多邊形的內(nèi)角和教案四年級(jí)(專業(yè)19篇)

格式:DOC 上傳日期:2023-11-09 06:04:13
多邊形的內(nèi)角和教案四年級(jí)(專業(yè)19篇)
時(shí)間:2023-11-09 06:04:13     小編:薇兒

教案的執(zhí)行過(guò)程要靈活調(diào)整,根據(jù)學(xué)生的學(xué)習(xí)情況進(jìn)行及時(shí)調(diào)整和改進(jìn)。編寫一份完美的教案需要考慮多個(gè)因素。首先,要明確教學(xué)目標(biāo),確定學(xué)生應(yīng)該達(dá)到的知識(shí)、能力和情感目標(biāo)。其次,要選擇適當(dāng)?shù)慕虒W(xué)內(nèi)容,確保內(nèi)容與學(xué)生的實(shí)際情況和學(xué)習(xí)需求相匹配。此外,還需要靈活運(yùn)用不同的教學(xué)方法,以激發(fā)學(xué)生的學(xué)習(xí)興趣和主動(dòng)性。在這里,小編為大家推薦了一些教案模板,希望能對(duì)大家的備課工作有所幫助。

多邊形的內(nèi)角和教案四年級(jí)篇一

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360?。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。

師:你真聰明!做到了學(xué)以致用。

交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。

(二)引申思考,培養(yǎng)創(chuàng)新。

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

八、教學(xué)反思:

1、教的轉(zhuǎn)變。

本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

2、學(xué)的轉(zhuǎn)變。

學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉(zhuǎn)變。

整節(jié)課以“流暢、開(kāi)放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

多邊形的內(nèi)角和教案四年級(jí)篇二

1、知識(shí)與技能:

(2)運(yùn)用三角形的內(nèi)角和知識(shí)解決實(shí)際問(wèn)題和拓展性問(wèn)題。

2、過(guò)程與方法:

(1)通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180°。

(2)知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。

(3)發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。

3、情感態(tài)度與價(jià)值觀:

讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂(lè)趣,通過(guò)教學(xué)中的活動(dòng)體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想。

教學(xué)課件、各種三角形。

1、猜謎語(yǔ):。

形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。

(打一圖形名稱)。

2、猜三角形。

3、引出課題。

師:為什么不會(huì)出現(xiàn)兩個(gè)直角?今天我們就再次走進(jìn)數(shù)學(xué)王國(guó),探討三角形的內(nèi)角和的奧秘。(板書(shū)課題)。

2、猜一猜。

3、驗(yàn)證。

4、學(xué)生匯報(bào)。

(1)測(cè)量。

(2)剪拼。

a、學(xué)生上臺(tái)演示。

b、請(qǐng)大家三人小組合作,用剪拼的方法驗(yàn)證其它三角形。

c、師演示。

(3)折拼。

師:有沒(méi)有別的驗(yàn)證方法?我在電腦里收索到折的方法,請(qǐng)同學(xué)們看一看他是怎么折的(課件演示)。

(5)數(shù)學(xué)小知識(shí)。

5、鞏固知識(shí)。

教師:為什么不是360°?

師:接下來(lái),利用三角形的內(nèi)角和我們來(lái)解決一些相關(guān)的問(wèn)題吧!

1、看圖,求未知角的度數(shù)。

2、判斷。

3、如果一個(gè)都不知道,或只知道1個(gè)角,你能知道三角形各角的度數(shù)嗎?

(1)我三邊相等。

(2)我是等腰三角形,我的頂角是96°。

(3)我有一個(gè)銳角是40°。

4、求四邊形、五邊形內(nèi)角和。

師:這節(jié)課你有什么收獲?

