七年級從算式到方程教案范文(20篇)

格式:DOC 上傳日期:2023-11-08 22:06:20
七年級從算式到方程教案范文(20篇)
時間:2023-11-08 22:06:20     小編:影墨

教案應具備邏輯性、系統(tǒng)性和可操作性,便于教師的教學實施。教案應體現(xiàn)“因材施教”和個性化教學的原則。希望這些教案范例可以給廣大教師帶來一些啟示和幫助。

七年級從算式到方程教案篇一

2.知道二元一次方程組是反映現(xiàn)實世界量之間相等關系的一種有效的數(shù)學模型20xx年-20xx學年七年級數(shù)學下冊全冊教案(人教版)20xx年-20xx學年七年級數(shù)學下冊全冊教案(人教版)。

3.引導學生關注身邊的數(shù)學,滲透將來未知轉(zhuǎn)達化為已知的辯證思想。

2.徹底理解題意。

一、情境引入。

二、建立模型。

1.怎樣設未知數(shù)?

2.找本題等量關系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗寫答案。

三、練習。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。

(3)已知關于求x、y的方程,

2.p38練習第1題。

四、小結。

五、作業(yè)。

七年級從算式到方程教案篇二

1.教學目標、重點、難點.

教學目標:

(1)了解方程的解的概念.

(2)體驗對方程解的估算,會檢驗一個數(shù)是不是某個一元方程的解.

(3)滲透對應思想.

重點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.

難點:方程解的意義,會檢驗一個數(shù)是不是一個一元方程的解.

2.例、習題的意圖。

本節(jié)課重點是了解方程的解的意義.通過實際問題中對所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產(chǎn)生尋求方程解法的需求,為后面的學習做好鋪墊.

例1是通過實際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學生親身體驗什么是方程的解,也為例2檢驗一個數(shù)值是不是方程的解做好鋪墊.對第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學習解方程奠定了積極的心理儲備.

例2是根據(jù)方程的解的意義,使學生會檢驗一個數(shù)值是不是方程的解,這一點應切實使學生掌握.

3.認知難點與突破方法。

難點是方程解的意義和檢驗一個數(shù)是不是一個一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學會檢驗一個數(shù)是不是一個一元方程的解.抓住關鍵字“等號左右兩邊相等”,檢驗一個數(shù)是不是一個一元方程的解,要分別計算方程的左右兩邊,若其值相等,則這個未知數(shù)是方程的解,若不相等,則不是方程的解.

二、新課引入。

復習:

1.什么是一元一次方程?

2.練習:當,,時,求式子的值.

答案:,,.

通過練習2強調(diào)求式子的值的一般步驟,其中易錯易混的地方,如代入的值是負數(shù),應加上括號,數(shù)與數(shù)相乘時應恢復乘號,運算關系不能混淆等.

三、例題講解。

例1教材p69中例1。

分析:三個題目中的相等關系分別是:

(1)計算機已使用的時間+繼續(xù)使用的時間=規(guī)定的檢修時間.

(2)2(長+寬)=周長.

(3)女生人數(shù)—男生人數(shù)=.

分析:方程中等號左邊有未知數(shù),估算的值代入方程應使等號左邊的值等于等號右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.

由計算結果可以看到,每一個的允許值都使代數(shù)式有一個確定的數(shù)值,為方便起見,可以列一個表格:

1234567…185021502300245026002750…從表中發(fā)現(xiàn):當時,的值是,也就是,當時,方程中等號的左邊:.等號的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.

教材p71中的小云朵,可以多選幾個情況來說明,以加強對方程解得意義的理解.

從表中你還能發(fā)現(xiàn)哪個方程的解?(引導學生得出)如方程的解是;方程的解是等等,使學生進一步體會方程解的概念.

方程解的意義:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

由于這兩個方程估算其解有一定的困難,數(shù)不整齊,或方程比較復雜,出現(xiàn)矛盾沖突,引導學生得出:學習解方程的方法十分必要.

怎樣檢驗一個數(shù)是否是方程的解呢?

七年級從算式到方程教案篇三

堅持黨的基本路線,擁護中國共產(chǎn)黨的領導,貫徹黨的教育方針、政策,使自己真正成為時代前進的促進派。認真學習《教師法》、《教育法》、《義務教育法》、《教師職業(yè)道德規(guī)范》及《未成年人保護法》等法律法規(guī),使自己對各項法律法規(guī)有更高的認識,做到以法執(zhí)教。忠誠于黨的教育事業(yè),立足教壇,無私奉獻,全心全意地搞好教學工作,做一名合格的人民教師。

二、學生情況分析。

本學期我擔任七年級3班數(shù)學教學,該班共有學生38人。七年級學生往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。七年級學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,七年級學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應七年級教學的新要求,要重視對學生進行記法指導。

三、教學目標。

(一)知識與技能。

1.獲得數(shù)學中的基本理論、概念、原理和規(guī)律等方面的知識,了解并關注這些知識在生產(chǎn)、生活和社會發(fā)展中的應用。

2.學會將實踐生活中遇到的實際問題轉(zhuǎn)化為數(shù)學問題,從而通過數(shù)學問題解決實際問題。體驗幾何定理的探究及其推理過程并學會在實際問題進行應用。

3.初步具有數(shù)學研究操作的基本技能,一定的科學探究和實踐能力,養(yǎng)成良好的科學思維習慣。

(二)過程與方法。

1.采用思考、類比、探究、歸納、得出結論的方法進行教學;。

2.發(fā)揮學生的主體作用,作好探究性活動;。

3.密切聯(lián)系實際,激發(fā)學生的學習的積極性,培養(yǎng)學生的類比、歸納的能力.

