方案是在解決問題或?qū)崿F(xiàn)目標(biāo)時制定的一種詳細(xì)計劃或方法。一個完美的方案需要明確的目標(biāo)和明晰的路線圖。如果你正在苦惱于方案的寫作,不妨看看下面的范例,或許能幫到你。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇一
b.會根據(jù)直線和圓的方程用代數(shù)法和幾何法判斷直線與圓的位置關(guān)系;
c.掌握直線和圓的位置關(guān)系判定的應(yīng)用,會求已知圓的交線和切線方程。
(2)能力目標(biāo)
讓學(xué)生通過觀察,分析,總結(jié)歸納出根據(jù)直線與圓的方程來判斷直線與圓的位置關(guān)系的方法,培養(yǎng)學(xué)生分析問題解決問題的能力,讓學(xué)生對坐標(biāo)法有進(jìn)一步的了解,并能用參數(shù)法、數(shù)形結(jié)合的方法去分析、解決相應(yīng)的數(shù)學(xué)問題,同時訓(xùn)練學(xué)生數(shù)學(xué)思維,培養(yǎng)學(xué)生尋求一題多解的能力。
(3)情感目標(biāo)
通過學(xué)生自己動手實驗和探索,培養(yǎng)學(xué)生動手能力和發(fā)現(xiàn)問題的能力;通過師生互動,生生互動的教學(xué)活動過程,形成學(xué)生的體驗性認(rèn)識,體會成功的愉悅,提高數(shù)學(xué)學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,培養(yǎng)鍥而不舍的鉆研精神和合作交流的科學(xué)態(tài)度。
重點(diǎn):直線和圓的三種位置關(guān)系
難點(diǎn):直線和圓的三種位置關(guān)系的性質(zhì)和判定的應(yīng)用
教學(xué)方法:問題探究式、啟發(fā)式引導(dǎo)、參與式探究、互動式討論
學(xué)習(xí)方法:自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)。
教學(xué)手段:借助多媒體動態(tài)演示,構(gòu)建學(xué)生探究式學(xué)習(xí)的教學(xué)環(huán)境。
1、創(chuàng)設(shè)情景、引入新課;
2、引導(dǎo)啟發(fā)、探索新知;
3、講練結(jié)合、鞏固新知;
4、知識拓展、深化提高;
5、小結(jié)新知,畫龍點(diǎn)睛
6、布置作業(yè),復(fù)習(xí)鞏固;
重新閱讀課本本節(jié)相關(guān)內(nèi)容并預(yù)習(xí)下一節(jié)課內(nèi)容。
直線與圓的位置關(guān)系是高考的考點(diǎn)之一,是在學(xué)生已有的平面幾何知識基礎(chǔ)上進(jìn)行教學(xué),以點(diǎn)與圓的位置關(guān)系上升為直線與圓的位置關(guān)系,從簡單到復(fù)雜,從幾何特征到代數(shù)問題(坐標(biāo)法)的教學(xué)過程,它應(yīng)用比較廣泛,同時也為后面圓和圓的位置關(guān)系作了鋪墊,對后面的解題及相關(guān)數(shù)學(xué)問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關(guān)系的基礎(chǔ),故要求學(xué)生充分掌握。
針對上述情況,我精心設(shè)計教學(xué)過程,借助多媒體動態(tài)演示直線和圓的位置關(guān)系,直觀形象地展示了直線與圓的位置關(guān)系,化抽象為具體,以便學(xué)生更好的.理解他們之間的關(guān)系及其幾何特征,再引導(dǎo)學(xué)生把幾何形式的結(jié)論轉(zhuǎn)化為代數(shù)形式;教學(xué)過程中采用問題探究式、參與式探究、互動式討論等教學(xué)方法,為學(xué)生自主探究、合作交流構(gòu)建一個好的平臺;分層次設(shè)置例題,讓全體學(xué)生都得到提升;講解例題時應(yīng)用啟發(fā)式引導(dǎo)教學(xué)方法,不斷訓(xùn)練學(xué)生數(shù)學(xué)思維,借助圖象分析題意,加深學(xué)生對數(shù)形結(jié)合思想了解;新課結(jié)束后,引導(dǎo)學(xué)生小結(jié)本課內(nèi)容,培養(yǎng)學(xué)生歸納總結(jié)的能力。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇二
本節(jié)課的教學(xué)內(nèi)容是點(diǎn)和圓的位置關(guān)系,看似內(nèi)容少而簡單,但讓學(xué)生真正理解如何由圖形關(guān)系得出數(shù)量關(guān)系,以及從數(shù)量關(guān)系聯(lián)想到圖形的位置關(guān)系,卻并非簡單。如果忽略了這一過程,學(xué)生會做題,卻無法體驗數(shù)學(xué)的本質(zhì),無法體驗數(shù)形結(jié)合思想。所以本節(jié)課中引導(dǎo)學(xué)生由圖形聯(lián)想到數(shù)量關(guān)系,即有點(diǎn)和圓的位置關(guān)系聯(lián)想到點(diǎn)到圓心的距離與半徑的大小關(guān)系。我是分兩步的得出的:
第一步讓學(xué)生從圖形上直觀的認(rèn)識點(diǎn)和圓的三種位置關(guān)系,第二步引導(dǎo)學(xué)生從數(shù)量上判斷圖形位置,是為了讓學(xué)生更好的體驗數(shù)形結(jié)合思想。數(shù)量關(guān)系的探索是這節(jié)課的一個重點(diǎn)內(nèi)容,也是這節(jié)課的.難點(diǎn)所在。為解決這個問題,在課前布置了學(xué)生進(jìn)行預(yù)習(xí),預(yù)習(xí)內(nèi)容為以下6點(diǎn):
2、經(jīng)過一個點(diǎn)可以作幾個圓?
3、經(jīng)過兩個點(diǎn)可以作幾個圓?圓心有什么特點(diǎn)?
4、經(jīng)過不在同一直線上的三點(diǎn)可以作幾個圓?
5、過在同一直線上的三點(diǎn)能作圓嗎?如果不能如何證明。
6、過在不在同一直線上的三點(diǎn)能作圓嗎?如果能,能做幾個,如果不能,請說明理由。
通過課堂上的提問反饋,可以感受到學(xué)生通過預(yù)習(xí),在自主學(xué)習(xí)的基礎(chǔ)上能更好的理解知識,從而進(jìn)一步提高課堂聽課的效率。
新課標(biāo)指出,自主探究、動手實踐、合作交流應(yīng)成為學(xué)生的主要學(xué)習(xí)方式,教師應(yīng)引導(dǎo)學(xué)生主動的從事觀察、實驗、猜測、驗證、推理與交流等數(shù)學(xué)活動,從而使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略。本節(jié)課中“不在同一直線上的三點(diǎn)可以確定一個圓”讓學(xué)生經(jīng)歷了循序漸近的探究過程,即通過畫圖、觀察、分析、發(fā)現(xiàn)經(jīng)過一個已知點(diǎn)可以畫無數(shù)個圓,經(jīng)過兩個已知點(diǎn)也可以畫無數(shù)個圓,但其圓心分布在連接兩點(diǎn)線段的垂直平分線上,經(jīng)過不在同一直線上的三點(diǎn)可以確定一個圓。
通過這節(jié)課,學(xué)生們深切感受到預(yù)習(xí)在學(xué)習(xí)中的重要作用,也通過自己的預(yù)習(xí)對所學(xué)知識有理更深入的理解,從而提高了課堂效率;同時,通過對這節(jié)課的反復(fù)推敲設(shè)計,我也深切感受到對教材研究的重要性。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇三
《點(diǎn)與圓的位置關(guān)系》是人教版九年級上冊第二十四章第二節(jié),這一節(jié)分為兩個部分(即點(diǎn)與圓的位置關(guān)系和外接圓、外心),本節(jié)課主要學(xué)習(xí)了點(diǎn)與圓的三種位置關(guān)系。在理解圓的定義的基礎(chǔ)上展開了點(diǎn)與圓的位置關(guān)系教學(xué),通過圓的定義得到了圓內(nèi)點(diǎn)到圓心的距離都小于半徑,圓上點(diǎn)到圓心的距離都等于半徑,圓外點(diǎn)到圓心的距離都大于半徑,每一個圓都把平面上的點(diǎn)分成三部分:圓內(nèi)的點(diǎn)、圓上的點(diǎn)和圓外的點(diǎn)。學(xué)生理解透徹,掌握較好。