多邊形的內(nèi)角和教案四年級(jí)篇三

二、教學(xué)目標(biāo)。

2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。

4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

三、教學(xué)重、難點(diǎn)。

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360o。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360o。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180o的和是540o。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180o的和減去一個(gè)周角360o。結(jié)果得540o。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180o的和減去一個(gè)平角180o,結(jié)果得540o。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180o加上360o,結(jié)果得540o。

交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180o的和,五邊形內(nèi)角和是3個(gè)180o的和,六邊形內(nèi)角和是4個(gè)180o的和,十邊形內(nèi)角和是8個(gè)180o的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440o,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

多邊形的內(nèi)角和教案四年級(jí)篇四

根據(jù)上面三組實(shí)驗(yàn)分別證明了銳角三角形、直角三角形、鈍角三角形的內(nèi)角和都等于180度。

四、練一練。

請(qǐng)學(xué)生自己畫任意的`三角形,并用剛才老師所講的方法自己來(lái)判斷一下三角形的內(nèi)角和。

五、實(shí)踐活動(dòng):

第1題:用紙剪出一個(gè)等邊三角形。

第2題:將等邊三角形兩邊取中點(diǎn),并向底作垂線,

第3題:把紙沿著虛線對(duì)折。

第4題:觀察三個(gè)角的內(nèi)角加起來(lái)為多少?

多邊形的內(nèi)角和教案四年級(jí)篇五

教學(xué)目標(biāo)。

知識(shí)與技能。

掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.

過(guò)程與方法。

2.經(jīng)歷探索多邊形內(nèi)角和公式的過(guò)程,嘗試從不同角度尋求解決問(wèn)題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.

情感態(tài)度價(jià)值觀。

通過(guò)猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.

重點(diǎn)。

多邊形的內(nèi)角和教案四年級(jí)篇六

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

4.講解四邊形的`有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫,可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

多邊形的內(nèi)角和教案四年級(jí)篇七

過(guò)程與方法目標(biāo):通過(guò)多邊形內(nèi)角和公式的推導(dǎo)過(guò)程,提高邏輯思維能力。

情感態(tài)度與價(jià)值觀目標(biāo):養(yǎng)成實(shí)事求是的科學(xué)態(tài)度。

教學(xué)重點(diǎn):多邊形的內(nèi)角和公式

教學(xué)難點(diǎn):多邊形內(nèi)角和公式

講解法、練習(xí)法、分小組討論法

結(jié)合新課程標(biāo)準(zhǔn)及以上的分析,我將我的教學(xué)過(guò)程設(shè)置為以下五個(gè)教學(xué)環(huán)節(jié):導(dǎo)入新知、

生成新知、深化新知、鞏固新知、小結(jié)作業(yè)。

1. 導(dǎo)入新知

首先是導(dǎo)入新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生回顧三角形的內(nèi)角和,緊接著提出問(wèn)題:四邊形的

內(nèi)角和是多少?五邊形的內(nèi)角和是多少?六邊形的內(nèi)角和是多少?引發(fā)學(xué)生思考,由此引出本節(jié)課的課題:多邊形的內(nèi)角和(板書(shū))。

通過(guò)提問(wèn)的方式幫助學(xué)生回顧舊知識(shí)的同時(shí),引導(dǎo)學(xué)生思考,也激發(fā)學(xué)生的求知欲,為本節(jié)課的多邊形內(nèi)角和的學(xué)習(xí)奠定了基礎(chǔ)。

2. 生成新知

接下來(lái),進(jìn)入生成新知環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生將四邊形分成兩個(gè)三角形來(lái)求內(nèi)角和,由此

得出四邊形的內(nèi)角和是2個(gè)三角形的內(nèi)角和,即2*180=360,那同樣的引導(dǎo)學(xué)生將五邊形,六邊形分別從同一個(gè)頂點(diǎn)出發(fā)劃分為3個(gè)4個(gè)三角形,從而得出五邊形的內(nèi)角和為3*180=540,然后,讓學(xué)生前后桌四個(gè)人為一個(gè)小組,五分鐘時(shí)間,歸納n變形的內(nèi)角和是多少,討論結(jié)束后,找一個(gè)小組來(lái)回答他們討論的結(jié)果。由此生成我們的新知識(shí):多邊形的內(nèi)角和公式180*(n-2)。

驗(yàn)證:七邊形驗(yàn)證

在本環(huán)節(jié)中通過(guò)學(xué)生自主學(xué)習(xí)歸納總結(jié)得出多邊形的內(nèi)角和公式,充分發(fā)揮了他們的自主探討能力,提升邏輯思維能力。

