教案是教師調(diào)整教學(xué)策略的重要工具,能夠根據(jù)學(xué)生實際情況進(jìn)行靈活運(yùn)用。教案的編寫應(yīng)注意如何培養(yǎng)學(xué)生的創(chuàng)新思維和實踐能力?教案是教師在教學(xué)過程中用來指導(dǎo)和組織教學(xué)活動的一種工具,它可以幫助教師把握教學(xué)進(jìn)度,確保教學(xué)任務(wù)的完成。在編寫教案前,教師需要充分了解學(xué)科教學(xué)大綱和教材要求。教案的編寫需要根據(jù)學(xué)生的學(xué)習(xí)能力和興趣特點(diǎn)進(jìn)行個性化設(shè)計,注重因材施教。以下是小編為大家整理的教案范文,供大家參考使用,可以提高教師的教學(xué)效果和學(xué)生的學(xué)習(xí)成績。
圓柱的表面積教案人教版篇一
教學(xué)內(nèi)容:
九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第12冊33~34頁例1、例2、例3的“做一做”及練習(xí)七的`第2~5題。
教學(xué)目標(biāo):
1、知識目標(biāo):理解圓柱的側(cè)面積和表面積的含義;掌握圓柱的側(cè)面積和表面積的計算方法,會正確計算圓柱的側(cè)面積和表面積。
2、能力目標(biāo):能靈活運(yùn)用求表面積、側(cè)面積的有關(guān)知識解決一些實際問題。
3、德育目標(biāo):滲透事物之間聯(lián)系的辯證唯物主義觀點(diǎn),使學(xué)生感悟到數(shù)學(xué)知識內(nèi)在聯(lián)系的邏輯之美,增強(qiáng)審美意識。
教學(xué)重點(diǎn):理解求表面積、側(cè)面積的計算方法,并能正確進(jìn)行計算。
教學(xué)難點(diǎn):能靈活運(yùn)用表面積、側(cè)面積的有關(guān)知識解決實際問題。
教學(xué)設(shè)想:
本課是在學(xué)生認(rèn)識了圓柱,學(xué)習(xí)了圓、長方形等幾何圖形的基礎(chǔ)上進(jìn)行的。通過學(xué)習(xí)可以發(fā)展學(xué)生的觀念,提高學(xué)生解決實際問題的能力。并為以后學(xué)習(xí)圓柱的體積計算打下良好的基礎(chǔ)。本節(jié)課由于學(xué)生缺乏空間想象能力,計算繁瑣,易使學(xué)生感到枯燥無味。因此,我在教學(xué)中充分調(diào)動學(xué)生的積極主動性,讓學(xué)生在自主動手操作中發(fā)現(xiàn)問題,自主探索解決問題的途徑以解決所遇到的數(shù)學(xué)問題。
遵循學(xué)生的認(rèn)知規(guī)律,組織合理有效的教學(xué)程序。
(1)抓住關(guān)鍵,動手操作,突破難點(diǎn)。
圓柱的表面積等于側(cè)面積加兩個底面積的和,圓柱的底面是兩個相等的圓。對于圓面積的計算是學(xué)生已有的知識,學(xué)生以前學(xué)過的面都是“平面”而圓柱的側(cè)面卻是個“曲面”。怎么樣才能求出這個“曲面”的面積就成了圓柱表面積教學(xué)過程中的難點(diǎn)。于是讓圓柱的側(cè)面“由曲變直”,使新知識在一定的條件下統(tǒng)一起來就成了一個關(guān)鍵性的問題。通過教具演示,把側(cè)面展開可以使側(cè)面“由曲變直”,但學(xué)生缺乏這方面的生活經(jīng)驗,接受起來思維障礙較大。所以我反其道而行之,采用實驗法,讓學(xué)生卷一卷、分一分,把一張長方形的紙卷成一個盡可能粗的圓柱形的紙筒。使學(xué)生在操作的過程中感知:在一定的條件下,平面也可以“由直變曲”,那么反過來曲面當(dāng)然也可以“由曲變直”。又經(jīng)過引導(dǎo)學(xué)生觀察、比較,討論長方形紙的長和寬與用它卷成的圓柱形紙筒的底面周長和高的關(guān)系,學(xué)生認(rèn)識圓柱的側(cè)面已經(jīng)水到渠成,得到圓柱的側(cè)面積等于底面周長乘以高。
這樣抓住新舊知識內(nèi)在聯(lián)系,安排學(xué)生動手操作,引導(dǎo)學(xué)生在發(fā)現(xiàn)問題后及時動腦思考,不僅激發(fā)學(xué)生興趣,同時也促進(jìn)了學(xué)生思維能力的發(fā)展。
(2)及時練習(xí),鞏固提高,形成能力。
學(xué)生的能力主要表現(xiàn)在獲取知識和應(yīng)用知識的過程中。求圓柱側(cè)面積,由于已知條件的不同,有多種不同的計算方法,但用圓柱的底面周長乘以高是最直接的方法,通過練習(xí)處理好新知識與舊知識的結(jié)合,解決好已有技能在新情況下的運(yùn)用,將對培養(yǎng)學(xué)生分析綜合的能力,減輕學(xué)生的記憶負(fù)擔(dān)起重要作用。因此,我在引導(dǎo)學(xué)生推導(dǎo)出圓柱側(cè)面積的計算方法之后,及時安排了練習(xí),使學(xué)生通過練習(xí)牢固掌握求圓柱側(cè)面積的基本方法。對于題中沒有直接告訴底面周長的,并沒有一一進(jìn)行方法的指導(dǎo),只需把基本方法加以推廣,知道如果沒有直接告訴底面周長時,應(yīng)用已知底面直徑(或半徑)求周長的方法,先求出底面周長,然后再求側(cè)面積就可以了。這樣就提高了學(xué)生運(yùn)用基本數(shù)學(xué)知識靈活解決實際問題的能力,并減輕了學(xué)生學(xué)習(xí)中不必要的記憶負(fù)擔(dān)。這一點(diǎn)既減輕學(xué)生過重負(fù)擔(dān)又提高課堂教學(xué)效率。
(3)通過討論,多向交流,培養(yǎng)獨(dú)立思考能力。