反思教學(xué)方法:
本節(jié)課我結(jié)合九年級學(xué)生的認(rèn)知特點(diǎn),從學(xué)生已有的生活經(jīng)驗和知識出發(fā),讓學(xué)生通過自己歸納,、總結(jié),并且主動的研究,從而學(xué)會知識。學(xué)生先學(xué),先練,老師后講,后教,促使他們在自主探究的過程中,真正理解和掌握數(shù)學(xué)知識,數(shù)學(xué)思想和數(shù)學(xué)方法,同時獲得廣泛的數(shù)學(xué)經(jīng)驗,效果較為理想。
反思目標(biāo)完成情況:
目標(biāo)1:學(xué)生能夠清楚的口述點(diǎn)和圓的位置關(guān)系以及相對應(yīng)的點(diǎn)到圓心的距離和半徑的大小關(guān)系。
目標(biāo)2:通過動手探究,知道了不在同一條直線上的三個點(diǎn)可以確定一個圓。但有十個同學(xué)因動手作圖能力差,最后實在別人的幫助下完成的自學(xué)任務(wù),還有三個同學(xué)竟然沒有作圖工具。
目標(biāo)3:掌握了三角形的外接圓和外心概念,都能準(zhǔn)確的找見三角形的外心并作出三角形的外接圓。
每個環(huán)節(jié)缺少相對應(yīng)的練習(xí)題是這節(jié)課最大的失敗之處,因為課前考慮到學(xué)生的動手探究能力差,耗時,為了完成教學(xué)任務(wù),因此沒有設(shè)置相應(yīng)的練習(xí)題。特別是在“探究1”環(huán)節(jié),學(xué)生雖對點(diǎn)與圓的位置關(guān)系掌握較好,但在一般的習(xí)題中,多考查由“點(diǎn)到圓心的距離”推出“點(diǎn)和圓的位置關(guān)系”,反推得難度相對于順推稍高,所以恐學(xué)生解決問題存有困難,且解題過程的書寫存有問題,在課后輔導(dǎo)中要進(jìn)行訓(xùn)練。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇四
一、教學(xué)目標(biāo):
根據(jù)學(xué)生已有的認(rèn)知的基礎(chǔ)及本課的教材的地位、作用,依據(jù)教學(xué)大綱的確定本課的教學(xué)目標(biāo)為:
(1)知識目標(biāo):
a、知道直線和圓相交、相切、相離的定義。
會根據(jù)直線和圓相切的定義畫出已知圓的切線。
c、根據(jù)圓心到直線的距離與圓的半徑之間的數(shù)量關(guān)系揭示直線和圓的位置。
2)能力目標(biāo):
讓學(xué)生通過觀察、看圖、列表、分析、對比,能找出圓心到直線的距離和圓的半徑之間的數(shù)量關(guān)系,揭示直線和圓的關(guān)系。此外,通過直線與圓的相對運(yùn)動,培養(yǎng)學(xué)生運(yùn)動變化的辨證唯物主義觀點(diǎn),通過對研究過程的反思,進(jìn)一步強(qiáng)化對分類和歸納的思想的認(rèn)識。
3)情感目標(biāo):
在解決問題中,教師創(chuàng)設(shè)情境導(dǎo)入新課,以觀察素材入手,像一輪紅日從海平面升起的圖片,提出問題,讓學(xué)生結(jié)合學(xué)過的知識,把它們抽象出幾何圖形,再表示出來。讓學(xué)生感受到實際生活中,存在的直線和圓的三種位置關(guān)系,便于學(xué)生用運(yùn)動的觀點(diǎn)觀察圓與直線的位置關(guān)系,有利于學(xué)生把實際的問題抽象成數(shù)學(xué)模型,也便于學(xué)生觀察直線和圓的公共點(diǎn)的變化。
二、教材的重點(diǎn)難點(diǎn)。
直線和圓的三種位置關(guān)系是重點(diǎn),本課的難點(diǎn)是直線和圓的三種位置關(guān)系的性質(zhì)與判定的應(yīng)用。
三、教學(xué)重點(diǎn)和難點(diǎn)。
解決重點(diǎn)的方法主要是:(1)由學(xué)生觀察老師展示的一輪紅日從海平面升起的照片提出問題,能不能我們學(xué)過的知識把它們抽象出幾何圖形再展示出來(讓學(xué)生嘗試通過日出的情境畫出幾種情況),(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。是什么?)。
在說直線與圓的位置關(guān)系時,如何突破這個難點(diǎn):(1)突破直線和圓不能有兩個以上的公共點(diǎn),讓學(xué)生討論,最后明確否定(因為直線和圓有三個或三個以上的公共點(diǎn),那么這與不在同一條直線上的三點(diǎn)就可以作一個圓,相矛盾)。
(2)把直線在圓的上下移動,引導(dǎo)學(xué)生用運(yùn)動的觀點(diǎn)觀察直線和圓的位置關(guān)系,并讓他們發(fā)現(xiàn)直線與圓的公共點(diǎn)的個數(shù),揭示直線和圓相交、相切、相離的定義,歸納直線和圓的三種位置關(guān)系。
(3)突破直線和圓有唯一一個公共點(diǎn)是直線和圓相切(指直線與圓有一個并且只有一個公共點(diǎn),它與有一個公共點(diǎn)的含義不同)。
(4)突破直線和圓的位置關(guān)系的(如果圓o的半徑為r,圓心到直線的距離為d,
3.直線l與圓o相離=dr。
(上述結(jié)論中的符號“=”讀作“等價于”)。
式子的左邊反映是兩個圖形(直線和圓)的位置關(guān)系的性質(zhì),右邊是反映直線和圓的位置關(guān)系的判定。
四、教學(xué)程序。
[提問]通過觀察、演示,你知道直線和圓有幾種位置關(guān)系?
[討論]一輪紅日從海平面升起的照片。
[新授]給出相交、相切、相離的定義。
[類比]復(fù)習(xí)點(diǎn)與圓的位置關(guān)系,討論它們的數(shù)量關(guān)系。通過類比,從而得出直線與圓的位置關(guān)系的性質(zhì)定理及判定方法。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇五
薛老師執(zhí)教的高三文科復(fù)習(xí)課:《直線與圓的位置關(guān)系》,首先從一個引例出發(fā),讓學(xué)生嘗試作圖和驗證,得出知識要點(diǎn),繼而在此基礎(chǔ)上繼續(xù)研究直線方程和軌跡等問題。例題只有一個,但小題很多,題題遞進(jìn),環(huán)環(huán)相扣,在此環(huán)節(jié)上教師以學(xué)生訓(xùn)練為主,教師講授和引導(dǎo)為輔,共同完成本節(jié)課的整體教學(xué)內(nèi)容。
我聽了薛老師的這節(jié)課認(rèn)為本節(jié)課設(shè)計高度重視學(xué)生的主動參與、親自操作,讓學(xué)生從中去體驗學(xué)習(xí)知識的過程,同時,也注重培養(yǎng)學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。整體看來這節(jié)課的優(yōu)點(diǎn)很多,很值得我去學(xué)習(xí)。
總結(jié)起來,大概有以下幾個特點(diǎn)。
(一)注重一個“滲透”——德育滲透。
在數(shù)學(xué)教學(xué)中,我們常常把德育教育與辯證唯物主義、愛國主義情懷聯(lián)系在一起,借助古今中外數(shù)學(xué)史不惜把數(shù)學(xué)課上成政治課,卻成為一堂蹩腳的課。其實,通過數(shù)學(xué)問題的發(fā)生和解決過程的教學(xué),培養(yǎng)與鍛煉學(xué)生知難而進(jìn)的堅強(qiáng)意志,敗而不餒的心理素質(zhì),一絲不茍的學(xué)習(xí)品質(zhì),勤于思考的良好學(xué)風(fēng),勇于探索的創(chuàng)新精神,實事求是的科學(xué)態(tài)度,這也是是德育教育,更是數(shù)學(xué)本質(zhì)上的德育教育。本課薛老師把這種德育教育滲透到教學(xué)的每一個環(huán)節(jié),力求“潤物細(xì)無聲”。當(dāng)學(xué)生解題遇到困難時,教師能給予耐心的引導(dǎo)。但,在課堂上,處理第(3)小題第二問時,有一名男生利用圓的定義很巧妙地給出了軌跡方程,薛老師可能沒有很好地把握表揚(yáng)的機(jī)會,而是詢問學(xué)生有否最后算出答案,顯得有些匆促。
