了解東盟日益擴大及其影響;用列表等方式比較北美自由貿(mào)易區(qū)與歐盟的異同,學(xué)習(xí)用比較的方法認識歷史問題;通過上網(wǎng)等途徑搜集中國參加apec會議的資料,多渠道去了解和認識apec建立的史實及影響。
(3)情感、態(tài)度與價值觀:通過對東盟、北美自由貿(mào)易區(qū)和亞太經(jīng)合組織等區(qū)域經(jīng)濟一體化進程的學(xué)習(xí)和了解,體會當今世界國家間加強合作、競爭與發(fā)展的重要性,樹立合作與競爭的意識。
教學(xué)課時:1課時。
重點難點:
重點:通過了解歐洲聯(lián)盟、北美自由貿(mào)易區(qū)及亞太經(jīng)濟合作組織,認識當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。
難點:中國積極參與世界區(qū)域經(jīng)濟組織的意義。
教學(xué)建議:
1、在經(jīng)濟全球化的進程中,亞太地區(qū)的經(jīng)濟集團化也在不斷深入發(fā)展。世界三大區(qū)域性經(jīng)濟集團有兩個分別在該地區(qū)。這一地區(qū)成為當今世界上經(jīng)濟發(fā)展最活躍地區(qū)。課文分別以“東盟”、“北美自由貿(mào)易區(qū)”和“亞太經(jīng)全組織”三個經(jīng)濟區(qū)域集團為例,介紹了當今世界經(jīng)濟區(qū)域集團化發(fā)展趨勢。每個集團內(nèi)部有著自身的規(guī)則的同時也不斷與其它區(qū)域集團相聯(lián)系,從而使世界經(jīng)濟形成了密不可分的一個整體。
2、東南亞國家聯(lián)盟自1967成立以來,已經(jīng)歷時近三分之一世紀。東盟在維護和促進各成員國相互間的政治和經(jīng)濟合作,實現(xiàn)地區(qū)和平穩(wěn)定,加快成員國經(jīng)濟增長,提高成員國人民生活水平等方面都取得了顯著成績。尤其是在國際政治方面,極大地增強了東盟的國際地位。東盟在由四大洲國家組成的apec中具有舉足輕重的政治地位,又是由亞歐兩大洲主要國家參加的亞歐會議的倡議者和發(fā)起者,在東亞乃至亞洲政治舞臺上成為使日本、中國和印度等大國瞠乎其后的主角。
3、日本經(jīng)濟的崛起,特別是歐洲經(jīng)濟一體化實施的外在壓力,美國、加拿大和墨西哥3國發(fā)展各自經(jīng)濟的內(nèi)在動力,是北美自由貿(mào)易區(qū)成立的根本原因。美、加、墨3國又是山水相連的鄰邦;語言文字、價值觀念、風(fēng)俗習(xí)慣等又頗相似;經(jīng)濟互補性強;相互貿(mào)易基礎(chǔ)良好,美、加、墨3國具有實行經(jīng)濟一體化的必要性,又具有實行經(jīng)濟一體化的可能性。美國認為要取得世界經(jīng)濟的主導(dǎo)地位,只有建立以自己為中心經(jīng)濟區(qū)域集團,才能在經(jīng)濟全球化大潮中立于不敗之地。
4、二十世紀七十年代后,亞太地區(qū),特別是東亞各國和地區(qū)的對外開放經(jīng)濟政策和經(jīng)濟迅速發(fā)展為亞太區(qū)域經(jīng)濟合作創(chuàng)造了條件。東亞地區(qū)經(jīng)濟的發(fā)展,國際收支條件的改善,緩解亞太地區(qū)南北之間的矛盾,為亞太經(jīng)濟合作創(chuàng)造了條件。歐共體統(tǒng)一市場和美加自由貿(mào)易區(qū)的建立,刺激了亞太向區(qū)域經(jīng)濟合作的方向發(fā)展。亞太經(jīng)合組織的主要活動,為各成員提供區(qū)域經(jīng)濟,科技,貿(mào)易和發(fā)展等方面多邊合作的機會,交流各成員在這些領(lǐng)域內(nèi)的經(jīng)驗,促進本區(qū)域的共同發(fā)展.它從產(chǎn)生、發(fā)展及運作模式均區(qū)別于歐盟和nafta,有自身的特點,這些特點適應(yīng)了apec各成員國經(jīng)濟發(fā)展的狀況和經(jīng)濟運行模式。
三、經(jīng)濟全球化的世界。
課標要求:
(1)以“布雷頓森林體系”建立為例,認識第二次世界大戰(zhàn)后以美國為主導(dǎo)的資本主義世界經(jīng)濟體系的形成。
(2)了解世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用。了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用。
(3)了解經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
教學(xué)目標:
(1)知識與能力:了解“布雷頓森林體系”建立的基本史實,分析其影響;簡述世界貿(mào)易組織(wto)的由來和發(fā)展,認識它在世界經(jīng)濟全球化進程中的作用;了解中國參加世界貿(mào)易組織(wto)的史實,認識其影響和作用;概述經(jīng)濟全球化的發(fā)展趨勢,探討經(jīng)濟全球化進程中的問題。
(2)過程與方法:閱讀課文和查找中國加入世貿(mào)組織談判的歷程等,了解“從gatt到wto”的過程,圍繞世界貿(mào)易組織建立的必要性并對中國加入wto的利與弊等問題展開討論;開展課堂討論或辯論:經(jīng)濟全球化對本地區(qū)的影響是利大于弊還是弊大于利?如何解決經(jīng)濟全球化出現(xiàn)的問題?從多角度去分析歷史問題。
高中數(shù)學(xué)必修教案設(shè)計篇十七
了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.
(2)一元二次不等式
會從實際情境中抽象出一元二次不等式模型.
通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
會從實際情境中抽象出二元一次不等式組.
了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
了解基本不等式的證明過程.
【本文地址:http://www.aiweibaby.com/zuowen/8216304.html】