(三)情感態(tài)度與價值觀。

1.理解人與自然、社會的密切關系,和諧發(fā)展的主義,提高環(huán)境保護意識。

2.逐步形成數(shù)學的基本觀點和科學態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎。

四、教材章節(jié)分析。

第一章《有理數(shù)》。

1.本章的主要內(nèi)容:

對正、負數(shù)的認識;有理數(shù)的概念及分類;相反數(shù)與絕對值的概念及求法;數(shù)軸的概念、畫法及其與相反數(shù)與絕對值的關系;比較兩個有理數(shù)大小的方法;有理數(shù)加、減、乘、除、乘方運算法則及相關運算律;科學計數(shù)法、近似數(shù)、有效數(shù)字的概念及求法。

重點:有理數(shù)加、減、乘、除、乘方運算。

難點:混合運算的運算順序,對結果符號的確定及對科學計數(shù)法、有效數(shù)字的理解。

2.本章的地位及作用。

本章的知識是本冊教材乃至整個初中數(shù)學知識體系的基礎,它一方面是算術到代數(shù)的過渡,另一方面是學好初中數(shù)學及與之相關學科的關鍵,尤其有理數(shù)的運算在整個數(shù)學及相關學科中占有極為重要的地位,可以說這一章內(nèi)容是構建“數(shù)學大廈”的地基。

第二章《整式的加減》。

1.本章的主要內(nèi)容。

列代數(shù)式,單項式及其有關概念,多項式及其有關概念,去括號法則,整式的加減,合并同類項,求代數(shù)式的值。

重點:去括號,合并同類項。

難點:對單項式系數(shù),次數(shù),多項式次數(shù)的理解與應用。

2.本章的地位及作用。

整式是簡單代數(shù)式的一種形式,在日常生活中經(jīng)常要用整式表示有關的量,體現(xiàn)了變量與常量之間的關系,加深了對數(shù)的理解。本章中列代數(shù)式,去括號及合并同類項是后面學習一元一次方程的基礎,求代數(shù)式的值在中考命題中占有重要的地位。

第三章《一元一次方程》。

1.本章的主要內(nèi)容。

列方程,一元一次方程的概念及解法,列一元一次方程解應用題。

重點:列方程,一元一次方程的解法,

難點:解有分母的一元一次方程和應用一元一次方程解決實際問題。

2.本章的地位及作用。

一元一次方程是數(shù)學中的主要內(nèi)容之一,它不僅是學習其它方程的基礎,而且是一種重要的數(shù)學思想——方程思想,利用方程思想可以使許多實際問題變得直接易懂,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。更深刻地體會數(shù)學的應用價值。

第四章《圖形認識初步》。

1.本章的主要內(nèi)容、地位及作用。

本章主要介紹了多姿多彩的圖形(立體圖形、平面圖?),以及最基本的圖形——點、線、角等,并在自主探究的過程中,結合豐富的實例,探索“兩點確定一條直線”和“兩點間線段最短”的性質(zhì),認識角以及角的表示方法,角的度量,角的畫法,角的比較及余角,補角等,探索了比較線段長短的方法及線段中點。本章中的直線,射線,線段以及角等,都是我們認識復雜圖形的基礎,因此,本章在初中數(shù)學中占有重要的地位。

2.教學重點與難點。

教學難點:(1)用幾何語言正確表達概念和性質(zhì);(2)空間觀念的建立。

五、具體教學策略。

1.認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導,讓學生學會認真學習。

2.興趣是的老師,激發(fā)學生的興趣,給學生介紹數(shù)學家、數(shù)學史,介紹相應的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。

3.引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。

4.引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現(xiàn)象看本質(zhì),提高學生舉一反三的能力,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。

5.運用讀新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念,將帶來不同的教育效果。

6.培養(yǎng)學生良好的學習習慣,有助于學生進步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。

7.進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發(fā)展鋪平道路。

8.站在系統(tǒng)的高度,使知識構筑在一個系統(tǒng),上升到哲學的高度,八方聯(lián)系,渾然一體,使學生學得輕松,記得牢固。

9.開展課題學習,把學生帶入研究的學習中,拓展學生的知識面。

六、進度安排。

教學內(nèi)容課時。

1.1正數(shù)和負數(shù)1課時。

1.2有理數(shù)4課時。

1.3有理數(shù)的加減法4課時。

1.4有理數(shù)的乘除法5課時。

1.5有理數(shù)的乘方3課時。

本章復習2課時。

2.1整式2課時。

2.2整式的加減3課時。

本章復習2課時。

3.2從古老的代數(shù)說起—一元一次方程的討論(1)4課時。

3.3從“買布問題”說起—一元一次方程的討論(2)4課時。

3.4再探實際問題和一元一次方程4課時。

本章復習2課時。

4.1多姿多彩的圖形4課時。

4.2直線、射線、線段2課時。

4.3角的度量3課時。

4.4角的比較和運算3課時。

本章復習2課時。

七年級從算式到方程教案篇四

相對前面兩課內(nèi)容來說,這一課的內(nèi)容較為容易理解,再加上有前面兩課的基礎,學生應該好學習些。因此,這一課我在以下兩個方面要求學生做好,圖形解方程組的畫圖規(guī)范,利用圖形進一步理解前一課的內(nèi)容:“當x為何值時,y1<y2,y1=y(tǒng)2,y1>y2的題目類型”。