(二)堅持兩個“原則”
1、例題設(shè)計注重分層教學(xué),堅持面向全體學(xué)生的原則。
題目母體來源于學(xué)生現(xiàn)有教輔書《全品》,卻在原題基礎(chǔ)上進(jìn)行了分層遞進(jìn)的改編,讓不同的學(xué)生都有不同的收獲。以學(xué)生的最近發(fā)展區(qū)為指向,充分尊重了學(xué)生現(xiàn)有的認(rèn)知水平和個性差異,為不同層次的學(xué)生采用適合自己個性的方法進(jìn)行學(xué)習(xí)創(chuàng)造了條件。
2、教學(xué)過程授人以漁,堅持以學(xué)生發(fā)展為本的原則。
讓學(xué)生深刻經(jīng)歷:通過作圖和求解基本例題回憶知識結(jié)構(gòu)——通過嘗試深化知識內(nèi)容——通過遞進(jìn)擴(kuò)展知識聯(lián)系,教會學(xué)生研究的方法,而不是結(jié)果。
(三)落實三個“容量”——知識量、活動量和思維量。
本節(jié)課所選內(nèi)容以解析幾何為平臺,卻可以集函數(shù)性質(zhì)、圖像、方程、不等式于一體,例題只有一題,但以此展開的小題卻逐層遞進(jìn)和推進(jìn),容量大,難度高??上驳氖牵蠋熗ㄟ^合理運(yùn)用現(xiàn)代技術(shù)和整合例題,成功地豐富了知識量;加強(qiáng)探索與過程教學(xué),有效地落實了思維量;突出學(xué)生板演與探究教學(xué),巧妙地增加了活動量,值得借鑒。
(四)實現(xiàn)四個“轉(zhuǎn)變”——學(xué)生角色從被動到主動;教師角色從傳授到指導(dǎo);學(xué)習(xí)理念從封閉到開放;學(xué)習(xí)形式從單一到多元。
本課初步實現(xiàn)了“四個轉(zhuǎn)變”是由于采用了探究式的教學(xué)策略,為學(xué)生提供開放性的學(xué)習(xí)內(nèi)容、開放性的教育資源和開放性的教學(xué)形式。特別是向?qū)W生提供了更多的機(jī)會和時間,讓學(xué)生嘗試和探究、合作和交流、歸納和總結(jié),最大限度地提高學(xué)生學(xué)習(xí)活動的自由度,促使學(xué)生思維空間的充分開放。
(五)培養(yǎng)五種“能力”——應(yīng)用能力、探究能力、反思與提問能力、交流合作能力和創(chuàng)新能力。
本課從引入開始,充分放手讓學(xué)生動腦、動口、動手,使研究問題得以逐個深入,難點(diǎn)得以一個個突破,能力得以一點(diǎn)點(diǎn)培養(yǎng)。事實上,解析幾何復(fù)習(xí)課,重在數(shù)形結(jié)合,重在幾何性質(zhì),重在靜動結(jié)合,課堂貴在“生動”,所謂“生動”,是指“生”出“動”。要樹立生本意識,立足學(xué)生“可動”;設(shè)置問題探究,引領(lǐng)學(xué)生“會動”;課前充分預(yù)設(shè),不怕學(xué)生“亂動”;及時表揚(yáng)肯定,激勵學(xué)生“愿動”。
但是我認(rèn)為這節(jié)課也有一些值得探討的問題:
第一、老師講的還是太多。聽說杜郎口中學(xué)要求老師每節(jié)課講課時間不能超過10分鐘,否則是不合格的。一堂課,就只有40分鐘,老師講多了,學(xué)生自然就參與少了。這樣的后果就會導(dǎo)致學(xué)生具體體驗時間不夠,同時規(guī)范操作和演練也不夠。
第二、在學(xué)生回答引入題時,假設(shè)直線方程時,學(xué)生沒有考慮到斜率是否存在的情況,這時,老師沒有及時進(jìn)行補(bǔ)充和糾正。一個很明顯的后果就是導(dǎo)致在(2)問的板演中,學(xué)生解答出錯。
第三,學(xué)生板演時沒有很好地結(jié)合圖像進(jìn)行解題,這時,老師應(yīng)該要適時引導(dǎo)學(xué)生作好草圖。凸顯解題時要從宏觀到微觀,從直覺到精確,從定性到定量分析。
第四,本節(jié)課最大的特色就是很好的整合了例題,以一題可以掃遍所有的直線與圓的有關(guān)知識點(diǎn),這是一種復(fù)習(xí)習(xí)慣和策略。教師在這個點(diǎn)上應(yīng)該要向?qū)W生強(qiáng)調(diào),引導(dǎo)學(xué)生今后復(fù)習(xí)也應(yīng)該有意識地進(jìn)行整合和提升,做到既“重復(fù)”,又“學(xué)習(xí)”,這才是復(fù)習(xí)。
第五,本節(jié)課還有一個線索,就是前面的題目基本上能借助幾何性質(zhì)進(jìn)行解題,而最后一問必須采用解析幾何的思路,就是用代數(shù)的方法解題,這實際上要求老師要進(jìn)行總結(jié),告訴學(xué)生直線與圓的位置關(guān)系解題時,先考慮幾何性質(zhì),再借助代數(shù)方法解決,這不僅是一般的解題思路,也為后面的直線與橢圓的位置關(guān)系埋下伏筆。
總之,這是一堂原生態(tài)的高三復(fù)習(xí)課,讓我獲益匪淺。以上僅是一家之言,在此權(quán)當(dāng)拋磚引玉,謝謝大家!
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇六
已知直線都是正數(shù))與圓相切,則以為三邊長的三角形是________三角形.
三、解答題。
當(dāng)為何值時,直線與圓有兩個公共點(diǎn)?有一個公共點(diǎn)?無公共點(diǎn)?
四、填空題。
若直線與圓相切,則實數(shù)的值等于________.
圓心為且與直線相切的圓的方程為________.
直線與圓相切,則實數(shù)等于________.
直線與圓相切,則________.
過點(diǎn)作圓的切線,且直線與平行,則與間的距離是________.
過點(diǎn),作圓的切線,則切線的條數(shù)為________條.
過點(diǎn)的圓與直線相切于點(diǎn),則圓的方程為________.
五、解答題。
過點(diǎn)作圓的切線,求此切線的方程.。
圓與直線相切于點(diǎn),且與直線也相切,求圓的方程.。
六、填空題。
由直線上的一點(diǎn)向圓引切線,則切線長的最小值為_____________.
七、解答題。
求滿足下列條件的圓的切線方程:
(1)經(jīng)過點(diǎn);
(2)斜率為;
(3)過點(diǎn).。
已知圓的方程為,求過的圓的切線方程.。
八、填空題。
直線被圓截得的弦長等于________.
直線被圓截得的弦長等于________.
直線被圓所截得的弦長為________.
圓截直線所得弦的長度為4,則實數(shù)的值是________.
設(shè)直線與圓相交于兩點(diǎn),若,則圓的面積為________.
直線被圓截得的弦長為________.
直線被圓所截得的弦長為________.
圓心坐標(biāo)為的圓在直線上截得的弦長為,那么這個圓的方程為________.
過點(diǎn)的直線被圓截得的弦長為,則直線的斜率為________.
過原點(diǎn)的直線與圓相交所得弦的長為2,則該直線的方程為________.
九、解答題。
圓心在直線上,圓過點(diǎn),且截直線所得弦長為,求圓的方程.。
十、填空題。
過點(diǎn)作圓的弦,其中最短弦的長為________.
十一、解答題。
已知圓,直線.
(1)求證:對,直線與圓總有兩個不同的交點(diǎn);
(2)若直線與圓交于兩點(diǎn),當(dāng)時,求的值.。
設(shè)圓上的點(diǎn)關(guān)于直線的對稱點(diǎn)仍在圓上,且直線被圓截得的弦長為,求圓的方程.。
已知圓,直線.。
證明:不論取什么實數(shù),直線與圓恒交于兩點(diǎn)。
求直線被圓截得的弦長最小時的方程,并求此時的弦長。
十二、填空題。
圓上到直線的距離等于1的點(diǎn)有________個.
在平面直角坐標(biāo)系中,已知圓上有且僅有四個點(diǎn)到直線的距離為1,則實數(shù)的取值范圍是________.
設(shè)圓上有且僅有兩個點(diǎn)到直線的距離等于1,則圓半徑的取值范圍是________.
直線與曲線有且只有一個公共點(diǎn),則b的取值范圍是_________。
若直線與圓恒有兩個交點(diǎn),則實數(shù)的取值范圍為________.
已知點(diǎn)滿足,則的取值范圍是________.