3. 深化新知

再次是深化新知環(huán)節(jié),在本環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生思考一下有沒(méi)有其他的將多邊形分隔求

內(nèi)角和的方法,引導(dǎo)學(xué)生思考,可不可以將六邊形從多個(gè)頂點(diǎn)出發(fā),然后用公式驗(yàn)證一下我們這樣分割可行不可行。這時(shí)候會(huì)發(fā)現(xiàn)有的分割可行有的分割不可行,在這個(gè)時(shí)候給他們講解為什么不可行為什么可行,以此來(lái)引出分割時(shí)對(duì)角線不能相交,從而強(qiáng)調(diào)我們分隔的一個(gè)原則。

本環(huán)節(jié)的設(shè)計(jì)主要是對(duì)多變形內(nèi)角和的一個(gè)深入了解,給學(xué)生一個(gè)內(nèi)化的過(guò)程,同時(shí)引導(dǎo)學(xué)生不要將知識(shí)學(xué)死了,要活學(xué)活用,從多個(gè)角度來(lái)思考問(wèn)題,解決問(wèn)題。

4. 鞏固提高

我們說(shuō)數(shù)學(xué)是來(lái)源于生活,服務(wù)于生活的一門學(xué)科,所以在接下來(lái)的鞏固提高環(huán)節(jié),

我講引領(lǐng)學(xué)生用我們所學(xué)過(guò)的多邊形的內(nèi)角和公式來(lái)解決生活中的實(shí)際問(wèn)題。

我會(huì)在ppt上播放一個(gè)蜂巢的圖片,然后提出一個(gè)問(wèn)題,蜂房是幾邊形?每個(gè)蜂房的內(nèi)角和是多少?由此來(lái)引發(fā)學(xué)生思考運(yùn)用我們本節(jié)課所學(xué)習(xí)的知識(shí)來(lái)解決問(wèn)題,對(duì)多邊形的內(nèi)角和公式進(jìn)一步鞏固提高。

5. 小結(jié)作業(yè)

先讓學(xué)生思考一下我們本節(jié)課學(xué)習(xí)了什么知識(shí)點(diǎn),然后找一位同學(xué)來(lái)總結(jié)一下我們本節(jié)課所學(xué)習(xí)的知識(shí)點(diǎn)。對(duì)本節(jié)課學(xué)習(xí)內(nèi)容有了一個(gè)回顧之后,讓學(xué)生做一下練習(xí)題1、2題,以此來(lái)進(jìn)一步提升學(xué)生運(yùn)用知識(shí)的能力。

多邊形的內(nèi)角和教案四年級(jí)篇八

設(shè)計(jì)理念:。

一教材分析:。

從教材的編排上,本節(jié)課作為第三章的第三節(jié)。從三角形的內(nèi)角和到四邊形的內(nèi)角和至多邊形的內(nèi)角和,環(huán)環(huán)相扣。同時(shí),對(duì)今后學(xué)習(xí)的鑲嵌,正多邊形和圓等都是非常重要的。知識(shí)的聯(lián)系性比較強(qiáng)。因此,本節(jié)課具在承上啟下的作用,符合學(xué)生的認(rèn)知規(guī)律。再?gòu)谋竟?jié)的教學(xué)理念看,編者從簡(jiǎn)單的幾何圖形入手,蘊(yùn)含了把復(fù)雜問(wèn)題轉(zhuǎn)化為簡(jiǎn)單問(wèn)題,化未知為已知的思想。充分體現(xiàn)了人人學(xué)有價(jià)值的數(shù)學(xué),這一新課程標(biāo)準(zhǔn)精神。