在課堂上,學生能夠結合例題,總結出利用函數(shù)的圖象解二元一次方程組的解題步驟:變形、畫圖、標交點、得結論。利用足夠充分的時間讓學生畫圖象解方程組,學生標交點的工作做得還不是很好,為此,提出了怎樣才確保是實實在在可以看出是由圖象得到交點坐標,得到方程組的解的,學生討論的結果還是讓我們滿意的,不但由交點畫垂線,在數(shù)軸上標出交的橫坐標和縱坐標,而且把交點坐標在圖上寫出來,做到雙保險。

利用函數(shù)的圖象復習了上一課的學習難點,學生理解的人數(shù)更多了,在利用函數(shù)的增減性認識和理解,確實效果會更好些,需要注意的是利用函數(shù)的增減性理解須從交點出發(fā)向左或者向右變化來理解。

要動員學生議論或爭論起來,這才是最有效的手段,個別輔導時,有同學在我的辦公桌前進行爭執(zhí),我看到了學生因相互的討論而掌握,學生自己能夠真正動起來,這是最好的,我希望學生是學習的主人,課堂上要努力讓他們成為課堂的主人。

七年級從算式到方程教案篇五

這節(jié)課的內(nèi)容是一元一次方程第一課時。課后,我對本節(jié)課從四方面進行了如下反思:

一:對選擇引例的反思。

在小學學生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學生認識到方程是更方便、更有力的數(shù)學工具,又要讓學生體驗到從算術方法到代數(shù)方法是數(shù)學的進步,這些目標的實現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學生很少有利用方程解應用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個題既簡單又能明顯地承載著從算術到方程的進步呢?幾乎翻閱了所有的有關資料,無獨有偶,在新課標教案126頁的一道數(shù)學名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個例題而興奮不已,立刻拿去和我們數(shù)學組經(jīng)驗豐富的老教師交流一下我的想法,他們覺得這個例子倒挺好的,可是也提出了一個讓我深思的問題,這個題不是能夠很好地體現(xiàn)出從算術到方程的進步,因為題很簡單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點醒了我,如果實在找不到合適的例題,不妨就用這個題,通過這個題從語言和方法上突破它,可以先讓學生感知方程的優(yōu)越性,后面學習中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時豁然開朗,增加了以這個題作為引例的信心。事實證明,這個引例既富有創(chuàng)新又能激發(fā)學生的興趣,既符合學生的已有經(jīng)驗和知識水平,又符合學生的認知規(guī)律。

二:對選題的反思。

我在備課中【活動3】最初選用的題是:

修改后的題是:

判斷下列各式是方程的有:

(1)(2)(3)(4)(5)。

考慮到學生初對方程概念的研究,不在數(shù)字上人為的設置障礙,因為是否是方程與數(shù)字的大小根本無關,于是把數(shù)字全部統(tǒng)一成了6、2、8三個數(shù),利于學生從未知數(shù)和等號的角度進一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強,容易分散學生對概念本質(zhì)的把握。改進后的題目更利于學生觀察方程的特征,從而更深刻地掌握概念的本質(zhì)。需要特別說明的是,如果說前5個小題是為了讓學生抓住方程的兩個要點,那么后3個小題則是對概念本質(zhì)的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個數(shù)、未知數(shù)的次數(shù)等均無關。

三:對課堂實踐的反思。

本節(jié)課的設計思路:首先以“名題欣賞”導入,引入概念,通過四組練習讓學生深刻理解方程和一元一次方程的概念,最后由學生自己歸納小結。

當環(huán)節(jié)進行到【活動3】時,我讓學生寫出一個或幾個方程,在給學生判斷點評時,我發(fā)現(xiàn)學生在黑板上寫的全部都是未知數(shù)在等號左邊的方程,這時我突然意識到學生在模仿我前面呈現(xiàn)的方程,不禁暗自責怪自己考慮不周,怎么沒出一個等號兩邊都含有未知數(shù)的方程呢?它給我敲響了一個警鐘。正當我想寫一個等號兩邊都含有未知數(shù)的方程來彌補設計上的不足時,我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學生能提出這樣的問題而感到慶幸,一是因為它及時彌補了我備課中的不足;二是由學生提出問題要比我提出問題更有價值。這可以反映出該生善于思考,同時也反映出了學生真實的疑惑。為了提高學生的探究能力,我并沒有急于解釋,而是把問題拋給學生,讓學生來解決。我立刻提出:“誰能解決這位同學提出的`問題呢?”這時我看到后面幾位學生已經(jīng)高高地舉起了手。我隨機點了一名學生,這位同學回答到:“判斷一個式子是不是方程只要看是否含有未知數(shù)和等號就ok了,與未知數(shù)的位置無關!”他精彩的回答引起聽課教師一陣喝彩!我也頓時驚喜萬分,他說的太好了,不管是語言表達還是準確性上都無可挑剔。我為敢于給學生這樣一個機會又一次感到慶幸;通過這個同學精彩的回答,我深深地感受到:“教師給學生一個機會,學生就會還你一個驚喜?!?/p>