若過點(diǎn)的直線與曲線有公共點(diǎn),則直線的斜率的取值范圍為。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇七
這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書九年級上冊第二十四章第2節(jié)第2課時的內(nèi)容。本人在教學(xué)過程中緊緊圍繞新課程理念展開教學(xué),主要從以下幾方面介紹閃光點(diǎn):
一、創(chuàng)設(shè)情境。
1、組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源。
現(xiàn)代課程觀認(rèn)為課程是由教師、教材、學(xué)生和環(huán)境四要素構(gòu)成的,教師和學(xué)生是課程的開發(fā)者和創(chuàng)造者。組織學(xué)生發(fā)現(xiàn),尋找,搜集和利用學(xué)習(xí)資源是教師的一項重要職責(zé)。因此,在教學(xué)中,本人把日出這一自然現(xiàn)象作為課程資源引入數(shù)學(xué)教學(xué),學(xué)生通過回想日出的景象畫出圖畫:一幅是美術(shù)圖畫;一幅是一條直線和一個圓。在學(xué)生都欣賞藝術(shù)圖畫的美時,教師引導(dǎo)學(xué)生欣賞一條直線和一個圓的數(shù)學(xué)美和它的價值,它的價值在于抽象和簡化,便與研究它的性質(zhì)。讓學(xué)生們看見了自然現(xiàn)象中的數(shù)學(xué)價值,同時也反應(yīng)了自然現(xiàn)象和數(shù)學(xué)之間的聯(lián)系。然后,我引導(dǎo)學(xué)生把變化著的自然現(xiàn)象再抽象成數(shù)學(xué)問題,引出直線和圓的相交、相切、相離三種關(guān)系。
2、創(chuàng)設(shè)豐富的教學(xué)情境,激發(fā)學(xué)生的學(xué)習(xí)動機(jī),培養(yǎng)學(xué)習(xí)興趣,充分調(diào)動學(xué)生的學(xué)習(xí)積極性。本人在教學(xué)第一環(huán)節(jié)用現(xiàn)實生活中日出這一景觀,讓學(xué)生享受美的情境中,在充分的想象中,從生活中抽象出數(shù)學(xué)模型,因此讓學(xué)生畫出兩種不同的日出圖畫,美術(shù)的圖畫讓學(xué)生看見了生活中的美。但在教學(xué)中本人著重引導(dǎo)學(xué)生欣賞另一種圖畫是抽象的數(shù)學(xué)美,在欣賞美的同時,體會生活中的數(shù)學(xué),從而激發(fā)學(xué)生的求知欲。
3、給學(xué)生提供合作交流的空間和時間。首先給學(xué)生的自主學(xué)習(xí)提供時間,讓學(xué)生自己畫出日出情景,接著合作交流兩種日出的圖畫,這樣為學(xué)生創(chuàng)設(shè)合作交流的空間。
4、組織學(xué)生營造教室中的積極的心理氛圍。本人在教學(xué)中注重這一方面的滲透。教學(xué)第一環(huán)節(jié)中,學(xué)生畫出兩種不同的畫面后,及時反饋,給予表揚(yáng)和鼓勵。尤其是教學(xué)過程中,我班田文潔同學(xué)由于偏科、數(shù)學(xué)底子薄弱,我發(fā)現(xiàn)她在畫圖中碰到老師的目光馬上避開,老師意識到她畫圖中可能有問題,我便走到她面前,與她交流,啟發(fā)她如何著手,并且誘導(dǎo)她從數(shù)學(xué)角度思考又該怎樣畫,這就給了她知識上的啟發(fā)和心理上的支持。還有看見胡海林沒有動筆和本,便走過去摸摸他的頭,并用溫和的目光問:“沒有思路嗎?”我啟發(fā)引導(dǎo)后,讓他和同桌交流,讓同桌再幫助他。這樣體現(xiàn)了對學(xué)生的信任、關(guān)心和理解。學(xué)生在老師的關(guān)愛下,學(xué)生的幫助下、受到激勵和鼓勵,激發(fā)了學(xué)習(xí)的興趣,從而用自己的愛心與學(xué)生一起營造了一個平等,尊重、信任、理解和寬容的教學(xué)氛圍。這正是新課程理念所倡導(dǎo)的。
二、新課講解(探究新知)。
這一部分的教學(xué)中主要滲透以下幾個基本理念:
1、讓課堂教學(xué)充滿創(chuàng)新活力。
(1)合作學(xué)習(xí)有利于培養(yǎng)學(xué)生的創(chuàng)新精神與創(chuàng)新能力。講述直線和圓相交、相切、相離的概念時,通過師生合作交流得出兩種方法,即交點(diǎn)的個數(shù)及點(diǎn)到直線的距離d與半徑r之間的關(guān)系,在合作交流中學(xué)生加深了對知識的理解和掌握、同時也有利于創(chuàng)新精神和創(chuàng)新能力的培養(yǎng)。
(2)探究過程是培養(yǎng)創(chuàng)新精神和創(chuàng)新能力的重要途徑。例:在講概念時,提出這一個問題:“通過回憶剛才畫出日出的圖畫,同學(xué)們發(fā)現(xiàn)直線與圓有三種位置,各自有什么特點(diǎn)?”這就為學(xué)生提供了探究的空間,學(xué)生很容易得出交點(diǎn)個數(shù),及時抓住探究過程中這一創(chuàng)新的“火花”,給予欣賞和激勵,從而掌握基礎(chǔ)知識和基本技能。
2、教學(xué)活動中尊重學(xué)生已有的知識和能力。
(1)尊重學(xué)生已有的知識和學(xué)生的經(jīng)驗。在講d與r的關(guān)系時,復(fù)習(xí)了上節(jié)所學(xué)點(diǎn)和圓的位置關(guān)系,這樣,學(xué)生學(xué)習(xí)新知識是在原有知識基礎(chǔ)上自我構(gòu)建的過程,了解學(xué)生的知識基礎(chǔ)是老師備課的一項重要內(nèi)容。
(2)尊重學(xué)生獨(dú)特的感受和理解。由于學(xué)生間認(rèn)知上、情感上的差異,這一部分教學(xué)很多學(xué)生對點(diǎn)到直線的距離即d與r關(guān)系很難表述,甚至想不到,所以曾多次激勵學(xué)生談獨(dú)特的見解。
(3)把新知識納入到原有認(rèn)知結(jié)構(gòu)中去。新知識是學(xué)生已獲得的知識,是學(xué)生自我建構(gòu)后獲得的知識,新知識在獲得后,還有一個重要的任務(wù)就是把新知識以一定的方式組織起來,納到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取。這一環(huán)節(jié)充分體現(xiàn),即講完兩種方法后便出示表格進(jìn)行歸納和總結(jié),從而幫助學(xué)生不斷優(yōu)化認(rèn)知結(jié)構(gòu)。
3、提倡自主,合作,探究的學(xué)習(xí)方式。這一理念在這一環(huán)節(jié)的教學(xué)中又得到充分體現(xiàn)。采用獨(dú)立思考、分組討論,合作交流得出本節(jié)的重要內(nèi)容即本節(jié)的重點(diǎn)。
4、注重教師是學(xué)習(xí)活動的參與者。教師應(yīng)引導(dǎo)學(xué)生在自主探索和合作交流中達(dá)到對新知識的理解。教學(xué)中我發(fā)現(xiàn)馮成同學(xué)的第二種方式是大部分學(xué)生沒有想到的,并且講述很好,過渡自然。因此異常興奮,我與同學(xué)們同時鼓掌,即達(dá)到高潮。充分體現(xiàn)了師生間共同分享感情和認(rèn)識。
三、鞏固練習(xí)(深化練習(xí))。
1、練習(xí)符合學(xué)生的認(rèn)知規(guī)律,難易度適中。
2、練習(xí)量適中,題型多樣,有選擇題,填空題、解答題。
3、注重分層教學(xué)和能力培養(yǎng)、持續(xù)發(fā)展,設(shè)計了必做題,選做題。
四、課堂小結(jié):
課堂小結(jié)是一個重要的環(huán)節(jié),本人給學(xué)生一定的思考和交流的空間,除了讓學(xué)生自己總結(jié)本節(jié)知識外,還用表格的形式又展現(xiàn)給大家,讓同學(xué)們再次回顧、反思、記憶。更重要的是讓學(xué)生總結(jié)本節(jié)的數(shù)學(xué)方法和數(shù)學(xué)思想,以及生活中處處充滿數(shù)學(xué),數(shù)學(xué)為生活服務(wù)等理念。
不論從新課程理念,還是教學(xué)效果來看,這都是一節(jié)比較滿意的課。另外,教學(xué)過程凸現(xiàn)雙基,目標(biāo)落實,教學(xué)結(jié)構(gòu)完整有序,層層推進(jìn)。教師對學(xué)生的尊重和愛護(hù)也都隨處體現(xiàn),教師對知識的精益求精,讓這一節(jié)課所有的知識點(diǎn)都清晰地呈現(xiàn)在學(xué)生面前,教師對學(xué)生間的相互評價,相互合作無疑又為學(xué)生間的友誼注入新的動力,作業(yè)設(shè)計分層教學(xué),有必做題和選做題。
當(dāng)然,這節(jié)課仍有需要改進(jìn)的地方:
一、語言有待錘煉,在整節(jié)課中,老師的提問過于頻繁,其中不乏有很多較好的提問起到點(diǎn)拔、引導(dǎo)作用,但仍有一些問題不必要的,且提問時廢話較多。
二、時間分配的不太合理,練習(xí)時間稍有不足,因前面內(nèi)容即創(chuàng)設(shè)情境和探究新知識占用較多時間,所以后面的練習(xí)時間相對較短,對于分層教學(xué)處理練習(xí)就顯得倉促。
三、板書不夠規(guī)范,因本節(jié)書本沒有例題,所以應(yīng)在黑板上板書作業(yè)格式,這樣在以后作業(yè)中有格式示范,書寫規(guī)范。
四、教學(xué)過程不太注重數(shù)學(xué)思想滲透,例:創(chuàng)設(shè)情境中畫圖,導(dǎo)出直線與圓的三種位置關(guān)系,要啟發(fā)誘導(dǎo)學(xué)生采用了什么數(shù)學(xué)思想。