二、學(xué)情分析:。

三、教學(xué)目標(biāo)的確定:。

3、通過(guò)探索多邊形內(nèi)角和公式,讓學(xué)生逐步從實(shí)驗(yàn)幾何過(guò)渡到論證幾何。

四、重難點(diǎn)的確立:。

既然是多邊形內(nèi)角和具有承上啟下的作用。因此確定本節(jié)課的重點(diǎn)是探究多邊形的內(nèi)角和的公式。由于七年級(jí)學(xué)生初學(xué)幾何,所以學(xué)生在幾何的邏輯推理上感到有難度。所以我確定本節(jié)課的難點(diǎn)是探究多邊形內(nèi)角和公式推導(dǎo)的基本思想,而解決問(wèn)題的關(guān)鍵是教師恰當(dāng)?shù)囊龑?dǎo)。

多邊形的內(nèi)角和教案四年級(jí)篇九

本節(jié)課的教學(xué)先通過(guò)計(jì)算三角尺的3個(gè)內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進(jìn)而引發(fā)三角形內(nèi)角和是180度的猜想,再通過(guò)組織操作活動(dòng)驗(yàn)證猜想,得出結(jié)論。

1、讓學(xué)生通過(guò)觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。

2、讓學(xué)生學(xué)會(huì)根據(jù)三角形的內(nèi)角和是180°這一知識(shí)求三角形中一個(gè)未知角的度數(shù)。

3、激發(fā)學(xué)生主動(dòng)參與、自主探索的意識(shí),鍛煉動(dòng)手能力,發(fā)展空間觀念。

三角板,量角器、點(diǎn)子圖、自制的三種三角形紙片等。

看了這2個(gè)算式你有什么猜想?

(三角形的三個(gè)角加起來(lái)等于180度)。

1、畫、量:在點(diǎn)子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個(gè)角的度數(shù),再把三個(gè)角的度數(shù)相加。

老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說(shuō)說(shuō)你的發(fā)現(xiàn)。

2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。

指名介紹折的方法:比如折的是一個(gè)銳角三角形,可以先把它上面的一個(gè)角折下,頂點(diǎn)和下面的邊重合,再分別把左邊、右邊的角往里折,三個(gè)角的頂點(diǎn)要重合。發(fā)現(xiàn):三個(gè)角會(huì)正好在一直線上,說(shuō)明它們合起來(lái)是一個(gè)平角,也就是180度。

繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。

直角三角形的折法有不同嗎?

通過(guò)交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡(jiǎn)便的方法折;可以直角不動(dòng),而把兩個(gè)銳角折下,正好能拼成一個(gè)直角;兩個(gè)直角的度數(shù)和也是180度。

3、撕、拼:可能有個(gè)別學(xué)生對(duì)折的方法感到有困難。那么還可以用撕的方法。

在撕之前要分別在三個(gè)角上標(biāo)好角1、角2和角3。然后撕下三個(gè)角,把三個(gè)角的一條邊、頂點(diǎn)重合,也能清楚地看到三個(gè)角合起來(lái)就是一個(gè)平角180度。

小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。

4、試一試。

三角形中,角1=75,角2=39,角3=()。

算一算,量一量,結(jié)果相同嗎?

1、算出下面每個(gè)三角形中未知角的度數(shù)。

在交流的時(shí)候可以分別學(xué)生說(shuō)說(shuō)怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

指出:在計(jì)算的時(shí)候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

可先猜想:兩個(gè)三角形拼在一起,會(huì)不會(huì)它的內(nèi)角和變成1802=360°呢?為什么?

然后再分別算一算圖上的這三個(gè)三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180°。

3、用一張正方形紙折一折,填一填。

4、說(shuō)理:一個(gè)直角三角形中最多有幾個(gè)直角?為什么?

一個(gè)鈍角三角形中最多有幾個(gè)直角?為什么?