四:教后整體反思。

成功之處:

1.引例、練習題的選擇都很恰當。

2.思路清晰,重點突出,注意到了學生的自主探索,節(jié)奏把握較好。

3.數(shù)學文化的滲透比較自然。

4.“寫一個或幾個一元一次方程”此環(huán)節(jié)的設計體現(xiàn)了從理論到實踐的過程,使學生的能力得到提升,學習效果得到落實。

5.語言簡練,教態(tài)大方,師生互動比較熱烈,充分調(diào)動了學生的積極性。

6.板書設計較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。

不足之處:

1.在處理三道實際背景題時留給學生的思考時間偏少,顯得倉促。

2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。

3.授課語言仍需加強錘煉。

這節(jié)課的準備和每個環(huán)節(jié)的設計我頗費了一些心思,上完課之后總的感覺是達到了我預期的目標。非常感謝評委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學中,我將揚長避短,力爭做的更好!

七年級從算式到方程教案篇六

1.小明用天平測量物體的質(zhì)量(如下圖),已知每個小砝碼的質(zhì)量為1克,此時天平處于平衡狀態(tài).若設大砝碼的質(zhì)量為x克.

考查說明:本題主要考查等式基本性質(zhì)1.

答案與解析:根據(jù)等式基本性質(zhì)1:等式兩邊同時加或減去同一個數(shù)或式子,結果仍為等式.

2.方程3y=。

兩邊都除以3得y=1。

改正:________________________________________________.

考查說明:本題主要考查等式基本性質(zhì)2并熟練運用.

答案與解析:得y=。

兩邊同時除以3時,右邊也要除以3,不是乘以3。

3.當x=時,60-5x=0.

考查說明:本題主要考查利用等式兩條基本性質(zhì)來解簡單方程.

答案與解析:12.由原方程和等式性質(zhì)1得5x=60,再由等式性質(zhì)2,兩邊同除以5,得x=12.

4.方程的解是(36,48中選填一個)。

考查說明:本題考查的知識點是方程的解的概念,使得等號成立即可.

答案與解析:36.方程的解使等式兩邊相等,把兩個數(shù)代入驗算即可.

5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.

考查說明:本題主要考查根據(jù)題意找等量關系,從而列出方程.

答案與解析:55-x=29+x.等量關系為:抽調(diào)后,三班人數(shù)=八班人數(shù),關鍵要理解三班少了x人的同時,八班多了x人.

二、選擇題。

6.下列方程中,是一元一次方程的是()。

a、

b、

c、

d、

考查說明:本題主要考查一元一次方程的概念.

答案與解析:a.a和b都需要化簡后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.

7.根據(jù)下列條件能列出方程的是()。

a.一個數(shù)的'與另一個數(shù)的的和。

b.與1的差的4倍是8。

c.和的60%。

d.甲的3倍與乙的差的2倍。

考查說明:本題考查的知識點是方程與代數(shù)式的區(qū)別.

答案與解析:b.其余幾個答案都不能列出等號.

三、解答題。

考查說明:本題考查的知識點是列一元一次方程解應用題,并會利用等式性質(zhì)解簡單的一元一次方程.本題等量關系為:教師票價+學生票價=910.

答案與解析:設:學生有x人,根據(jù)題意。

列出方程得70+70x×=910,

解方程得70x×=840,

即35x=840,

所以x=24.

七年級從算式到方程教案篇七

我本學期擔任初一七、八班的數(shù)學教學工作。初一(八)班共有學生55人,初一(七)班有學生56人。根據(jù)小學升初中考試的情況來分析學生的數(shù)學成績不算理想,總體的水平一般,往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,因此要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。初一學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,初一學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應初一教學的新要求,要重視對學生進行記法指導。本學期的工作重點是扭轉(zhuǎn)學生的學習態(tài)度,培養(yǎng)學生的好的學習習慣、創(chuàng)新意識,激發(fā)學生學習數(shù)學的熱情和興趣,培優(yōu)補差,同時強調(diào)對數(shù)學知識的靈活運用,反對死記硬背,以推動數(shù)學教學中學生素質(zhì)的培養(yǎng)。

二、教學措施。

1、根據(jù)今年學校及教科室計劃,認真構建“雙思三環(huán)六步”課堂教學模式,努力提高課堂教學的有效性和實效性。雙思”是指教師反思教學、學生反思學習;“三環(huán)”就是定向、內(nèi)化、發(fā)展;“六步”分別是指:提供資源(入境生趣)、了解學情(自學生疑)、弄清疑難(學習釋疑)、點難撥疑(練習解難)、反思教學(反思學習)、引導實踐(遷移創(chuàng)新)。我們要在反思中成長,學生要在反思中進步;我們要反思的主要內(nèi)容是怎樣優(yōu)化“三環(huán)六步”教學設計,不斷提高課堂教學效率;學生要反思的主要內(nèi)容學習積極性、學習策略和學習方法運用是否得當、不斷提高學習效率。