為提高課堂教學(xué)效率,培養(yǎng)學(xué)生能力,我在教學(xué)中注意研究如何引導(dǎo)學(xué)生獨(dú)立鉆研問題。對于課本上的例題,可以提供給學(xué)生作為討論和思考的材料,都盡量讓學(xué)生獨(dú)立去探討。因此,教學(xué)時提出了“除了側(cè)面外圓柱還有幾個面?”“什么叫做圓柱的表面積?”“怎么樣求圓柱的表面積?”等三個問題讓學(xué)生分組討論,進(jìn)行獨(dú)立的探索。在“怎么樣求圓柱的表面積?”這個問題時,有的同學(xué)得出圓柱的表面積等于側(cè)面積加上兩個底面積;有的同學(xué)則會聯(lián)系圓的面積公式推導(dǎo)過程,把圓柱的兩個底面分成若干個小扇形后拼成一個與側(cè)面同長的長方形,然后與側(cè)面再拼成一個大長方形,那么整個圓柱的表面積=底面周長×(圓柱的高+底面半徑),用字母表示即s=2лr×(h+r)。這樣學(xué)生不僅親自參與了對新知的探索使知識掌握得更加牢固,還對舊知進(jìn)行再創(chuàng)造并萌發(fā)了創(chuàng)新意識,培養(yǎng)了學(xué)生的創(chuàng)新思維和創(chuàng)新能力。
(4)聯(lián)系生活,遷移知識,感悟生活數(shù)學(xué)樂趣。
小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實際,教師應(yīng)找準(zhǔn)每節(jié)教材內(nèi)容與學(xué)生生活實際的“切入點(diǎn)”,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和參與的積極性。所以在教完例2后,我讓學(xué)生舉例說出日常生活中,哪些物體是沒有兩個底面的圓柱體。出示例3讓學(xué)生認(rèn)真審題,并說水桶有幾個面,再計算出用了多少材料,學(xué)生計算完后,要求得數(shù)保留整百平方厘米。啟發(fā)學(xué)生看書發(fā)現(xiàn)新問題,討論計算使用材料取近似值時,要用“四舍五入”法還是用“進(jìn)一法”。從而使學(xué)生理解“進(jìn)一法”的意義。接著出示拓展延伸練習(xí):制作一個高1.5米,直徑0.2米的圓柱形煙囪,需要多少平方米鐵皮?最后讓每一位學(xué)生小組合作制作一個圓柱體水桶并評選出最佳作品展示。
課堂小結(jié)后,我提出“大家想一想,還有什么辦法能求出計算圓柱體的表面積?”(例如,可以把圓柱切開,拼成近似的長方體,由長方體的表面積計算公式推導(dǎo)出圓柱的表面積計算公式)這個問題讓學(xué)生知道了解決問題的方法是多種的,也有利于挖掘優(yōu)生的潛能,還能為求圓柱的體積埋下伏筆。
總而言之,這節(jié)課充分調(diào)動了學(xué)生的手、眼、口、腦,借助學(xué)具讓學(xué)生動手去實踐,動腦去想,發(fā)現(xiàn)問題,解決問題。
圓柱的表面積教案人教版篇二
3、會正確計算圓柱的側(cè)面積和表面積、
教學(xué)重點(diǎn)。
理解求表面積、側(cè)面積的計算方法,并能正確進(jìn)行計算、
教學(xué)難點(diǎn)。
能靈活運(yùn)用表面積、側(cè)面積的有關(guān)知識解決實際問題、
教學(xué)過程。
一、復(fù)習(xí)準(zhǔn)備。
(一)口答下列各題(只列式不計算)、
1、圓的半徑是5厘米,周長是多少?面積是多少?
2、圓的直徑是3分米,周長是多少?面積是多少?
(二)長方形的面積計算公式是什么?
(三)回憶圓柱體的特征、
二、探究新知。
(一)圓柱的側(cè)面積、
1、學(xué)生討論:圓柱的側(cè)面展開圖(是長方形)的長、寬和圓柱底面周長、高的關(guān)系、
(二)教學(xué)例1、
1、出示例1。
例1、一個圓柱,底面的直徑是0.5米,高是1.8米,求它的側(cè)面積、(得數(shù)保留兩位小數(shù))。
2、學(xué)生獨(dú)立解答。
教師板書:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的側(cè)面積約是2。83平方米、
3、反饋練習(xí):一個圓柱,底面周長是94。2厘米,高是25厘米,求它的側(cè)面積、
1、教師說明:圓柱的側(cè)面積加上兩個底面積就是圓柱的表面積、
2、比較圓柱體的表面積和側(cè)面積的區(qū)別、
(四)教學(xué)例2、
1、出示例2。
例2、一個圓柱的高是15厘米,底面半徑是5厘米,它的表面積是多少?
2、學(xué)生獨(dú)立解答。
側(cè)面積:2×3。14×5×15=471(平方厘米)。
底面積:3。14×25=78。5(平方厘米)。
表面積:471+78。5×2=628(平方厘米)。
答:它的表面積是628平方厘米、
3、反饋練習(xí):一個圓柱,底面直徑是2分米,高是45分米,求它的表面積、
(五)教學(xué)例3、
1、出示例3。
例3、一個沒有蓋的圓柱形鐵皮水桶,高是24厘米,底面直徑是20厘米,做這個水桶要用鐵皮多少平方厘米?(得數(shù)保留整百平方厘米)。
2、教師提問:解答這道題應(yīng)注意什么?
3、學(xué)生解答,教師板書、
水桶的側(cè)面積:3。14×20×24=1507。2(平方厘米)。
水桶的底面積:3。14×。
=3。14×。
=3。14×100。
=314(平方厘米)。
需要鐵皮:1507。2+314=1821。2≈1900(平方厘米)。
答:做這個水桶要用1900平方厘米、
5、“四舍五入”法與“進(jìn)一法”有什么不同、
(2)“進(jìn)一法”看要保留位數(shù)的后一位,是4或比4小的舍去尾數(shù)后都向前一位進(jìn)一、
三、課堂小結(jié)。
四、鞏固練習(xí)。
(一)求出下面各圓柱的側(cè)面積、
1、底面周長是1。6米,高是0。7米。
2、底面半徑是3。2分米,高是5分米。
(二)計算下面各圓柱的表面積、(單位:厘米)。
(三)拿一個茶葉桶,實際量一下底面直徑和高,算出它的表面積、(有蓋和無蓋兩種)。
五、課后作業(yè)。
(二)一個圓柱的側(cè)面積是188。4平方分米,底面半徑是2分米,它的高是多少分米?
六、板書設(shè)計。
探究活動。
面包的截面。
活動目的。
培養(yǎng)學(xué)生的觀察能力和操作能力,發(fā)展學(xué)生的空間觀念、
活動題目。
有一個圓柱形的面包,要切一刀把它分成兩塊,截面會是什么形狀的圖形?