第4、5題。

多邊形的內(nèi)角和教案四年級(jí)篇十

上完這節(jié)課后,自我感覺(jué)良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。

首先我先復(fù)習(xí)相關(guān)知識(shí),引出新的問(wèn)題,明確指出雖然采用的分割方法不同,但是目標(biāo)是一致的,都是通過(guò)添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學(xué)思想方法。在此教學(xué)中,只須真正實(shí)施民主的開(kāi)放式教學(xué),創(chuàng)設(shè)平等、民主、寬松的教學(xué)氛圍,使師生完全處于平等的地位,學(xué)生才能敞開(kāi)思想,積極參與教學(xué)活動(dòng),才能最大限度地調(diào)動(dòng)學(xué)生的積極性,激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)他們多角度、多方位、多層次地思考問(wèn)題,使他們有足夠的機(jī)會(huì)顯示靈性,展現(xiàn)個(gè)性。在問(wèn)題探究、合作交流、形成共識(shí)的基礎(chǔ)上,在課堂活動(dòng)中經(jīng)歷、感悟知識(shí)的生成、發(fā)展與變化過(guò)程,也只有這樣,才能將創(chuàng)新教育的目標(biāo)落到實(shí)處,讓學(xué)生在自主參與學(xué)習(xí),解決問(wèn)題、嘗試到一題多證的方法,體驗(yàn)到參與的樂(lè)趣、合作的價(jià)值,并獲得成功的體驗(yàn)。

六、案例點(diǎn)評(píng)。

陳老師在本節(jié)課的教學(xué)設(shè)計(jì)上,內(nèi)容豐富,過(guò)程非常具體,設(shè)計(jì)也較合理。整節(jié)課以推導(dǎo)多邊形的內(nèi)角和為線索,讓學(xué)生經(jīng)歷了提問(wèn)題、畫圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學(xué)生的主體地位,體現(xiàn)了新的教學(xué)理念,也符合初中生的心理特點(diǎn)和年齡特征,因此在教學(xué)設(shè)計(jì)上是比較好的。

但是隨堂練習(xí)太少而不精,并且沒(méi)有梯度,能否可以設(shè)計(jì)一些具有一定難度的練習(xí),使不同的學(xué)生得到不同層次的發(fā)展,為學(xué)有余力的學(xué)生提供更大的學(xué)習(xí)和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導(dǎo)不必要一一講解,只要引導(dǎo)學(xué)生解決了探索方法1和探索方法2就可以了,對(duì)于探索方法3,可以讓學(xué)生課后思考。

多邊形的內(nèi)角和教案四年級(jí)篇十一

《多邊形內(nèi)角和》這節(jié)課,我基本上完成了教學(xué)任務(wù),教學(xué)目標(biāo)基本達(dá)成,《多邊形內(nèi)角和》教學(xué)反思。學(xué)生明確了轉(zhuǎn)化的思想是數(shù)學(xué)最基本的思想方法,知道研究一個(gè)新的問(wèn)題要從簡(jiǎn)單的已知入手,能夠用多種方法探究出多邊形的內(nèi)角和,并且能夠運(yùn)用多邊形的內(nèi)角和公式解決相關(guān)問(wèn)題。同時(shí)也有幾個(gè)地方引起了我深深的思考。

首先,在這節(jié)課的設(shè)計(jì)中,我大膽的嘗試并使用網(wǎng)絡(luò)教學(xué)。在我最初的設(shè)計(jì)過(guò)程中,按照常規(guī)的方法引導(dǎo)學(xué)生先用分割的`方法得到四邊形內(nèi)角和,再探究多邊形的內(nèi)角和。但是網(wǎng)絡(luò)教學(xué)教學(xué)就成為一種形式,沒(méi)有充分的發(fā)揮它的作用,效果也不是很好。后來(lái)改為不做任何方法的指導(dǎo),采用完全開(kāi)放的探究,每步探究先讓學(xué)生嘗試,把學(xué)生推到主動(dòng)位置,放手讓學(xué)生自己學(xué)習(xí),教學(xué)過(guò)程主要靠學(xué)生自己去完成,盡可能做到讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。要充分體現(xiàn)學(xué)生學(xué)習(xí)的自主性:規(guī)律讓學(xué)生自主發(fā)現(xiàn),方法讓學(xué)生自主尋找,思路讓學(xué)生自主探究,問(wèn)題讓學(xué)生自主解決。課前我很擔(dān)心,但事實(shí)說(shuō)明,這種探究才是真正的讓學(xué)生去嘗試,去挑戰(zhàn)。因此,在課堂教學(xué)中選用探究式,可以讓學(xué)生在自主學(xué)習(xí)中探究,在質(zhì)疑問(wèn)題中探究,在觀察比較中探究,在矛盾沖突中探究,在問(wèn)題解決中探究,在實(shí)踐活動(dòng)中探究,教學(xué)反思《多邊形內(nèi)角和》教學(xué)反思》??傊覍?duì)探究課有了更深刻的理解。