初一學生剛剛進入初中階段,正是從小學過度到初中學習的重要階段,也是進行“雙思三環(huán)六步”課堂教學模式的時期,要逐步的培養(yǎng)和完善這種模式,要求我們多研究、多思考、多創(chuàng)新、多探究。按照“低(起點)慢(速度)多(落點)高(標準)”元素結構教學法進行教學,“低起點”考慮到學生的基礎,初一學生從小學數(shù)學到初中數(shù)學的學習是一個飛躍,怎樣幫助學生慢慢過渡是一個難點,從細小的問題、每一個小知識點出發(fā)結合小學知識融匯到初中的知識中去,從而使學生很快接受知識?!奥俣取狈磳焖俣冉虒W,主張教學要考慮學生的學習規(guī)律和接受程度,兼顧初一學生的生理、心理、知識、能力、意志、品德等特征和差異,步步為營,梯次推進,使學生有效地掌握知識和培養(yǎng)能力?!岸嗦潼c”強調(diào)教育要考慮到初一學生個性差異的特點。個性差異是表現(xiàn)在多方面,不僅有年齡、性別、性格、身體的差異,還有很多學習上的差異,個人思維方式、生活方式的差異。推動不同層次的學生都有收獲?!案邩藴省睘閷W生確立的學習標準。而且把目標細化,使學生能很快達到,既能掌握知識又能體會到成功的愉悅,使初一的學生對數(shù)學充滿興趣,從而達到高效課堂的標準。

2、精心設計習題,使習題從簡單到復雜形成梯度,引導學生學會發(fā)散思維,培養(yǎng)學生創(chuàng)造性思維的能力,實現(xiàn)一題多解、舉一反三、觸類旁通,培養(yǎng)思維的靈活性。

3、批改作業(yè)做到全批全改,從過程到步驟嚴格要求,發(fā)現(xiàn)問題及時解決作認好總結,從初一使學生慢慢養(yǎng)成認真按步驟做作業(yè)的習慣。

4、繼續(xù)實行課前一題的模式。課前五分鐘每個班的課代表把上一節(jié)課涉及到的典型題目呈現(xiàn)在黑板上,學生在解題的過程中復習上一節(jié)的內(nèi)容,而且也能做到盡快把學生從課間拉回到上課的的狀態(tài),并力求把學生中新方法新思維挖掘出來。

5、實行一對一的幫扶活動,由好學生帶動一個差一點的學生,從知識、作業(yè)、學習習慣等各方面互幫互助,從而全面提高學生的綜合素質(zhì)。

三、合理落實各項教學常規(guī)。

1、備好課是上好課的基礎,是提高課堂教學質(zhì)量的關鍵。根據(jù)“雙思三環(huán)六步”課堂教學模式,所以在備課時深入鉆研教材,正確地掌握和處理好教材的重點、難點,準備大量的、難度不同的習題備用,備課以個人獨立鉆研備課為主,在此基礎上進行集體備課,廣泛吸取其他老師的優(yōu)點和精華,完善自己的備課達到精益求精。

2、上課時要嚴格按照“雙思三環(huán)六步”課堂教學模式的步驟進行教學,講課時要圍繞中心內(nèi)容,突出重點,突破難點。整個教學過程要嚴密組織,使課堂教學既層次分明,又協(xié)調(diào)緊湊。教學時要面向全體學生,使各類學生都學有所得。特別是要照顧到差生,力求使他們能掌握本課時的基本知識和技能。

七年級從算式到方程教案篇八

學習目標:

學習重點:

學習難點:

1.做圖像時要標準、精確,近似值才接近。

學習方法:

先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。

自主學習部分:

問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

(3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?

(5)由以上的探究過程,你發(fā)現(xiàn)了什么?

(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。

合作探究:

(1)用做圖像的方法解方程組。

(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。

七年級從算式到方程教案篇九

1、這堂課從簡單問題入手,由淺至深,比較符合初一學生的認知性,學生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學生自己找到符合概念的條件,加深印象。穿插式的練習,讓學生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學生的探索學習,以及數(shù)學“建?!蹦芰Φ呐囵B(yǎng)。為后面學習打下基礎。

3、在課堂的第二個環(huán)節(jié)中,通過實際問題的'引入,讓學生動起腦來,階梯型問題的設置使得一些后進生也投入到課堂中來,體現(xiàn)了差異性的教學。在學生慢慢列出方程的同時其實也培養(yǎng)了他們的邏輯思維能力,也體會到了列方程它與算式相比較之下的優(yōu)點,合作式的學生活動增進了學生的合作交流能力,我并通過一些激勵性的話語激發(fā)學生參與數(shù)學的興趣,在列完方程的最后讓學生歸納出列方程解應用題的基本步驟。使學生加深對知識的掌握也培養(yǎng)了他們的語言組織能力以及學會標準的數(shù)學用語。

二、從教學方法反思。

本節(jié)課本著“尊重差異”為基礎,先“引導發(fā)現(xiàn)”,后“講評點撥”,所以再講解前面概念的時候,我稍稍放慢速度讓后進生聽的明白,因為方程是解應用題的基礎,抓住基礎知識再去發(fā)展他們的邏輯思維能力對后進生是十分重要的。

三、從學生反饋反思。

這堂課學生能積極思考,認真學習,課后作業(yè)都能及時完成。作業(yè)質(zhì)量較好,但是對于稍難點的實際問題得列式還是有一些問題。在應用題的列式方面是所有學生學習的一個難點,這是我后面課堂要注意的地方:如何去教會學生找到數(shù)量關系去列方程。

七年級從算式到方程教案篇十

1.會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。

2.知道二元一次方程組是反映現(xiàn)實世界量之間相等關系的一種有效的數(shù)學模型。

3.引導學生關注身邊的數(shù)學,滲透將來未知轉(zhuǎn)達化為已知的辯證思想。

1.列二元一次方程組解簡單問題。

2.徹底理解題意

找等量關系列二元一次方程組。

1.怎樣設未知數(shù)?