活動過程。
1、學(xué)生分組討論、
2、利用橡皮泥捏一個圓柱體,進(jìn)行實驗,驗證結(jié)論、
3、畫出截面圖,表示結(jié)論,發(fā)展空間觀念、
參考答案。
1、沿水平方向橫切一刀,截面是圓形、(如圖1)。
2、沿垂直方向縱切一刀,截面是一個長方形、(如圖2)。
3、沿側(cè)面斜切一刀,會形成大小不一的橢圓形、(如圖3)。
4、從頂面向側(cè)面斜切一刀,會形成橢圓的一部分、(如圖4)。
5、從上底面斜切一刀到下底面,會形成橢圓的一部分、(如圖5)。
(圖1)(圖2)(圖3)(圖4)(圖5)。
圓柱的表面積教案人教版篇三
本節(jié)課的教學(xué)采用操作和演示,講解和嘗試練習(xí)相結(jié)合的方法,使新課與練習(xí)有機(jī)地融為一體,做到講與練,相結(jié)合。
1、把握重點(diǎn),突破難點(diǎn),合理利用教材。
對于圓柱體側(cè)面面積計算公式的推導(dǎo),嚴(yán)格遵循主體性原則,讓學(xué)生動手操作、觀察、發(fā)現(xiàn),促進(jìn)知識的遷移,使學(xué)生輕松地理解掌握圓柱側(cè)面面積的計算方法,較好地突破難點(diǎn)。
2、直觀演示和實際操作相結(jié)合。
3、講解與練習(xí)相結(jié)合。
本節(jié)課,改變了傳統(tǒng)的先講后練的教學(xué)模式,做到講、練結(jié)合,貫穿教學(xué)的始終,使練習(xí)隨著講解由易到難,層層深入。在練習(xí)表面積的實際應(yīng)用時,又很自然地進(jìn)行了“進(jìn)一法”的教學(xué),使講、練,真正做到了有機(jī)結(jié)合,學(xué)生學(xué)習(xí)的知識是有效的、實用的,同時也激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)和運(yùn)用解決實際問題的興趣,培養(yǎng)了學(xué)生的應(yīng)用意識。
【2】。
1、直觀演示和實際操作相結(jié)合。
新課開始,教師通過圓住教具直觀演示,引導(dǎo)學(xué)生復(fù)習(xí)圓柱的特征,進(jìn)而理解圓柱表面積的意義。在教學(xué)側(cè)面積的計算時,精心設(shè)疑:圓柱的側(cè)面是個曲面,怎樣計算它的面積呢?想一想,能否將這個曲面轉(zhuǎn)化為我們學(xué)過的平面圖形,從中思考和和發(fā)現(xiàn)它的側(cè)面積該怎樣計算呢?在老師的啟發(fā)下,學(xué)生以小組為單位,用圓住形紙筒進(jìn)行實際操作,最的`探究出側(cè)面積的計算進(jìn)行實際操作,最后探究出側(cè)面積的計算方法。
2、培養(yǎng)了學(xué)生的合作創(chuàng)新意識。
在教學(xué)圓住側(cè)面積計算方法時,教師設(shè)有拘泥于教材上把側(cè)面積轉(zhuǎn)化為長方形這一思路,而是放手讓學(xué)生合作探究;能否將這個曲布置民化為學(xué)過的平面圖形?鼓勵學(xué)生大膽猜想和實驗,把圓柱形紙筒剪開。結(jié)果學(xué)生根據(jù)紙筒的特點(diǎn)和剪法分別將曲面轉(zhuǎn)化成了長方形、正方形、平行四邊形等兩面圖形。通過觀察和思考,最終都探討出了側(cè)面積的計算方法。在組織學(xué)生合作學(xué)習(xí)中,較好地培養(yǎng)了學(xué)生的創(chuàng)意識。
【3】。
1、重學(xué)生學(xué)習(xí)的過程。傳統(tǒng)中的教學(xué)是教師直接出示圓柱的表面積計算公式讓學(xué)生進(jìn)行死記硬背,然后套公式計算。這是只重結(jié)果,不重過程的現(xiàn)象。這節(jié)課,學(xué)生初步了解了圓柱的表面是由兩個相同的底面和一個側(cè)面構(gòu)成的,計算圓柱底面積就是計算圓面積。我在學(xué)生初步理解圓柱表面積的含義后,重點(diǎn)安排學(xué)生進(jìn)行圓柱側(cè)面積計算方法的探索。學(xué)生通過剪、卷、滾等一系列活動探索出圓柱的側(cè)面是一個長方形,從而推導(dǎo)出圓柱側(cè)面積計算公式。
【4】。
在課后總結(jié)質(zhì)疑時,學(xué)生一共提了兩個問題:
問題一:計算圓柱的側(cè)面積時,算不算接頭處重疊的面積。
問題二:計算無蓋塑料盒的面積時,算不算里面的面積。
其它數(shù)學(xué)問題的思考。
養(yǎng)成良好的習(xí)慣。同時我也反思,有序書寫是在我的反復(fù)追問下,才有一個學(xué)生提到的,可見在平時的教學(xué)中對知識之外的情感、態(tài)度和價值觀關(guān)注不夠。
圓柱的表面積教案人教版篇四
2.掌握圓柱側(cè)面積和表面積的計算方法.。
3.會正確計算圓柱的側(cè)面積和表面積.。
教學(xué)重點(diǎn)。
理解求表面積、側(cè)面積的計算方法,并能正確進(jìn)行計算.。
教學(xué)難點(diǎn)。
能靈活運(yùn)用表面積、側(cè)面積的有關(guān)知識解決實際問題.。
教學(xué)過程。
一、復(fù)習(xí)準(zhǔn)備。
(一)口答下列各題(只列式不計算).。
1.圓的半徑是5厘米,周長是多少?面積是多少?
2.圓的直徑是3分米,周長是多少?面積是多少?
(二)長方形的面積計算公式是什么?