這節(jié)課的第一個(gè)環(huán)節(jié):引入,我認(rèn)為比較精彩。利用諸葛八卦村作為情景引入,通過(guò)介紹他的三奇,一下子吸引學(xué)生的注意力。這樣這節(jié)課的開(kāi)頭就像一塊無(wú)形的“磁鐵”,雖然只有短短的一兩分鐘,卻有效的調(diào)動(dòng)了學(xué)生的情緒,打動(dòng)學(xué)生的心靈,形成良好的課堂氣氛切人口。第三個(gè)環(huán)節(jié):分層練習(xí)。充分發(fā)揮了網(wǎng)絡(luò)課的優(yōu)勢(shì),真正做到了分層。

其次,在探究這個(gè)環(huán)節(jié)中,有一個(gè)關(guān)鍵的地方處理的很不到位。即:當(dāng)一個(gè)學(xué)生提出分割方法時(shí),這時(shí)沒(méi)有及時(shí)把握住這個(gè)時(shí)機(jī),讓更多的學(xué)生去嘗試這種方法,而是讓他自己把所得到的結(jié)論直接告訴大家,因此沒(méi)有讓更多的學(xué)生去體驗(yàn)轉(zhuǎn)化的思想,我認(rèn)為這節(jié)課最大的敗筆就在于此。課下我反復(fù)的`思考出現(xiàn)問(wèn)題的原因,是因?yàn)閷?duì)學(xué)生估計(jì)的不足造成的。我總認(rèn)為,在教師不指導(dǎo)的情況下,不會(huì)有學(xué)生想到分割這種方法,當(dāng)課堂上學(xué)生出現(xiàn)這種方法時(shí),我就有點(diǎn)激動(dòng),順著學(xué)生的思路走了,而忽視了大多數(shù)。因此,在備課時(shí)一定要更為細(xì)致的研究學(xué)生可能出現(xiàn)的情況,在上課時(shí)才能應(yīng)對(duì)自如。

總之,這節(jié)課我不是很滿意,細(xì)分析,偶然當(dāng)中也包含著必然。新課標(biāo)要求數(shù)學(xué)教學(xué)過(guò)程中要注重學(xué)生學(xué)習(xí)的過(guò)程,而知識(shí)的學(xué)習(xí)是一個(gè)建構(gòu)過(guò)程,教師通過(guò)以組織者、合作者、和引導(dǎo)者的身份,根據(jù)學(xué)生的具體情況,對(duì)教材進(jìn)行再加工,有創(chuàng)造地設(shè)計(jì)教學(xué)過(guò)程,在教學(xué)設(shè)計(jì)中要求新求變。用“新”和“變”來(lái)激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望和興趣。根據(jù)不同的教學(xué)內(nèi)容選擇不同的教學(xué)模式。因?yàn)橹挥羞@樣,課堂教學(xué)才能煥發(fā)出生機(jī)和活力。教師在這個(gè)過(guò)程中要為學(xué)生營(yíng)造一個(gè)積極的、寬松的教學(xué)氛圍。所以,要做一個(gè)新時(shí)代的教師,除具備一定的專業(yè)知識(shí)外,還要具備領(lǐng)導(dǎo)才能,能夠駕御整個(gè)課堂。發(fā)現(xiàn)了自己的不足就意味著自己的進(jìn)步。在今后的教學(xué)中,我會(huì)更加努力,讓我的每一位學(xué)生在我的每一節(jié)課上都能夠有新的收獲。

將本文的word文檔下載到電腦,方便收藏和打印。

多邊形的內(nèi)角和教案四年級(jí)篇十二

1、通過(guò)復(fù)習(xí),使學(xué)生理清各種平面圖形面積計(jì)算公式之間的關(guān)系。

2、使學(xué)生能夠應(yīng)用面積計(jì)算公式,熟練計(jì)算平行四邊形、三角形、梯形和組合圖形的面積。

3、能靈活運(yùn)用所學(xué)知識(shí)解決有關(guān)的實(shí)際問(wèn)題。

熟練計(jì)算平行四邊形、三角形、梯形及組合圖形的面積。

平行四邊形、三角形、梯形的磁片。

一、創(chuàng)設(shè)情境,揭示課題。

1、想一想,本單元我們學(xué)習(xí)了哪些知識(shí)?