2.找本題等量關系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗寫答案。

思考:怎樣用一元一次方程求解?

比較用一元一次方程求解,用二元一次方程組求解誰更容易?

1.根據(jù)問題建立二元一次方程組。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。

(3)已知關于求x、y的方程,

是二元一次方程。求a、b的值。

2.p38練習第1題。

小組討論:列二元一次方程組解應用題有哪些基本步驟?

p42。習題2.3a組第1題。

后記:

2.3二元一次方程組的應用(2)

七年級從算式到方程教案篇十一

3.3解一元一次方程(二)―――去括號與去分母(第1課時)教學目標:(1)知識目標:在具體情境中體會去括號的必要性,能運用運算律去括號。(2)能力目標:探索總結去括號法則,并能利用法則解決簡單的問題。重點:去括號法則及其運用。難點:括號前面是“―”號,去括號時,應如何處理。教學過程:(一)創(chuàng)設情景,導入新課問題某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度。這個工廠去年上半年每月平均用電多少度?(三)典例教學例1.解方程3x-7(x-1)=3-2(x+3)例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時.已知水流的`速度是3千米/小時,求船在靜水中的平均速度.例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母.為了使每天的產(chǎn)品剛好配套,應該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?(四)課堂練習1.(1)4x+3(2x-3)=12-(x+4)(2)2.同步p79自我嘗試(五)課堂小結去括號法則(六)作業(yè)p102習題3.3第2題,同步學習p80開放性作業(yè)教后思:

七年級從算式到方程教案篇十二

2.在對實際問題情景的分析過程中感受方程模型的意義。

二、自主學習。

1、請同學們閱讀p79至p80第4段,然后用算術方法解此問題,列算式為___________;然后用設未知數(shù)列方程的數(shù)學思想來解決此問題,設王家莊到翠湖的路程為千米,可列方程為:

像上面含有未知數(shù)的等式,叫__________(讀三遍)。

2、自學p80例1至p81歸納部分,根據(jù)下列問題,設未知數(shù)并列出方程.

(1)用一根長20cm的鐵絲圍成一個正方形,正方形的邊長是多少?

分析:設正方形的邊長為(cm),那么周長為__________(cm),列方程:__________.

(2)某校女生占全體學生數(shù)的61℅,比男生多61個,這個學校有學生多少個?

(3)一臺計算機已使用1200小時,預計每月再使用123小時,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的檢修時間2612小時?(自主分析并列出方程)。

像上面(1)、(2)、(3)所列的方程,只含有一個__________數(shù),并且未知數(shù)的次數(shù)都是__________,這樣的方程叫做__________元__________次方程(讀三遍)。

注意:“一元”是指一個未知數(shù);“一次”是指未知數(shù)的指數(shù)是一次(理解)。

上面的分析過程歸納如下:

(1)分析實際問題中的__________關系,利用__________關系列出方程(一元一次方程),是用數(shù)學解決實際問題的一種方法。

(2)列方程經(jīng)歷的幾個步驟。

a、設__________數(shù);b、找出題中的__________關系;c、列出含有未知數(shù)的等式——()。

3、閱讀p81,理解列方程是解決實際問題的一種重要方法,利用方程可以求出未知數(shù)。

當=6時,4值是24。這時,方程4=24等號左右兩邊相等,所以=6,叫做方程4=24的解;同樣,當x=10時,2x+3=23,這時方程2x+3=23等號兩邊_______相等,所以,x=10叫做方程2x+3=23的_______;像這樣,解方程就是求出使方程中等號左右兩邊_______的未知數(shù)的值,這個值就是方程的_______(讀三遍)。

思考:x=4與x=3中,哪一個是方程7x+1=15的解?答:_______。

七年級從算式到方程教案篇十三

1、會列出二元一次方程組解簡單應用題,并能檢驗結果的合理性。

2、知道二元一次方程組是反映現(xiàn)實世界量之間相等關系的一種有效的數(shù)學模型。

3、引導學生關注身邊的數(shù)學,滲透將來未知轉(zhuǎn)達化為已知的辯證思想。

教學重點。

2、徹底理解題意。

教學難點。

教學過程。

一、情境引入。

二、建立模型。

1、怎樣設未知數(shù)?

2、找本題等量關系?從哪句話中找到的?

3、列方程組。

4、解方程組。

5、檢驗寫答案。

三、練習。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學生,其中男生比女生多8人,求這個班男生人數(shù),女生人數(shù)。

(3)已知關于求x、y的方程,

2、p38練習第1題。

四、小結。

小組討論:列二元一次方程組解應用題有哪些基本步驟?