(三)回憶圓柱體的特征.。
二、探究新知。
(一)圓柱的側(cè)面積.。
1.學(xué)生討論:圓柱的側(cè)面展開圖(是長方形)的長、寬和圓柱底面周長、高的關(guān)系.。
(二)教學(xué)例1.。
1.出示例1。
例1.一個圓柱,底面的直徑是0.5米,高是1.8米,求它的側(cè)面積.(得數(shù)保留兩位小數(shù))。
2.學(xué)生獨(dú)立解答。
教師板書:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的側(cè)面積約是2.83平方米.。
3.反饋練習(xí):一個圓柱,底面周長是94.2厘米,高是25厘米,求它的側(cè)面積.。
1.教師說明:圓柱的側(cè)面積加上兩個底面積就是圓柱的表面積.。
2.比較圓柱體的表面積和側(cè)面積的區(qū)別.。
(四)教學(xué)例2.。
1.出示例2。
例2.一個圓柱的高是15厘米,底面半徑是5厘米,它的表面積是多少?
2.學(xué)生獨(dú)立解答。
側(cè)面積:2×3.14×5×15=471(平方厘米)。
底面積:3.14×=78.5(平方厘米)。
表面積:471+78.5×2=628(平方厘米)。
答:它的表面積是628平方厘米.。
3.反饋練習(xí):一個圓柱,底面直徑是2分米,高是45分米,求它的表面積.。
(五)教學(xué)例3.。
1.出示例3。
例3.一個沒有蓋的圓柱形鐵皮水桶,高是24厘米,底面直徑是20厘米,做這個水桶要用鐵皮多少平方厘米?(得數(shù)保留整百平方厘米)。
2.教師提問:解答這道題應(yīng)注意什么?
3.學(xué)生解答,教師板書.。
水桶的側(cè)面積:3.14×20×24=1507.2(平方厘米)。
水桶的底面積:3.14×。
=3.14×。
=3.14×100。
=314(平方厘米)。
需要鐵皮:1507.2+314=1821.2≈1900(平方厘米)。
答:做這個水桶要用1900平方厘米.。
5.“四舍五入”法與“進(jìn)一法”有什么不同.。
(2)“進(jìn)一法”看要保留位數(shù)的后一位,是4或比4小的舍去尾數(shù)后都向前一位進(jìn)一.。
三、課堂小結(jié)。
圓柱的表面積教案人教版篇五
師:圓柱是由平面和曲面圍成的立體圖形。圓柱上下兩個圓形的平面叫圓柱的什么?它們的關(guān)系怎樣?兩底面之間的距離叫什么?這個曲面叫什么?(學(xué)生回答后課件動畫閃爍各部分名稱)。
設(shè)疑:長方體6個面的總面積,叫做它的表面積。什么是圓柱體的表面積呢?(學(xué)生回答,教師板書:側(cè)面積+底面積×2=表面積)。
要求圓柱的表面積,首先應(yīng)該計算出它的底面積和側(cè)面積。
圓柱的底面是圓形,怎樣計算它的面積嗎?(s=3.14r2)需要知道什么條件?現(xiàn)場測量茶葉桶的底面直徑。(注意方法指導(dǎo):量出底面最長的線段即直徑的長度。課件動畫展示測量方法)。
學(xué)生口答算式和結(jié)果。
(三)教學(xué)圓柱體側(cè)面積的計算。
1、引導(dǎo)探究圓柱體側(cè)面積的計算方法。
(1)設(shè)疑:圓柱的側(cè)面是個曲面,怎樣計算它的面積呢?
(2)學(xué)生動手操作。(剪圓柱形紙筒)。
(3)匯報交流研究結(jié)果。(隨著學(xué)生回答課件展示)。
百度圖片:
小結(jié):同學(xué)們會動腦,會思考,巧妙地運(yùn)用了把曲面轉(zhuǎn)化為平面的方法,探討發(fā)現(xiàn)了圓柱體側(cè)面積正好等于它的底面周長與高的乘積。
師:(課件呈現(xiàn)圓柱茶葉罐側(cè)面包裝圖片)。
求圓柱體茶葉罐的側(cè)面包裝紙的面積實際是求圓柱的什么?(側(cè)面積)再次測量茶葉桶的高,并把結(jié)果記錄下來,獨(dú)立計算。
1、設(shè)疑:學(xué)會了計算圓柱的底面積和側(cè)面積,怎樣計算它的表面積?
2、學(xué)生根據(jù)數(shù)據(jù)進(jìn)行計算。
3、匯報計算方法及結(jié)果,強(qiáng)調(diào)單位的使用。
小結(jié):求茶葉桶的表面積是為工人師傅下材料提供了基本數(shù)據(jù),但是在準(zhǔn)備材料時往往會比計算結(jié)果多一些,因為在具體操作時,尤其是在剪圓的時候會產(chǎn)生浪費(fèi)現(xiàn)象,這是不可避免的。
(一)(多媒體出示圓柱形的油漆桶,無蓋水桶、煙筒實物圖)引導(dǎo)學(xué)生觀察思考:計算制作這些物體所用的鐵皮的面積,各是求哪些面的總面積?通過回答讓學(xué)生感知圓柱表面積在實際生活中應(yīng)用的意義。
(二)根據(jù)要求練習(xí)。
1、一個圓柱形油桶,底面直徑是8分米,高是12分米,它的占地面積有多大?(只列式不計算)。
2、一臺壓路機(jī)的滾筒寬1.2米,直徑為8分米。如果它滾動1周,壓路的面積是多少平方米?(只列式不計算)(課件呈現(xiàn)壓路機(jī)壓路情景)。
3、做一個無蓋的圓柱形鐵皮水桶,高是5分米。底面直徑4分米,至少需要多大面積的鐵皮?(結(jié)果保留整數(shù))。
根據(jù)學(xué)生的計算結(jié)果,教學(xué)用“進(jìn)一法”取近似值。
小結(jié):計算圓柱的表面積要具體情況具體分析。要學(xué)會運(yùn)用所學(xué)的知識合理靈活地解決生活中的實際問題。
(三)操作練習(xí)。
測量:借助工具測量出需要的數(shù)據(jù)(取整厘米數(shù)),并做好記錄。
計算:根據(jù)量得的數(shù)據(jù),列出相應(yīng)的算式并算出結(jié)果。
1、本節(jié)課你有何收獲?