針對以上問題,在以后的教學(xué)中,要加強(qiáng)語言錘煉,要注重分層教學(xué),注重能力培養(yǎng),要注重數(shù)學(xué)思想和方法滲透。
總之,這是我對自己本節(jié)課的一些教學(xué)反思,或者說是對新課程理念的淺薄認(rèn)識。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇八
設(shè)計這節(jié)課的指導(dǎo)思想是以培養(yǎng)學(xué)生的觀察、類比、歸納等數(shù)學(xué)能力為核心,通過主體性教學(xué),充分調(diào)動學(xué)生學(xué)習(xí)的積極性,主動性和創(chuàng)造性,使學(xué)生以多種方式、多種途徑主動參與到學(xué)習(xí)中來,培養(yǎng)學(xué)生主動學(xué)習(xí)的習(xí)慣及實事求是的學(xué)習(xí)態(tài)度。
1、教材的地位和作用。
本節(jié)內(nèi)容選自《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)2·必修(a版)》第四章第2節(jié),它既是對圓的方程應(yīng)用的延續(xù)和拓展,又是研究圓與圓的位置關(guān)系的基礎(chǔ),為后續(xù)研究直線與圓錐曲線的位置關(guān)系奠定思想基礎(chǔ),具有承上啟下的作用。
本節(jié)課是學(xué)生在已獲得一定的探究方法的基礎(chǔ)上的進(jìn)一步深化,是學(xué)習(xí)直線與圓的方程之后,進(jìn)一步的理性分析,定量研究,而解決問題的主要方法是坐標(biāo)法。坐標(biāo)法是解析幾何中最基本的研究方法,不僅是定量判斷直線與圓的位置關(guān)系的方法,同時也是培養(yǎng)同學(xué)們的空間想象能力和邏輯思維能力的重要內(nèi)容。在直線與圓的位置關(guān)系的判斷方法的建立過程中蘊(yùn)涵著諸多的數(shù)學(xué)思想方法,這對于進(jìn)一步探索、研究后續(xù)內(nèi)容有很強(qiáng)的啟發(fā)與示范作用。
2、教學(xué)目標(biāo)。
《新課程標(biāo)準(zhǔn)》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下的過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何意義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
學(xué)生在初中已經(jīng)學(xué)習(xí)了直線與圓的位置關(guān)系,知道可以利用直線與圓的交點(diǎn)的個數(shù)以及圓心與直線的距離d與半徑r的大小比較兩種方法判斷直線與圓的位置關(guān)系,但是這兩種方法都是以結(jié)論性的形式呈現(xiàn),在高一學(xué)習(xí)了解析幾何以后要求學(xué)生掌握用直線和圓的方程來判斷直線與圓的位置關(guān)系,讓學(xué)生經(jīng)歷知識的發(fā)生和發(fā)展過程,領(lǐng)悟解決問題的思想方法,提高分析和解決問題的能力,體驗成功的喜悅,增強(qiáng)探究知識的欲望和熱情,養(yǎng)成一種良好的思維品質(zhì)和習(xí)慣。
3、教學(xué)問題診斷。
本節(jié)主要內(nèi)容:直線與圓的位置關(guān)系的判定,弦長問題。為了突出重點(diǎn),突破難點(diǎn),落實本節(jié)設(shè)定的教學(xué)目標(biāo),安排了創(chuàng)設(shè)情境、探究新知、典例剖析、變式訓(xùn)練等環(huán)節(jié),通過講練結(jié)合,解決以下三個問題:直線與圓的位置關(guān)系的判定及弦長問題;代數(shù)法、幾何法的理解及應(yīng)用;數(shù)形結(jié)合思想的培養(yǎng)。
典例剖析直接應(yīng)用新知解決數(shù)學(xué)問題,難度不大,教學(xué)時應(yīng)為學(xué)生規(guī)范表達(dá)數(shù)學(xué)過程做出示范。體會用代數(shù)方法解決幾何問題,滲透數(shù)形結(jié)合的思想方法。變式訓(xùn)練1難度系數(shù)增加,直線方程、圓的方程中含有參數(shù),這樣使學(xué)生進(jìn)一步熟練掌握直線與圓的位置關(guān)系的判斷方法,為后續(xù)學(xué)習(xí)直線與圓錐曲線含參數(shù)問題做好鋪墊。變式訓(xùn)練2中所求直線方程中有一條斜率不存在,學(xué)生容易忽略,應(yīng)引導(dǎo)學(xué)生判斷符合條件的直線有幾條,注意直線方程點(diǎn)斜式的適用條件,及時做到查漏補(bǔ)缺。學(xué)生練習(xí)時,教師巡查,觀察學(xué)情,及時從中獲取反饋信息。對學(xué)生練習(xí)中出現(xiàn)的獨(dú)到解法提出表揚(yáng)和鼓勵,對其中偶發(fā)性錯誤進(jìn)行辨析、指正。通過形成性練習(xí),培養(yǎng)學(xué)生的應(yīng)變和舉一反三的能力,逐步形成技能。
4、教法特點(diǎn)及預(yù)期效果。
教和學(xué)的矛盾是貫穿教學(xué)過程始終的基本矛盾,學(xué)是中心,會學(xué)是目的。高一學(xué)生對解析幾何有很高興趣,但學(xué)習(xí)主動性有待調(diào)動,在教學(xué)中要指導(dǎo)學(xué)生學(xué)會學(xué)習(xí),引導(dǎo)學(xué)生在問題情境中探索研究,主動地尋找解決問題的思路和方法,在探究的過程中實現(xiàn)自己對新知識體系的構(gòu)建,在掌握新知識和技能的同時形成自己的學(xué)習(xí)方法。教是為了不教,注重培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
利用多媒體輔助教學(xué),激發(fā)學(xué)生的學(xué)習(xí)熱情,啟迪學(xué)生的思維,突破教材難點(diǎn)。創(chuàng)設(shè)情景,引發(fā)學(xué)生的好奇心;探究新知,分段遞進(jìn),層層深入,調(diào)動學(xué)生的積極性,培養(yǎng)合作意識;典例剖析,規(guī)范表達(dá)數(shù)學(xué)過程,滲透數(shù)形結(jié)合的思想方法;變式訓(xùn)練,培養(yǎng)學(xué)生獨(dú)立思考的能力,激發(fā)學(xué)生的創(chuàng)新思維;歸納小結(jié),查缺補(bǔ)漏,以便調(diào)控教學(xué)。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇九
20xx.11.17早上第二節(jié)授課班級:初三、1班授課教師:
過程與方法目標(biāo):
2.通過例題教學(xué),培養(yǎng)學(xué)生靈活運(yùn)用知識的解決能力。
情感與態(tài)度目標(biāo):讓學(xué)生從運(yùn)動的觀點(diǎn)來觀察直線和圓相交、相切、相離的關(guān)系、關(guān)注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領(lǐng)悟世界上的一切物體都是運(yùn)動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。
利用多媒體放映落日的動畫,初中數(shù)學(xué)教案《數(shù)學(xué)教案-直線和圓的位置關(guān)系(公開課)》。引導(dǎo)學(xué)生從公共點(diǎn)個數(shù)和圓心到直線的.距離兩方面體會直線和圓的不同位置關(guān)系。
學(xué)生看投影并思考問題。
調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.。
探究新知。
1、通過觀察直線和圓的公共點(diǎn)個數(shù)得出直線和圓相離、相交、相切的定義。
布置作業(yè)。
1、課本第101頁7.3a組第2、3題。
2、課余時間,留心觀察周圍事物,找出直線和圓相交,相切,相離的實例,說給大家聽。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十
楊跟上。
一:教材:
人教版九年義務(wù)教育九年級數(shù)學(xué)上冊二:學(xué)情分析。
初三學(xué)生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過程中形成自己的觀點(diǎn),能在傾聽別人意見的過程中逐漸完善自己的想法,因此本節(jié)課設(shè)計了探究活動,給學(xué)生提供探索與交流的空間,體現(xiàn)知識的形成過程。
三教學(xué)目標(biāo)(知識,技能,情感態(tài)度、價值觀)。
1、知識與技能。
能綜合運(yùn)用以前的數(shù)學(xué)知識解決與本節(jié)有關(guān)的實際問題。
3.情感態(tài)度與價值觀。
(1)通過和點(diǎn)與圓的位置關(guān)系的類比,學(xué)習(xí)直線與圓的位置關(guān)系,培養(yǎng)學(xué)生類比的思維方法。
(2)培養(yǎng)學(xué)生的相互合作精神四:教學(xué)重點(diǎn)與難點(diǎn):
五:教學(xué)方法:
啟發(fā)探究。
六、教學(xué)環(huán)境及資源準(zhǔn)備。
1、教學(xué)環(huán)境:學(xué)校多媒體教室。2.教學(xué)資源。
(1).教師多媒體課件,(2)學(xué)生準(zhǔn)備硬幣或其他類似圓的用具。