五、作業(yè)。

p42習題2.3a組第1題。

后記:

七年級從算式到方程教案篇十四

(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。

(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。

(1)二元一次方程和一次函數(shù)的關系;

(2)二元一次方程組和對應的兩條直線的關系。

數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識。

教具:多媒體課件、三角板。

學具:鉛筆、直尺、練習本、坐標紙。

第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。

內(nèi)容:

1、方程x+y=5的解有多少個?是這個方程的解嗎?

2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3、在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4、以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。

內(nèi)容:

1、解方程組。

2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。

(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;

(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標是。

第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。

內(nèi)容:

1、已知一次函數(shù)與的圖像的交點為,則。

2、已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為()。

(a)4(b)5(c)6(d)7。

3、求兩條直線與和軸所圍成的三角形面積。

4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

1、二元一次方程和一次函數(shù)的圖像的關系;

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程。

2、方程組和對應的兩條直線的關系:

(1)方程組的解是對應的兩條直線的交點坐標;

(2)兩條直線的交點坐標是對應的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法,要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設計。

六、教學反思。

七年級從算式到方程教案篇十五

(二)教材的重難點。

(一)知識技能目標。

1.目標內(nèi)容。

(2)培養(yǎng)學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.。

2.目標分析。

(二)過程目標。

1.目標內(nèi)容。

在活動中感受方程思想在數(shù)學中的作用,進一步增強應用意識.。

2.目標分析。

(三)情感目標。

1.目標內(nèi)容。

2.目標分析。

七年級從算式到方程教案篇十六

【知識目標】了解二元一次方程、二元一次方程組及其解等有關概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。

【能力目標】通過討論和練習,進一步培養(yǎng)學生的觀察、比較、分析的能力。

【情感目標】通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。

【難點】判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學生良好的。數(shù)學應用意識。

【教學過程】。

一、引入、實物投影。

2、請每個學習小組討論(討論2分鐘,然后發(fā)言)。

[1][2][3]。

七年級從算式到方程教案篇十七

2、掌握等式的性質(zhì),理解掌握移項法則。

3、會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。

5、初步學會用方程的思想思考問題和解決問題的一些基本方法,學會用數(shù)學的方法觀察、分析、歸納和總結現(xiàn)實情境中的實際問題。

難點重點:解方程、用方程解決實際問題。

難點:用方程解決實際問題。

師生活動時間復備標注。

二、典例回顧。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判斷下列x值是否為方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解決問題的基本步驟。

解:設先安排x人工作4小時。根據(jù)兩段工作量之和應是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括號,得4x+8x+16=40。

移項及合并,得12x=24。

系數(shù)化為1,得x=2。

答:應先安排2名工人工作4小時。

注意:工作量=人均效率人數(shù)時間。

本題的關鍵是要人均效率與人數(shù)和時間之間的數(shù)量關系。

三、基礎訓練:課本第113頁第1.2.3題。

四、綜合訓練:課本113頁至114頁4.5.6.7.8。

五、達標訓練:3.7。

課件出示問題明確知識要點。

學生練習基礎上,教師點撥。

七年級從算式到方程教案篇十八

問題:(投影)。

一個農(nóng)民有若干只雞和兔子,它們共有50個頭和140只腳,問雞和兔子各多少只?

先讓學生思考一下,自己做出解答,教師巡視.最后,在學生動手動腦的基礎上,教師引導給出各種解法.

解法一:在分析時,可提出如下問題:

1.50只動物都是雞,對嗎?

(不對,因為50只雞有100只腳,腳數(shù)少了.)。

2.50只動物都是兔子對嗎?

(不對,因為50只兔子共有200只腳,腳數(shù)多了.)。

3.一半是雞,一半是兔子對嗎?

(不對,因為25只雞,25只兔共有150只腳,多10只腳.)。

怎么辦?(在學生思考后,教師指出:我們可采取逐步調(diào)整,驗算的方法來加以解決.)。

4.若增加一只雞,減少一只兔,那么動物總只數(shù),腳數(shù)分別怎樣變化?

(當增加一只雞,減少一只兔時,動物的總只數(shù)不變,腳數(shù)比原來少兩只.)。

5.現(xiàn)在你是否知道有幾只雞、幾只兔?

(若學生回答還是感到困難,教師應引導學生根據(jù)一半是雞,一半是兔時多10只腳,做出5次如問題4所述的方法進行調(diào)整,即增加5只雞,減少5只兔,則多出的10只腳就沒有了,故答案是30只雞、20只兔.)。

此時,教師指出:這個問題是解決了,但它在很大程度上依賴于數(shù)字50和140比較小,比較簡單,若它們相當大且又很復雜,那么像上述方法這樣一次次的試算就很麻煩了.然后提出問題:是否有其他方法來解決這個問題呢?(若學生在思考后,還很茫然,則教師引導學生嘗試可否用一元一次方程來解.由一名學生板演,其余學生自行完成)。

解法二:設有x只雞,則有(50-x)只兔.根據(jù)題意,得2x+4(50-x)=140.

(解方程略)。

追問:對于上面的問題用一元一次方程可解,是否還有其他方法可解?(若學生想不到,教師可引導學生注意,要求的是兩個未知數(shù),能否設兩個未知數(shù)列方程求解呢?讓學生自己設未知數(shù),列方程.然后請一名學生板演解所列的方程.)。

七年級從算式到方程教案篇十九

(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力.