揭示課題:今天這節(jié)課我們對(duì)第五單元的知識(shí)進(jìn)行整理和復(fù)習(xí)。

2、在小組內(nèi)說(shuō)一說(shuō),你學(xué)會(huì)了什么?

二、知識(shí)梳理,形成網(wǎng)絡(luò)。

老師根據(jù)學(xué)生所說(shuō),演示轉(zhuǎn)化過(guò)程,形成如教材96頁(yè)的板書(shū)。

(2)從整理圖中能看出各種圖形之間的關(guān)系嗎?

學(xué)生回答后老師簡(jiǎn)要小結(jié)。

2、練一練:

老師出示下題讓學(xué)生獨(dú)立完成后集體核對(duì)。

選擇條件分別計(jì)算下列各圖形的面積。

3、師:剛才復(fù)習(xí)的是基本圖形的面積,而由幾個(gè)基本圖形組合而成的圖形叫什么?

出示第96頁(yè)的第2題,讓學(xué)生自己獨(dú)立完成。

集體核對(duì)時(shí)讓學(xué)生說(shuō)一說(shuō)自己的幾種方法。

學(xué)生可能會(huì)想到下面幾種方法。

比較哪種方法比較簡(jiǎn)便?

三、應(yīng)用拓展。

1、練習(xí)十九第1題。

(1)讓學(xué)生審題,說(shuō)一說(shuō)解題步驟。

(2)獨(dú)立完成。

(3)小組交流,說(shuō)一說(shuō)你的發(fā)現(xiàn)。

(4)全班交流。

師小結(jié):幾個(gè)圖形都在兩條平行線之間,說(shuō)明它們的`高是相等的,在高相等的條件下,面積不等,說(shuō)明它們的高都不等。

2、練習(xí)十九第4題。

(1)先讓學(xué)生獨(dú)立完成第1小題,集體核對(duì)。

想一想該如何擺放小樹(shù)?讓學(xué)生在草稿本上畫一畫示意圖。

集體訂正,展示。

四、小結(jié):說(shuō)一說(shuō)今天這節(jié)課最大的收獲是什么?

五、課堂作業(yè):練習(xí)十九第2、3題。

多邊形的內(nèi)角和教案四年級(jí)篇十三

我在學(xué)校出了一節(jié)公開(kāi)課,下面是我的教學(xué)反思。

教學(xué)回顧:

一:引入新課。提問(wèn)三角形內(nèi)角和,正方形和長(zhǎng)方形的內(nèi)角和是多少?那任意一四邊形內(nèi)角和都是360度嗎?小組討論交流證明任意四邊形內(nèi)角和都是360度的方法。學(xué)生分析有度量法、剪拼法、切割法,做輔助線。其中把四邊形切割成兩個(gè)三角形的方法最為簡(jiǎn)單。類似的探究其他多邊形內(nèi)角和。

二:完成學(xué)案第一部分,用數(shù)學(xué)歸納法完成填空,總結(jié)得出多邊形內(nèi)角和公式。

三:練習(xí)。

四:課堂小結(jié)。

五:作業(yè)。

反思:

這節(jié)課本節(jié)的教學(xué)活動(dòng)充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生的學(xué)習(xí)興趣,使課堂充滿生機(jī)。在進(jìn)行四邊形內(nèi)角和定理的教學(xué)時(shí),設(shè)計(jì)完成三個(gè)步驟:

(1)通過(guò)動(dòng)手操作,讓學(xué)生自己通過(guò)實(shí)驗(yàn)的方法發(fā)現(xiàn)四邊形內(nèi)角和定理;