1、自主學(xué)習(xí)策略:通過提出問題讓學(xué)生思考,幫助學(xué)生學(xué)會探索直線與圓的位置關(guān)系關(guān)系。
2、合作探究策略:通過學(xué)生動手操作與相互交流,激發(fā)學(xué)生學(xué)習(xí)興趣,讓學(xué)生在輕松愉快的教學(xué)氣氛下之下掌握直線與圓的位置關(guān)系。
3、理論聯(lián)系實際策略;通過學(xué)生綜合運(yùn)用數(shù)學(xué)知識解決直線與圓的位置關(guān)系的實際問題,培養(yǎng)學(xué)生利用知識解決實際問題的能力。
教學(xué)流程:
一.復(fù)習(xí)回顧,導(dǎo)入新課。
由點(diǎn)和圓的位置關(guān)系設(shè)計了兩個問題,讓學(xué)生獨(dú)立思考,然后回答問題,為下面做準(zhǔn)備。
二:合作交流,探求新知。
第一步,學(xué)生對直線與圓的公共點(diǎn)個數(shù)變化情況的探索。
通過學(xué)生動手操作和探索,然后相互交流,并畫出圖形,得出直線與圓的公共點(diǎn)個數(shù)的變化情況。
第二步,師生共同歸納出直線與圓相交、相切等有關(guān)概念。
1.設(shè)圓o的半徑為r,圓心o到直線的距離為d,那么直線與圓在不同的位置關(guān)系下,d與r有什么樣的數(shù)量關(guān)系?請你分別畫出圖形,認(rèn)真觀察和分析圖形,類比點(diǎn)和圓的位置關(guān)系,看看d和r什么數(shù)量關(guān)系。
我設(shè)計了兩個問題,使學(xué)生學(xué)會通過計算圓心到直線的距離,來判斷直線與圓的位置關(guān)系。四:鞏固提高:
在本節(jié)的教學(xué)中,我設(shè)計了兩個練習(xí)、一個作業(yè)加以鞏固,使學(xué)生能更好的掌握本節(jié)內(nèi)容。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十一
1、課件教學(xué)中在探索圓和圓的位置關(guān)系、探索兩圓相切時的對稱性、探索兩圓相切時圓心距d和兩圓半徑r和r的數(shù)量關(guān)系時多次運(yùn)用flash動畫展示,給學(xué)生以直觀感受,便于學(xué)生理解,同時,增加上課的生動性。
2、授課方式采用分組教學(xué),對課程內(nèi)容提出問題后先要學(xué)生在小組內(nèi)動手交流并整理所獲得的信息內(nèi)容,然后在課堂上展示組內(nèi)成果,從而調(diào)動起學(xué)生的學(xué)習(xí)積極性。
3、對練習(xí)題的設(shè)計由淺入深、層層遞進(jìn),突出本節(jié)課的重點(diǎn)、突破了難點(diǎn)。
4、授課中貫穿了觀察、猜想、驗證等過程,使學(xué)生經(jīng)歷了知識的探索過程,“過程與方法”的目標(biāo)落實比較好。
在授課時適時引導(dǎo),使盡可能多的學(xué)生真正參與進(jìn)來,可以采取小組之間競爭評比打分以提高學(xué)生的注意力、合作交流、積極發(fā)言等各方面的參與情況。當(dāng)學(xué)生回答問題后,無論回答的結(jié)果如何,要進(jìn)行不同程度的關(guān)注:對回答結(jié)果清晰、正確者給予鼓勵;對回答不準(zhǔn)確或不正確者,在其他學(xué)生糾正的同時也要給予積極參與、回答問題積極方面的鼓勵,使不同層次的同學(xué)都體會成功的喜悅、參與的必要。
在問題的設(shè)計上,一要根據(jù)學(xué)生的實際情況設(shè)計問題,問題難度由淺入深、層層遞進(jìn),既要有梯度又要給學(xué)生留有思考的空間。二要考慮到題量的適度,加大練習(xí)量,更好地落實知識與技能目標(biāo)。
垂徑定理教學(xué)反思:
垂徑定理的推證是以圓是軸對稱圖形的性質(zhì)為依據(jù)的,因此,垂徑定理既是圓的性質(zhì)---軸對稱性質(zhì)的重要體現(xiàn),也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù)。本節(jié)內(nèi)容是本章基礎(chǔ),是圓的有關(guān)計算和圓的有關(guān)證明的一個重要工具。
的能力。
由于明確了教學(xué)目標(biāo),因此在授課中,新知識的引入與使用過程顯得更為流暢,學(xué)生也更加的投入。經(jīng)過這節(jié)課的學(xué)習(xí),學(xué)生基本掌握了垂徑定理的本質(zhì):2個條件和2個結(jié)論,并能在垂徑定理的基礎(chǔ)上推出其推論。且能應(yīng)用它們進(jìn)行簡單的計算和證明,較好的達(dá)到了教學(xué)目標(biāo),完成了教學(xué)任務(wù),教學(xué)效果良好。
本節(jié)課也存在著不足和需改進(jìn)之處:
1、在得出結(jié)論后,沒有留出足夠的時間給學(xué)生對定理進(jìn)行理解和記憶。致使一些中等以下的學(xué)生對定理的內(nèi)容運(yùn)用時不熟練。2、在訓(xùn)練中題目較容易,應(yīng)適當(dāng)提高學(xué)生對新知識的理解體會。不僅要把基礎(chǔ)的東西訓(xùn)練牢固,還要適當(dāng)提高題目的高度,讓不同的學(xué)生都有所獲,都能體會到成功的快樂,長此以往學(xué)生便對數(shù)學(xué)產(chǎn)生興趣,提高成績也就容易了.
一、有時由于時間緊張,沒有給學(xué)生系統(tǒng)的將知識串一下,只是就題講題,只是給學(xué)生了幾條魚,而沒有給他們漁;所以首先應(yīng)對本章的知識點(diǎn)進(jìn)行系統(tǒng)的梳理。復(fù)習(xí)課要把舊知識進(jìn)行整理歸納,這一過程,就是將平時相對獨(dú)立的知識點(diǎn)串成線,連成片,結(jié)成網(wǎng)。如果教師對復(fù)習(xí)問題面面俱到,學(xué)生會感到乏味,引不起興趣,往往不能深入思考,張口就來,老師成了課堂的主角,學(xué)生則是被動接受,老師感到累而學(xué)生思維受到限制。因此,在課堂上通過問題的解決整理歸納學(xué)過的知識,把學(xué)習(xí)的主動權(quán)交給學(xué)生,取得效果較好。
二、其次要提煉方法形成知識結(jié)構(gòu),圓有哪些性質(zhì)?三大性質(zhì)定理學(xué)生首先要明確,以及各自適用的的題型。點(diǎn)與圓、線與圓、圓與圓的關(guān)系分別是什么?有關(guān)的題型又是什么?在講課時通過典型的代表性的題目的講練結(jié)合,學(xué)生可以通過解題后的反思提煉方法,形成知識結(jié)構(gòu),加深了對定理的理解。復(fù)習(xí)不是知識的簡單再現(xiàn),在復(fù)習(xí)過程中,教師也應(yīng)是堅持啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)思維誤區(qū),總結(jié)方法為主,輔之以精講。充分發(fā)揚(yáng)教學(xué)民主,給學(xué)生以足夠的思維空間,對于解題思路的探討過程,讓學(xué)生真正理解,從而提高復(fù)習(xí)質(zhì)量和復(fù)習(xí)效率。
三、再有要留給學(xué)生足夠的時間來消化一節(jié)課中所學(xué)到的知識;切記不能為了趕課程而讓學(xué)生獲得的知識成為“夾生飯”應(yīng)讓學(xué)生自己先整理一下知識點(diǎn),上課教師再補(bǔ)充一下,使學(xué)生能系統(tǒng)的掌握知識;老師們往往有這樣的感覺:上復(fù)習(xí)課時間總是不夠用。即使這樣我們也要給學(xué)生足夠的消化吸收的時間,否則,老師的任務(wù)完成了,而學(xué)生大都在一片迷糊中,這樣的課就沒有什么效果了。圓這一部分的復(fù)習(xí)我是安排了四節(jié)課,相對來說,效果還是不錯的。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十二
本節(jié)課由蔡**老師執(zhí)教,主要有三部分組成。首先前面兩個問題通過復(fù)習(xí)前幾課學(xué)過的點(diǎn)到直線的距離公式以及兩條直線的位置關(guān)系的判定,為下面例子中判斷直線與圓的位置關(guān)系作好鋪墊。緊接著通過回顧直線與圓的三種位置關(guān)系引入新課,并結(jié)合圖形深入探究每種關(guān)系中圓心到直線的距離d與圓的半徑r的大小關(guān)系以及交點(diǎn)個數(shù)的情況。再通過例題的講解與練習(xí)的訓(xùn)練去總結(jié)直線和圓的位置關(guān)系所反映出來的數(shù)量關(guān)系。最后師生對本節(jié)課知識點(diǎn)進(jìn)行共同小結(jié),完成本節(jié)課的整體教學(xué)內(nèi)容。
聽了這節(jié)課之后,我認(rèn)為本節(jié)課的整體思路清晰、流暢,結(jié)構(gòu)合理,重點(diǎn)突出,較好地完成了本節(jié)課的教學(xué)目標(biāo)。在引導(dǎo)學(xué)生歸納出直線與圓的`位置關(guān)系的數(shù)量關(guān)系后再進(jìn)行相關(guān)的例題講解和習(xí)題訓(xùn)練,確保了學(xué)生對本節(jié)課重點(diǎn)知識的掌握。不過,個人認(rèn)為本節(jié)課還是有一些值得探討的問題:1、例1是對本節(jié)課所學(xué)知識的應(yīng)用,是本節(jié)課的重點(diǎn)及難點(diǎn),應(yīng)該著重分析這塊。學(xué)生對帶有絕對值符號的c的范圍并不能很好地理解,因涉及先前學(xué)過的內(nèi)容,可舉個適當(dāng)小例子幫助學(xué)生回顧,如:,則的范圍是什么等等。2、個人覺得練習(xí)一中判斷直線與圓的位置關(guān)系時,圓心到直線的距離計算得d=,讓學(xué)生求k的范圍難度太大。本來學(xué)生才剛掌握點(diǎn)到直線的距離公式,還不能很好熟練的運(yùn)用,現(xiàn)在式子中又有絕對值又有根號求k的范圍,學(xué)生的積極性很容易被打壓,應(yīng)當(dāng)換個適當(dāng)難度的,及時提高學(xué)生的積極性,培養(yǎng)他們的興趣。3、應(yīng)讓學(xué)生多動手、動口回答問題,及時鞏固所學(xué)知識。