2、教師小結(jié):在解答實際問題前一定要先進(jìn)行分析,看它們求的是哪部分面積,再選擇解答的方法。求用料多少,一般采用進(jìn)一法取近似值,以保證原材料夠用。
圓柱的表面積教案人教版篇六
1、使學(xué)生理解和掌握圓柱體側(cè)面積和表面積的計算方法,能正確運(yùn)用公式計算圓柱的側(cè)面積和表面積。
2、培養(yǎng)學(xué)生觀察、操作、概括的能力和利用所學(xué)知識合理靈活地分析、解決實際問題的能力。
3、培養(yǎng)學(xué)生的合作意識和主動探求知識的學(xué)習(xí)品質(zhì)和實踐能力。
教學(xué)重難點(diǎn)。
教學(xué)難點(diǎn):圓柱體側(cè)面積計算方法的推導(dǎo)。
教學(xué)工具。
ppt課件。
教學(xué)過程。
一、檢查復(fù)習(xí),引入新課(復(fù)習(xí)圓柱體的特征)。
1、復(fù)習(xí)圓的周長與面積公式、長方形的面積公式。
2、師:上節(jié)課,我們認(rèn)識了一個新的幾何形體——圓柱。知道它是由平面和曲面圍成的立體圖形。
引入:兩個底面和側(cè)面合在一起就是圓柱的表面。這節(jié)課,我們就一起來學(xué)習(xí)圓柱的表面積。
二、引導(dǎo)探究,學(xué)習(xí)新知。
(一)教學(xué)圓柱表面積的意義。
設(shè)疑:長方體6個面的總面積,叫做它的表面積。哪些面的總面積是圓柱體的表面積呢?
板書:底面積×2+側(cè)面積=表面積。
要求圓柱的表面積,首先應(yīng)該計算它的底面積和側(cè)面積。
(二)根據(jù)條件,計算圓柱的底面積。
圓柱的底面是圓形,同學(xué)們會求它的面積嗎?
(多媒體逐一出示圓柱及條件,求它的底面積,并記錄結(jié)果。)。
條件:(厘米)r=3d=4c=31.4。
底面積(平方厘米)28.2612.5678.5。
(三)教學(xué)圓柱體側(cè)面積的計算。
1、引導(dǎo)探究圓柱體側(cè)面積的計算方法。
(2)小組合作探究。(剪圓柱形紙筒)。
(3)匯報交流研究結(jié)果,多媒體課件展示。
(4)小結(jié):同學(xué)們會動腦,會思考,巧妙地運(yùn)用了把曲面轉(zhuǎn)化為平面的方法,探討發(fā)現(xiàn)了圓柱體側(cè)面積正好等于它的底面周長與高的乘積。
2、計算圓柱體的側(cè)面積。
多媒體回到前面三個圓柱,逐一給出三個圓柱的高,求它的側(cè)面積。并把結(jié)果記錄下來。
條件(厘米)h=5h=8h=10。
側(cè)面積(平方厘米)94.2100.4862.8。
1、設(shè)疑:學(xué)會了計算圓柱的底面積和側(cè)面積,怎樣計算它的表面積?
2、學(xué)生根據(jù)數(shù)據(jù)進(jìn)行計算?
3、匯報計算方法及結(jié)果,媒體出示結(jié)果進(jìn)行驗證。
表面積(平方厘米)150.72125.669.08。
(五)小結(jié):圓柱表面積的意義及計算方法。
三、練習(xí)鞏固,靈活運(yùn)用。
1.求下面圓柱的側(cè)面積。
(1)底面周長是1.6m,高是0.7m。
(2)底面半徑是3.2dm,高是5dm。
四、總結(jié)反思,暢談收獲。
這個課你收獲了什么?
板書。
長方形的面積=長×寬。
圓柱的表面積教案人教版篇七
結(jié)合教學(xué)用具和學(xué)生已有認(rèn)知,探索圓柱表面積的計算方法,能正確計算圓柱的表面積和側(cè)面積,并根據(jù)公式解決實際問題。
通過想象、操作等活動,知道圓柱側(cè)面展開圖是長方形的同時,熟記表面積的計算公式,發(fā)展空間觀念。
能根據(jù)具體情境,借助圓柱表面積的計算方法解決生活中的一些實際問題,體會數(shù)學(xué)與實際生活的密切聯(lián)系。
圓柱表面積的計算方法以及在生活中的應(yīng)用。
(一)導(dǎo)入新課。
師:在前面的學(xué)習(xí)中,我們已經(jīng)認(rèn)識了圓柱,并且知道了生活中有很多物體的形狀是圓柱。大家來看,這個圓柱形狀的物體。它的制作需要一定的材料(出示一個茶葉盒)請同學(xué)們想一想,要“制作這樣一個茶葉盒需要多少材料”,實際上是在求圓柱的什么?(邊演示邊講解)。
(二)生成原理。
師生活動:要求“制作茶葉盒所需的材料”實際上是求圓柱的側(cè)面積和兩個底面面積(邊演示邊說),我們把圓柱側(cè)面的面積叫做圓柱的側(cè)面積,把圓柱底面的面積叫做圓柱的底面積,圓柱的側(cè)面積加上兩個底面的面積叫做圓柱的表面積。
(2)創(chuàng)疑激趣。
(3)小組合作交流。
師:請同學(xué)們想一想,我們能不能把圓柱的側(cè)面轉(zhuǎn)化成所學(xué)過的圖形來求側(cè)面積?
小組匯報:圓柱的側(cè)面積就等于長方形的面積,長方形的長等于圓柱底面的周長,寬等于圓柱的高,因此圓柱的側(cè)面積也就等于圓柱的底面周長乘以高。
師:我們已經(jīng)會求圓柱的側(cè)面積,那圓柱的表面積呢?(讓學(xué)生回答,教師板書求表面積的算式,并板書課題“圓柱的表面積”)。
師生活動:用字母表示側(cè)面積和底面積的話,該如何表示圓柱的表面積。
(三)深化原理。
圓柱的表面積是圓柱的側(cè)面積加上兩個底面面積之和。如果圓柱只有一個底面,它的表面積則是側(cè)面積和一個底面積之和。如水桶。
(四)應(yīng)用原理。
(五)課堂小結(jié)。
生:測量、確定筆筒的大小。
師:如何確定?