(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.

(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.

數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.

教具:多媒體課件、三角板.

學具:鉛筆、直尺、練習本、坐標紙.

第一環(huán)節(jié):設置問題情境,啟發(fā)引導(5分鐘,學生回答問題回顧知識)。

內(nèi)容:1.方程x+y=5的解有多少個?是這個方程的解嗎?

2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個知識點:

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系(10分鐘,教師引導學生解決)。

內(nèi)容:1.解方程組。

2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.

(1)求二元一次方程組的.解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;。

(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解.

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié)典型例題(10分鐘,學生獨立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點坐標是.

第四環(huán)節(jié)反饋練習(10分鐘,學生解決全班交流)。

內(nèi)容:1.已知一次函數(shù)與的圖像的交點為,則.

2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為().

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積.

4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?

第五環(huán)節(jié)課堂小結(5分鐘,師生共同總結)。

內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:

(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.

2.方程組和對應的兩條直線的關系:

(1)方程組的解是對應的兩條直線的交點坐標;。

(2)兩條直線的交點坐標是對應的方程組的解;。

(1)代入消元法;。

(2)加減消元法;。

(3)圖像法.要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.

第六環(huán)節(jié)作業(yè)布置。

習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設計。

六、教學反思。

七年級從算式到方程教案篇二十

1、 經(jīng)歷由實際問題抽象為方程模型的過程,進一步體會模型化的思想。

2、 通過探究實際問題與一元一次方程的關系,感受數(shù)學的應用價值,提高分析問題,解決問題的能力。

探究實際問題與一元一次方程的關系。

建立一元一次方程解決實際問題

(師生活動)設計理念

創(chuàng)設情境提出問題

信息社會,人們溝通交流方式多樣化,移動電話已很普及,選擇經(jīng)濟實惠的收費方式很有理實意義。

出示教科書80頁的例2;觀察下列兩種移動電話計費方式表:

全球通神州行

月租費50元/月0

本地通話費0.40元/分0.60元/分

1、 你能從中表中獲得哪些信息,試用自己的話說說。

2、 猜一猜,使用哪一種計費方式合算?

3、 一個月內(nèi)在本地通話200分和300分,按兩種計費方式各需交費多少元?

4、 對于某個本地通通話時間,會出現(xiàn)兩種計費方式的收費一樣的情況嗎? 本例是一道與生活相關的移動電話收費的問題,讓學生討論選擇經(jīng)濟實惠的收費方式很有現(xiàn)實意義。

理解問題是本身是列方程的基礎,本例是通過表格形式給出已知數(shù)據(jù)的,通過設計問題1、2、3讓學生展開討論,幫助理解,培養(yǎng)學生的讀題能力和收集信息的能力。

解決問題學生充分交流討論、整理歸納

解:1、用全球通每月收月租費50元,此外根據(jù)累計通話時間按0.40元/分加收通話費;用神州行不收月租費,根據(jù)累計通話時間按0.60元/分收通話費。

2、 不一定,具體由當月累計通話時間決定。

3、全球通神州行

200分130元120元

300分170元180元

0.6t=50+0.4t

移項得 0.6t-0.4t=50

合并,得0.2t=50

系數(shù)化為1,得t=250

以表格的形式呈現(xiàn)數(shù)據(jù),簡單明了,易于比較。

通過探究實際問題與一元一次方程的關系,提高分析問題,解決問題的能力。

學生練習,教師巡視,指導,討論解是否合理

知識梳理 小組討論,試用框圖概括用一元一次方程分析和解決實際問題的基本過程

學生思考、討論、整理。

實際問題題

列方程

數(shù)學問題 (一元一次方程)

實際問題的答案

數(shù)學問題的解

這是第一次比較完整地用框圖反映實際問題與一元一次方程的關系。

讓學生結合自己的解題過程概括整理,幫助理解,培養(yǎng)模型化的思想和應用數(shù)學于現(xiàn)實生活的意識。

小結與作業(yè)

布置作業(yè)

1、 必做題:教科書82頁習題2.2第2題。

2、 一個兩位數(shù),個位數(shù)字是十位數(shù)字的3倍,如果把個位數(shù)字與十位數(shù)字對調(diào),那么得到的新數(shù)比原數(shù)大54,求原來的兩位數(shù)。

本課教育評注(課堂設計理念,實際教學效果及改進設想)

課程改革的目的之一是促進學習方式的轉(zhuǎn)變,加強學習的主動性和探究性,本章內(nèi)容涉及大量的實際問題,豐富多彩的問題情境和解決實際問題的快樂更容易激起學生對數(shù)學的興趣,在本節(jié)中,引導學生從身邊的移動電話收費,旅游費用等問題展開探究,使學生在現(xiàn)實、富有挑戰(zhàn)性的問題情境中經(jīng)歷多角度認識問題,多種策略思考問題,嘗試解釋答案的合性的活動,培養(yǎng)探索精神和創(chuàng)新意識。

在前面幾節(jié)學習中,已經(jīng)對利用一元一次方程解決問題的基本過程進行多次滲透,逐步細化,本節(jié)要求學生用框圖概括,使學生對應用一元一次方程解決實際問題有較理性的認識,進一步體會模型化的思想。

【本文地址:http://aiweibaby.com/zuowen/9495192.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