本節(jié)課是在直線和直線的基礎(chǔ)上進(jìn)一步學(xué)習(xí)的內(nèi)容,也是后面學(xué)習(xí)直線與圓的方程的應(yīng)用的基礎(chǔ),起著承上啟下的作用,而且三種位置關(guān)系的研究方法和思路基本一直,都是從研究位置關(guān)系開始進(jìn)而研究位置關(guān)系而發(fā)生的數(shù)量關(guān)系,教師可以用類比的教學(xué)方式使學(xué)生掌握這種學(xué)習(xí)方法。其實,一堂課的教學(xué)很大程度上受教學(xué)細(xì)節(jié)的影響,比如:語言的描述是否準(zhǔn)確,是否及時對學(xué)生進(jìn)行表揚(yáng)等。每次聽完課,我都會拿自己進(jìn)行比較,看看還有哪些自己沒做到的,或是沒注意的,然后多多實踐,盡量充實自己,收獲不少啊。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十三
3、教學(xué)方法與手段:
教學(xué)方法:問題探究式、啟發(fā)式引導(dǎo)、參與式探究、互動式討論。
學(xué)習(xí)方法:自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)。
教學(xué)手段:借助多媒體動態(tài)演示,構(gòu)建學(xué)生探究式學(xué)習(xí)的教學(xué)環(huán)境。
4、教學(xué)過程:
1、創(chuàng)設(shè)情景、引入新課;2、引導(dǎo)啟發(fā)、探索新知;3、講練結(jié)合、鞏固新知;
4、知識拓展、深化提高5、小結(jié)新知,畫龍點(diǎn)睛6、布置作業(yè),復(fù)習(xí)鞏固。
環(huán)節(jié)。
重新閱讀課本本節(jié)相關(guān)內(nèi)容并預(yù)習(xí)下一節(jié)課內(nèi)容。
直線與圓的位置關(guān)系是高考的考點(diǎn)之一,是在學(xué)生已有的平面幾何知識基礎(chǔ)上進(jìn)行教學(xué),以點(diǎn)與圓的位置關(guān)系上升為直線與圓的位置關(guān)系,從簡單到復(fù)雜,從幾何特征到代數(shù)問題(坐標(biāo)法)的'教學(xué)過程,它應(yīng)用比較廣泛,同時也為后面圓和圓的位置關(guān)系作了鋪墊,對后面的解題及相關(guān)數(shù)學(xué)問題的解決將起到重要的作用,且本節(jié)是直線與圓錐曲線位置關(guān)系的基礎(chǔ),故要求學(xué)生充分掌握。
針對上述情況,我精心設(shè)計教學(xué)過程,借助多媒體動態(tài)演示直線和圓的位置關(guān)系,直觀形象地展示了直線與圓的位置關(guān)系,化抽象為具體,以便學(xué)生更好的理解他們之間的關(guān)系及其幾何特征,再引導(dǎo)學(xué)生把幾何形式的結(jié)論轉(zhuǎn)化為代數(shù)形式;教學(xué)過程中采用問題探究式、參與式探究、互動式討論等教學(xué)方法,為學(xué)生自主探究、合作交流構(gòu)建一個好的平臺;分層次設(shè)置例題與練習(xí),讓全體學(xué)生都得到提升;講解例題時應(yīng)用啟發(fā)式引導(dǎo)教學(xué)方法,不斷訓(xùn)練學(xué)生數(shù)學(xué)思維,借助圖象分析題意,加深學(xué)生對數(shù)形結(jié)合思想了解;新課結(jié)束后,引導(dǎo)學(xué)生小結(jié)本課內(nèi)容,培養(yǎng)學(xué)生歸納總結(jié)的能力。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十四
一、課程目標(biāo)分析:
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:在平面解析幾何初步的教學(xué)中,教師應(yīng)幫助學(xué)生經(jīng)歷如下過程:首先將幾何問題代數(shù)化,用代數(shù)的語言描述幾何要素及其關(guān)系,進(jìn)而將幾何問題轉(zhuǎn)化為代數(shù)問題;處理代數(shù)問題;分析代數(shù)結(jié)果的幾何含義,最終解決幾何問題。這種思想應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會“數(shù)形結(jié)合”的思想方法。
二、教材分析:
1、教材的地位和作用:
《直線與圓的位置關(guān)系》這一節(jié)內(nèi)容出現(xiàn)在必修2的第二章《平面解析幾何初步》的第二節(jié)《圓與圓的方程》的第三小節(jié)的位置。就整套教材而言,《平面解析幾何初步》一章的教學(xué)主要是讓學(xué)生體會到用代數(shù)方法處理幾何問題的思想,為選修教材中的《圓錐曲線與方程》一章打好基礎(chǔ)。它是前兩節(jié)《直線與直線方程》和《圓與圓的方程》的綜合應(yīng)用,也為后一小節(jié)《圓與圓的位置關(guān)系》提供研究方法的一個重要示例,是整個《平面解析幾何初步》章節(jié)的重要內(nèi)容,起著貫穿始終、應(yīng)用反饋的重要作用,而且是貫徹“用代數(shù)方法處理幾何問題”思想和“數(shù)形結(jié)合”方法的重要的反映內(nèi)容和工具。在本章中的作用非常重要。
2、教材重點(diǎn)、難點(diǎn)。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十五
:通過觀察、實驗、討論、合作研究等數(shù)學(xué)活動使學(xué)生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數(shù)量關(guān)系對應(yīng)等價于直線和圓的位置關(guān)系”從而實現(xiàn)位置關(guān)系與數(shù)量關(guān)系的轉(zhuǎn)化,滲透運(yùn)動與轉(zhuǎn)化的數(shù)學(xué)思想。
:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生好奇心;體驗數(shù)學(xué)活動中的探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性,在學(xué)習(xí)活動中獲得成功的體驗;通過“轉(zhuǎn)化”數(shù)學(xué)思想的運(yùn)用,讓學(xué)生認(rèn)識到事物之間是普遍聯(lián)系、相互轉(zhuǎn)化的辨證唯物主義思想。
二、教學(xué)重、難點(diǎn)。
難點(diǎn):學(xué)生能根據(jù)圓心到直線的距離d與圓的半徑r之間的數(shù)量關(guān)系,揭示直線與圓的位置關(guān)系;直線與圓的三種位置關(guān)系判定方法的運(yùn)用。
三、教學(xué)設(shè)計。
問???題。
設(shè)計意圖。
師生活動。
2.圖形中的圓與直線的位置都是一樣的嗎?
師:讓學(xué)生之間進(jìn)行討論、交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課.
生:看圖,并說出自己的看法.
師:引導(dǎo)學(xué)生利用類比、歸納的思想,總結(jié)直線與圓的位置關(guān)系的種類,進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
問???題。
設(shè)計意圖。
師生活動。
使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象概括能力.
師:引導(dǎo)學(xué)生從幾何的角度說明判斷方法和通過直線與圓的方程說明判斷方法.
生:利用圖形,尋找兩種方法的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀教科書上的例1.
生:閱讀科書上的例1,并完成教科書第128頁的練習(xí)題2.
師;分析例1,并展示解答過程;啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有總結(jié)思考的時間.
生:交流自己總結(jié)的步驟.
師:展示解題步驟.
7.通過學(xué)習(xí)教科書上的例2,你能說明例2中體現(xiàn)出來的數(shù)學(xué)思想方法嗎?
進(jìn)一步深化“數(shù)形結(jié)合”的數(shù)學(xué)思想.
師:指導(dǎo)學(xué)生閱讀并完成教科書上的例2,啟發(fā)學(xué)生利用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.
問???題。
設(shè)計意圖。
師生活動。
8.通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么?
明確弦長的運(yùn)算方法.
師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法.
生:通過分析、抽象、歸納,得出相交弦長的運(yùn)算方法.
9.完成教科書第128頁的練習(xí)題1、2、3、4.
師:引導(dǎo)學(xué)生完成練習(xí)題.