生:確定底面半徑,還有筆筒的高。
師:課后利用所學(xué)知識給自己設(shè)計一個筆筒,并做一下“做一做”。
圓柱的表面積教案人教版篇八
肖老師的這堂課總的來說準(zhǔn)備充分,如教師的教具,學(xué)生的學(xué)具,以及各種不同類型的練習(xí);教師語言精練,教態(tài)自然大方,難點(diǎn)突破,重點(diǎn)突出,練習(xí)有坡度。
具體如下:
一、優(yōu)點(diǎn)。
1、合理的利用教材。
圓柱體的表面積這部分教學(xué)內(nèi)容包括:圓柱的側(cè)面積,表面積的計算,表面積在實際計算中的應(yīng)用。上老師在進(jìn)行教學(xué)時,將側(cè)面積計算方法的推導(dǎo)作為教學(xué)難點(diǎn)來突破,將表面積的計算作為重點(diǎn)來教學(xué)。教學(xué)設(shè)計和安排既源于教材,又不同于教材。整堂課容量較大,但學(xué)生學(xué)的輕松,教學(xué)效果也比較明顯。
2、教師的主導(dǎo)與學(xué)生主體的統(tǒng)一。
本堂課在教學(xué)上采用了引導(dǎo)、放手、引導(dǎo)的方法,通過教師的導(dǎo),鼓勵學(xué)生積極主動的探究。新課前的復(fù)習(xí),由平面圖形到立體圖形,由長、正方體的表面積到圓柱體的表面積。通過圓柱體模型的演示,引導(dǎo)學(xué)生復(fù)習(xí)圓柱體的特征,進(jìn)而理解圓柱體的表面積的'意義。在教學(xué)側(cè)面積的計算時,先讓學(xué)生思考該怎樣計算,再讓學(xué)生動手探究。在實踐中,學(xué)生很清楚地看到圓柱體的側(cè)面展開是一個長方形(正方形、平行四邊形等),求圓柱體的側(cè)面積實際上就是求一個長方形的面積。在學(xué)生會求側(cè)面積的基礎(chǔ)上,再加上兩個圓面積,從而總結(jié)出求表面積的計算方法,使學(xué)生認(rèn)識到立體轉(zhuǎn)平面,形變量不變的辨證關(guān)系,培養(yǎng)學(xué)生的觀察分析能力。
二、不足。
圓柱體的物體在生活中很普遍,如學(xué)生的透明膠帶,礦泉水瓶蓋等,讓學(xué)生動手測量這些物體的有關(guān)數(shù)據(jù),解決實際問題,學(xué)生的興趣會更高寫,也讓數(shù)學(xué)回歸到生活。練習(xí)中,出現(xiàn)三個不同直徑的圓,而出示的圖片卻是三個圓同樣大,直觀效果不明顯。
圓柱的表面積教案人教版篇九
1、掌握圓柱側(cè)面積和表面積的概念。
2、探索求圓柱的側(cè)面積、表面積的計算方法,并能運(yùn)用到實際中解決問題。
3、理解和掌握圓柱側(cè)面積、表面積的計算方法,能正確計算圓柱的側(cè)面積、表面積。
4、培養(yǎng)合作意識和主動探求知識的學(xué)習(xí)品質(zhì),培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力。
圓柱的表面積教案人教版篇十
理解求表面積、側(cè)面積的計算方法,并能正確進(jìn)行計算。
能靈活運(yùn)用表面積、側(cè)面積的有關(guān)知識解決實際問題。
1.教師、學(xué)生每人用硬紙做一個圓柱體模型。
2.投影片。
一、鋪墊孕伏。
1.口答下列各題(只列式不計算)。
(1)圓的半徑是5厘米,周長是多少?面積是多少?
(2)圓的直徑是3分米,周長是多少?面積是多少?
2.長方形的面積計算公式是什么?
3.教師出示圓柱體模型,指同學(xué)說出它有什么特征?
二、探究新知。
1.利用圓柱體模型的側(cè)面展開圖,引導(dǎo)學(xué)生概括出圓柱側(cè)面積的計算方法。
(1)讓學(xué)生觀察議論:圓柱的側(cè)面展開圖(是長方形)的長與寬分別和圓柱底面周長與高的關(guān)系。
(2)引導(dǎo)學(xué)生概括出:因為長方形的面積等于長×寬,而這個長方形的長等于圓柱的底面周長,寬等于圓柱的高,長方形的面積就是圓柱的側(cè)面積,所以圓柱的側(cè)面積等于底面周長乘以高。
2.教學(xué)例1。
(1)出示例1,指同學(xué)讀題,找出已知條件和所求問題。
學(xué)生獨(dú)立解答,并把計算步驟填在課本50頁例1下面的空白處,然后訂正。
板書:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)。
答:它的側(cè)面積約是2.83平方米。
(2)反饋練習(xí):完成做一做41頁第1題。
學(xué)生獨(dú)立解答,然后訂正。
3.教學(xué)。
(1)教師說明:圓柱的側(cè)面積加上兩個底面積就是。
(2)讓學(xué)生利用圓柱體模型展開圖進(jìn)行比較、區(qū)別,從而使學(xué)生清楚:是指圓柱表面的'面積,是側(cè)面積加上兩個底面積,而側(cè)面積是指圓柱側(cè)面的面積;表面積包含著側(cè)面積。
4.教學(xué)例2。
(2)指同學(xué)讀題,找出已知條件和所求問題。
(3)讓學(xué)生觀察圓柱表面積的展開圖,并小組議論:讓學(xué)生理解圓柱表面積的組成部分,再按順序說出求表面積的具體過程。具體計算由學(xué)生完成。
(4)指學(xué)生板演,其他同學(xué)在練習(xí)本上做,并把計算結(jié)果填在書上。
教師巡視指導(dǎo),注意檢查學(xué)生的計算結(jié)果和計量單位是否正確。
做完后訂正,訂正時讓學(xué)生說出有關(guān)的計算公式。
(5)反饋練習(xí):完成做一做第2題。
指一名學(xué)生在小黑板上做,其他在練習(xí)本上做,然后訂正,訂正時讓學(xué)生講解題方法。
5.教學(xué)例3。
(1)出示例3,指名讀題,找出已知條件和所求問題。
(2)教師提示:解答這道題應(yīng)注意什么?
啟發(fā)學(xué)生說出:這道題是求做這個水桶要用鐵皮多少平方厘米。實際上是求這個圓柱形水桶的表面積。題里告訴我們的“一個沒有蓋的圓柱形鐵皮水桶”,計算時就是用側(cè)面積加上一個底面積。
(3)學(xué)生在練習(xí)本上做,教師巡視指導(dǎo),注意檢查學(xué)生的計算結(jié)果。如果發(fā)現(xiàn)計算結(jié)果是1800平方厘米的讓該生上黑板上做。
(4)訂正,讓板演的學(xué)生講解題的思路和計算結(jié)果取近似值的方法。
(5)教師說明:這里不能用“四舍五入”法取近似值。在實際中,制作水桶使用的材料要比計算得到的數(shù)多一些,這樣才能保證原材料夠用。那么保留整百平方厘米時,十位上即使是4或比4小,也要向前一位進(jìn)1。這種取近似值的方法叫做進(jìn)一法,所以這題的計算結(jié)果應(yīng)是1900平方厘米。
(6)“四舍五入”法與“進(jìn)一法”有什么不同。
圓柱的表面積教案人教版篇十一
(1)請同學(xué)們拿出圓柱來看一看,想一想圓柱的表而包括哪幾個部分,然后告訴大家。指名學(xué)生拿出圓柞,邊指邊說明它的表面包括哪幾個部分。
(2)教師演示。
出示教具,說明把表面全部展開,看一看得到什么圖形,和大家說的對不對。揭下圓柱表面的紙,貼在黑板上,再與圓柱對比說明各個部分,明確圓柱表面包括一個側(cè)面和兩個相等的圓。
(3)得出公式。
2.教學(xué)例2。
出示例2,學(xué)生讀題。提問:這道題分哪幾步來算?你們會做嗎?指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說每一步的具體含義,是怎樣算的。
3.組織練習(xí)。
做練一練第1題。指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,說說這兩題計算時有什么不同的地方,為什么?指出:計算圓柱的表面積,要注意題里的條件,正確列出算式計算。
4.教學(xué)例3。
出示例3,學(xué)生讀題。提問:這道題實際是求什么?這里求表面積與例2有什么不同,為什么?(只要用側(cè)面積加一個底面積)指名學(xué)生板演,其余學(xué)生做在練習(xí)本上。集體訂正,追問為什么只加一個底面積。強(qiáng)調(diào)不用四舍五入法及其理由,說明用進(jìn)一法,并讓學(xué)生說明結(jié)果的近似值,板書訂正。
5.組織練習(xí)。
(1)下面的數(shù)用進(jìn)一法保留整數(shù),各是多少?(口答)。
162.329.43.842.6。
(2)做練一練第2題。讓學(xué)生做在練習(xí)本上。指名口答前兩步各求什么,怎樣算的。(老師板書算式)提問:第三步要怎樣算,為什么只加一個底面積。
圓柱的表面積教案人教版篇十二
這節(jié)課學(xué)習(xí)子什么內(nèi)容?你學(xué)到了些什么?指出:求圓柱表面積在實際應(yīng)用中,要注意題里的實際情況,弄清什么時候要側(cè)面積加兩個底面積,什么時候要側(cè)面積加一個底面積,什么時候只要求側(cè)面積,然后計算結(jié)果。另外,在求需要材料取近似數(shù)時,一般要用進(jìn)一法。
圓柱的表面積教案人教版篇十三
1.理解圓柱表面積的意義,掌握圓柱表面積的計算方法。
3會解決簡單的實際問題。
4.初步培養(yǎng)學(xué)生抽象的邏輯思維能力。
教學(xué)重點(diǎn)。
理解并掌握圓柱表面積的計算方法,并能正確進(jìn)行圓柱表面積的計算。
教學(xué)難點(diǎn)。
能充分運(yùn)用圓柱表面積的相關(guān)知識靈活的解決實際問題。
教學(xué)過程。
一復(fù)習(xí)舊知。
(1)底面周長2.5米,高0.6米。
(2)底面直徑4厘米,高10厘米。
(3)底面半徑1.5分米,高8分米。
(1)長方體的長為4厘米,寬為7厘米,高為9厘米。
(2)正方體的棱長為6分米。
3討論說說長方體、正方體的表面積的意義及其表面積的計算方法。
學(xué)生甲:長方體、正方體的表面積指的是長方體、正方體的六個面的面積的總和。
學(xué)生乙:計算長方體的表面積時只要計算長方體相互對立的3個面的面積,3個面的面積相加再乘以2就是長方體的表面積。正方體的表面積是棱長乘以棱長再乘以6。
二新課導(dǎo)入。
1教師:以前我們學(xué)習(xí)了長方體、正方體的表面積的意義及其表面積的求法,那么圓柱體的表面積的計算和長方體、正方體的表面積的.計算有什么區(qū)別和聯(lián)系呢?圓柱的表面積又是如何計算的呢?接下來我們一起來討論和探索這個問題。(板書:圓柱的表面積)。
2學(xué)生討論:你認(rèn)為圓柱的表面積是指哪一部分?它由幾個面組成?
(1)學(xué)生分組討論。
(2)學(xué)生匯報討論結(jié)果。
3反饋小節(jié):圓柱的表面積指的是圓柱的側(cè)面積和兩個底面積的總和,圓柱的表面積由一個側(cè)面機(jī)和兩個底面組成。(板書:圓柱的側(cè)面積+圓柱的兩個底面積=圓柱的表面積)。
4教師進(jìn)行圓柱模型表面展開演示。
(1)學(xué)生說說展開的側(cè)面是什么圖形。
學(xué)生:圓柱展開的側(cè)面是一個長方形。
(2)學(xué)生說說長方形的長和寬與圓柱的底面周長和高有什么關(guān)系?
學(xué)生:長方體的長(或?qū)挘┑扔趫A柱的底面積,長方體的寬(或長)等于圓柱的高。
(3)圓柱的側(cè)面積是怎樣計算的?抽生回答進(jìn)行復(fù)習(xí)整理。(板書:圓柱的側(cè)面積=圓柱的底面周長×圓柱的高)。
(3)圓柱的底面積怎么計算?(復(fù)習(xí)底面積的計算方法)。
5說說實際生活中有哪些圓柱體?哪些表面是完整的,哪些表面是不完整的?
學(xué)生舉例:完整的圓柱有兩個底面,不完整的圓柱只有一個底面(如水桶)或者根本就沒有底面(如煙囪)。
教師:所以我們每個同學(xué)在計算圓柱的表面積時要特別認(rèn)真,要特別注意這個圓柱到底有幾個底面。
三新課教學(xué)。
1例2一個圓柱的高是4.5分米,底面半徑2分米,它的表面積是多少?(課件演示)。
2學(xué)生嘗試練習(xí),教師巡回檢查、指導(dǎo)。
3反饋評價:
(1)側(cè)面積:2×2×3.14=56.52(平方分米)。
(2)底面積:3.14×2×2=12.56(平方分米)。
(3)表面積:56.52+12.56=81.64(平方分米)。
答:它的表面積是81.64平方分米。
4學(xué)生質(zhì)疑。
5教師強(qiáng)調(diào)答題過程的清楚完整和計算的正確。
6教學(xué)小節(jié):在計算過程中你發(fā)現(xiàn)了什么?計算圓柱的表面積一般要分成幾步來計算呀?