生:互相討論、交流,完成練習(xí)題.
10.課堂小結(jié):
教師提出下列問題讓學(xué)生思考:
作業(yè):習(xí)題4.2a組:1、3.
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十六
三、目的分析:
1、知識目標(biāo):
2、能力目標(biāo):
要使學(xué)生體會用代數(shù)方法處理幾何問題的思路和“數(shù)形結(jié)合”的思想方法。
四、教法分析:
1、教學(xué)方法:啟發(fā)式講授法、演示法、輔導(dǎo)法。
2、教材處理:
(1)例題1(1)(2)用兩種不同的辦法求解,讓學(xué)生自己體會這兩種方法。
通過老師引導(dǎo)和讓學(xué)生自己探索解決,反饋學(xué)生的解決情況。
(2)增加一個過一點(diǎn)求圓的切線方程的題型,幫助學(xué)生增加對直線與圓的認(rèn)識。
3、學(xué)法指導(dǎo):本節(jié)課的學(xué)法是繼續(xù)指導(dǎo)學(xué)生把新問題轉(zhuǎn)化為已有知識解決的化歸思想。
4、教具:多媒體電腦、投影儀、自做多媒體。
五、過程分析:
教學(xué)。
環(huán)節(jié)。
教學(xué)內(nèi)容。
設(shè)計意圖。
新課引入。
1、學(xué)生觀察日出照片,把觀察到的情況用自己的語言說出來,抽象出幾何圖形,在學(xué)生回答的基礎(chǔ)上,通過多媒體演示圓與直線的三種位置關(guān)系。讓學(xué)生感受到數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān),并能使學(xué)生更好的直觀感受直線和圓的三種位置關(guān)系。然后引入本節(jié)課的課題。
2、在上一章,我們在學(xué)習(xí)了直線的方程后,研究了點(diǎn)和直線、直線與直線的位置關(guān)系,本章我們已經(jīng)學(xué)習(xí)了圓的方程,現(xiàn)在我們要研究直線與圓以及圓與圓的位置關(guān)系。
1數(shù)學(xué)產(chǎn)生于生活,與生活密切相關(guān)。
2、以實際問題引入有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,有利于擴(kuò)展學(xué)生的視野。
新課講解。
一、知識點(diǎn)撥:
答:把圓心到直線的距離d和半徑r比較大?。?/p>
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十七
本節(jié)課教學(xué)我所面對的傳授對象是聾啞學(xué)生,根據(jù)聾生的特點(diǎn)在學(xué)生觀察教材123頁三幅照片時,我立刻告訴學(xué)生你說的對,這就是直線和圓的三種關(guān)系:相交、相切和相離。我認(rèn)為是數(shù)學(xué)課而不是語文課,數(shù)學(xué)課只注重學(xué)生的觀察思維能力,不追求學(xué)生的語言表達(dá)能力和概括能力。
還有因為手語的手勢再多再細(xì)也不可能表達(dá)出所有的抽象的甚至連豐富的語言都不好表述的東西,因此在講解數(shù)學(xué)時,我追求細(xì)致,不要想很簡單,很明顯,而一帶而過。因此,教學(xué)時我多次強(qiáng)化學(xué)生對直線與圓的三種關(guān)系的理解,為學(xué)生探究點(diǎn)到直線的距離d和圓半徑r的大小關(guān)系。
然而數(shù)學(xué)教學(xué)時,該細(xì)的地方還是要細(xì),這需要教師自己的把握,在學(xué)生輕而易舉回答出來的問題時,有時要帶領(lǐng)學(xué)生深入思考,并多問個為什么?比如在本課學(xué)生總結(jié)出:“圓的切線垂直于過切點(diǎn)的直徑”時。養(yǎng)成學(xué)生深入思考的好習(xí)慣,不要想當(dāng)然!
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十八
本節(jié)課,我先讓學(xué)生在課前自行完成教學(xué)案中“課前預(yù)習(xí)與導(dǎo)學(xué)”這一部分,情況良好。上課后先信息反饋進(jìn)行評講,然后引導(dǎo)學(xué)生回憶了點(diǎn)與圓的位置關(guān)系及如何用數(shù)量關(guān)系來判斷點(diǎn)與圓的位置關(guān)系。接著以《海上日出》圖創(chuàng)設(shè)情景,從而引出課題:直線和圓的位置關(guān)系。然后由學(xué)生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關(guān)系,給出定義,聯(lián)系實際,由學(xué)生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導(dǎo)學(xué)生探索三種位置關(guān)系下圓心到直線的距離與圓半徑的大小關(guān)系,由小“練習(xí)”進(jìn)行應(yīng)用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1、在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
2、新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在小練習(xí)之后我及時地進(jìn)行總結(jié)歸納方法,讓學(xué)生在以后解決實際問題過程中能一下子找到切入點(diǎn),培養(yǎng)學(xué)生解決實際問題的能力。
同時,我也感覺到本節(jié)課的教學(xué)有不妥之處,主要有以下三點(diǎn):
1、學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。講得過多,學(xué)生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W(xué)生類比點(diǎn)與圓的位置關(guān)系下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2、對于我們學(xué)生的情況,初三的教學(xué)始終沒有擺脫灌輸式教學(xué),盡管課上也讓學(xué)生自主操作、思考,但老師講的太多,沒有給予學(xué)生足夠的探索、交流的時間,勢必會影響到部分學(xué)生的思維,限制了學(xué)生的發(fā)展。所以,我們也要學(xué)會該“放手時就放手”,大膽地讓學(xué)生去思考,也許會有意外的收獲。
3、對教材的把握,對學(xué)生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎(chǔ)薄弱的同學(xué),也要照顧到基礎(chǔ)好些的同學(xué),適時選做。對于有些題可以適當(dāng)?shù)剡M(jìn)行變式訓(xùn)練,拓展靈活運(yùn)用,活躍學(xué)生的思維。
總之,在今后的數(shù)學(xué)教學(xué)中還有很多需要我學(xué)習(xí)和掌握的東西,希望能和學(xué)生們一起共同進(jìn)步,真正成為一名合格的數(shù)學(xué)教師。
直線與圓的位置關(guān)系教學(xué)設(shè)計方案篇十九
節(jié)課的教學(xué),我認(rèn)為成功之處有以下幾點(diǎn):
1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學(xué)生比較感興趣,充分感受生活中反映直線與圓位置關(guān)系的現(xiàn)象,體驗到數(shù)學(xué)來源于實踐。對生活中的數(shù)學(xué)問題發(fā)生好奇,這是學(xué)生最容易接受的學(xué)習(xí)數(shù)學(xué)的好方法。新課標(biāo)下的數(shù)學(xué)教學(xué)的基本特點(diǎn)之一就是密切關(guān)注數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學(xué),“想”數(shù)學(xué),讓學(xué)生真正感受到生活之中處處有數(shù)學(xué)。
2.在探索直線和圓位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,我先引導(dǎo)學(xué)生回顧點(diǎn)和圓的位置關(guān)系所對應(yīng)的數(shù)量關(guān)系,啟發(fā)學(xué)生運(yùn)用類比的思想來思考問題,解決問題,學(xué)生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點(diǎn),使學(xué)生充分理解位置關(guān)系與數(shù)量關(guān)系的相互轉(zhuǎn)化,這種等價關(guān)系是研究切線的理論基礎(chǔ),從而為下節(jié)課探索切線的性質(zhì)打好基礎(chǔ)。
3.新課標(biāo)下的數(shù)學(xué)強(qiáng)調(diào)人人學(xué)有價值的數(shù)學(xué),人人學(xué)有用的數(shù)學(xué),為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學(xué)生解決實際問題的能力。由于此題要學(xué)生回到生活中去運(yùn)用數(shù)學(xué),學(xué)生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學(xué)學(xué)習(xí)變得有滋有味,使學(xué)生體會到學(xué)數(shù)學(xué)的重要性,體驗“生活中處處用數(shù)學(xué)”。
同時,我也感覺到本節(jié)課的設(shè)計有不妥之處,主要有以下三點(diǎn):
1.學(xué)生觀察得到直線和圓的三種位置關(guān)系后,是由我講解的三個概念:相交、相切、相離。學(xué)生被動的接受,對概念的理解不是很深刻,可以改為讓學(xué)生下定義,師生共同討論的形式給學(xué)生以思維想象的空間,充分調(diào)動學(xué)生的積極性,使學(xué)生實現(xiàn)自主探究。
2.雖然我在設(shè)計本節(jié)課時是體現(xiàn)讓學(xué)生自主操作探究的原則,但在讓學(xué)生探索直線和圓三種位置關(guān)系所對應(yīng)的數(shù)量關(guān)系時,沒有給予學(xué)生足夠的探索、交流的時間,限制了學(xué)生的思維。此處應(yīng)充分發(fā)揮小組的特點(diǎn),讓學(xué)生相互啟發(fā)討論,形成思維互補(bǔ),集思廣益,從而使概念更清楚,結(jié)論更準(zhǔn)確。
【本文地址:http://www.aiweibaby.com/zuowen/8899351.html】