四反饋練習(xí):試一試。
1學(xué)生嘗試練習(xí):要做一個沒有蓋的圓柱形鐵皮水桶,高50厘米,底面直徑為30厘米,至少需要多少鐵皮?(得數(shù)保留整數(shù))。
2學(xué)生交流練習(xí)結(jié)果(注意計算結(jié)果的要求)。
3教師評議。
教師:在實際運(yùn)用中四舍五入法和進(jìn)一法有什么不同?
學(xué)生;計算使用材料的用量時為確保使用材料的充足通常都使用進(jìn)一法,計算結(jié)果如果使用四舍五入法也許會出現(xiàn)使用材料不足的現(xiàn)象。
五拓展練習(xí)。
1教師發(fā)給學(xué)生教具,學(xué)生分組進(jìn)行數(shù)據(jù)測量。
2學(xué)生自行計算所需的材料。
3計算結(jié)果匯報。
教師:同學(xué)們的答案為什么會有不同?哪里出現(xiàn)偏差了?
學(xué)生甲:可能是數(shù)據(jù)的測量不準(zhǔn)確。
學(xué)生乙:可能是計算出現(xiàn)錯誤。
教師:在實際運(yùn)用中如果數(shù)據(jù)測量不準(zhǔn)確或者計算出現(xiàn)錯誤,或許就會造成很大的經(jīng)濟(jì)損失,這種損失也許是不可估量的,但事實上它又是很容易避免的。所以我們每個同學(xué)都要養(yǎng)成認(rèn)真、仔細(xì)的好習(xí)慣。
六鞏固練習(xí)。
1計算下面圖形的表面積(單位:厘米)(略)。
(1)底面周長是21.52厘米,高2.5分米。
(2)底面半徑0.6米,高2米。
(3)底面直徑10分米,高80厘米。
3一個圓柱形的罐頭盒,底面直徑是16厘米,高是10厘米,它的表面積是多少厘米?
4一個圓柱鐵桶(沒蓋),高是5分米,底面半徑是2分米,做一個這樣的鐵桶,至少需要多少鐵皮?(得數(shù)保留一位小數(shù))。
圓柱的表面積教案人教版篇十四
一、求下面圓柱的表面積
1、圓柱底面周長是20厘米,高是10厘米。
2、圓柱底面直徑徑是6厘米,高是3分米。
3、圓柱底面半徑是3厘米,高是10厘米。
二、選擇題:
1、甲乙兩人分別用一張長12。56厘米、寬9。42厘米的長方形紙用兩種不同的方法卷成一個圓柱體,(接頭處不重合),那么卷成的圓柱體1。
a高一定相等
b側(cè)面積一定相等
c側(cè)面積和高都相等
d側(cè)面積和高都不相等
2、把一個棱長是2分米的正方體削成一個最大的圓柱體,它的側(cè)面積是()平方分米。
a。6。28b。12。56c。18。84d。25。12
3、冬天護(hù)林工人給圓柱形的樹干的下端涂防蛀涂料,那么粉刷樹干的面積是指()。
a。底面積b。側(cè)面積c。表面積d。體積
三、綜合練習(xí)
2、是一個圓柱形狀的'蛋糕盒,底面直徑是20厘米,高是12厘米。
(1)做這樣一個蛋糕盒需要多少硬紙板?
四、拓展練習(xí):
思考:如果圓柱的底面周長和高相等,側(cè)面展開是什么形狀的?
圓柱的表面積教案人教版篇十五
學(xué)? 習(xí)
目標(biāo)
1、知道圓柱側(cè)面積和表面積的含義。
2、通過操作推導(dǎo)并掌握求圓柱的側(cè)面積、表面積的方法,并能運(yùn)用到實際中解決問題。
重點(diǎn)
圓柱側(cè)面積和表面積的計算方法。
難點(diǎn)
運(yùn)用所學(xué)的知識解決簡單的實際問題。
學(xué)????? 習(xí)????? 過????? 程
師生筆記
知識鏈接:
1、用公式表示出圓的半徑、直徑、周長、面積之間的關(guān)系。
2、圓柱的上下兩個底面都是(?????? ),它們的面積(??????? )。
3、長方形的面積=????????
長方體的表面積=????????????????
正方體的表面積=?????????
知識超市 :
操作:(一)試一試,怎樣可以得到圓柱形的側(cè)面展開圖?
把圓柱的側(cè)面沿高剪開,展開圖是(??????? ),圓柱的底面周長就是它的(???? ),圓柱的高就是它的(????? )。
計算圓柱的側(cè)面積實際就是計算(?????????????? )
圓柱的側(cè)面積=
(1)一個圓柱,底面周長是1.6m,高是0.7m,求它的側(cè)面積。
(2)一個圓柱,底面直徑是5cm,高是10cm,求它的側(cè)面積。
操作(二)有兩底的圓柱展開后呈什么形狀?
圓柱是由(????????? )和(????????? )三部分組成的。
圓柱的表面積包括(???????????? )和(??????????? )。
所以圓柱體的表面積=
(3)一個圓柱的高是15厘米,底面半徑是5厘米,求它的表面積
我會用:一頂圓柱形廚師帽,高28cm,帽頂直徑20cm,做這樣一頂帽子需要用多少面料?(得數(shù)保留整十平方厘米)
想:求做這樣一頂廚師帽需用多少面料,實際上就是求這頂圓柱形廚師帽的(???????? ),廚師帽由_________和__________組成。
列式計算:
達(dá)標(biāo)檢測:
圓柱的表面積教案人教版篇十六
學(xué)生的學(xué)習(xí)水平有差異,在學(xué)習(xí)中可能會出現(xiàn)有的學(xué)生不知道怎么求圓柱側(cè)面積,不會把曲面轉(zhuǎn)化成學(xué)過的平面圖形;或是有的同學(xué)已經(jīng)知道怎么求圓柱的側(cè)面積,但不能結(jié)合實驗操作清晰地表述圓柱側(cè)面積計算方法的推導(dǎo)過程。學(xué)生對動手操作較感興趣,通過探索操作活動,小組合作與自主探究相結(jié)合的學(xué)習(xí)方式,有助于提高學(xué)生觀察能力、自主探究能力,并發(fā)展學(xué)生的空間觀念及合作學(xué)習(xí)的能力。
【本文地址:http://www.aiweibaby.com/zuowen/9025373.html】