(2)讓學(xué)生把發(fā)現(xiàn)概括成命題;

(3)通過(guò)學(xué)生討論命題證明的不同方法。

整節(jié)課充滿著“自主、合作、探究、交流”的教學(xué)理念,營(yíng)造了思維馳聘的空間,使學(xué)生在主動(dòng)思考探究的過(guò)程中自然的獲得了新的知識(shí)。但由于本節(jié)課的.內(nèi)容多,學(xué)習(xí)時(shí)間較緊張,所以在給學(xué)生進(jìn)行課堂討論四邊形內(nèi)角和的不同的證明方法這一環(huán)節(jié)時(shí)把握地不夠好。由于討論的問(wèn)題有難度,討論時(shí)間不夠充分。而且我為了能完成這節(jié)課的內(nèi)容沒(méi)有對(duì)四邊形內(nèi)角和的證明方法做以補(bǔ)充(習(xí)題課時(shí)才加以補(bǔ)充)。

多邊形的內(nèi)角和教案四年級(jí)篇十四

1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計(jì)算公式,能夠正確地計(jì)算三角形的面積。

2、使學(xué)生通過(guò)操作和對(duì)圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時(shí)的運(yùn)用。

3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運(yùn)用轉(zhuǎn)化方法解決實(shí)際問(wèn)題的能力。

1、用厚紙做完全相同的兩個(gè)直角三角形、兩個(gè)銳角三角形、兩個(gè)鈍角三角形。

教師:前面我們學(xué)習(xí)了平行四邊形面積的計(jì)算,今天我們來(lái)學(xué)習(xí)三角形面積的計(jì)算。

板書(shū):三角形面積的計(jì)算。

1、用數(shù)方格的`方法計(jì)算三角形的面積。

教師:前面我們?cè)趯W(xué)習(xí)長(zhǎng)方形面積和平行四邊形面積時(shí),都曾經(jīng)用過(guò)數(shù)方格的方法,下面我們?cè)儆脭?shù)方格的方法來(lái)求三角形的面積。

2、通過(guò)操作總結(jié)三角形面積的計(jì)算公式。

讓學(xué)生拿出兩個(gè)完全一樣的銳角三角形,提問(wèn):

用兩個(gè)完全一樣的銳角三角形能不能拼成一個(gè)平行四邊形?讓每個(gè)學(xué)生都動(dòng)手拼一拼,或者同桌的兩個(gè)學(xué)生一同拼擺。

教師邊說(shuō)邊演示拼的過(guò)程。先將兩個(gè)銳角三角形重合放置,再按住三角形的右邊頂點(diǎn),使三角形時(shí)針運(yùn)動(dòng)相反的方向轉(zhuǎn)動(dòng)180,到兩個(gè)三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個(gè)三角形的右邊平移,直到拼成一個(gè)平行四邊形為止,并把拼成的平行四邊形圖畫在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時(shí)仍需邊做邊強(qiáng)調(diào):先要把兩個(gè)銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時(shí)哪個(gè)點(diǎn)不動(dòng)?旋轉(zhuǎn)了多少度?平移時(shí)是沿著哪條直線移動(dòng)的?學(xué)生學(xué)會(huì)把兩個(gè)完全一樣的銳角三角形拼成一個(gè)平行四邊形后,教師再說(shuō)明:平移是圖上各點(diǎn)沿直線移動(dòng),旋轉(zhuǎn)是一個(gè)點(diǎn)不動(dòng),其它的點(diǎn)都圍繞著不動(dòng)點(diǎn)轉(zhuǎn)。提問(wèn):

每個(gè)銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?

學(xué)生回答后,教師強(qiáng)調(diào):每個(gè)銳角三角形是拼成的平行四邊形面積的一半。

教師結(jié)合黑板上分別由兩個(gè)完全相同的三角形拼成的平行四邊形的圖指出:通過(guò)上面的實(shí)驗(yàn),兩個(gè)完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個(gè)平行四邊形。提問(wèn):

這個(gè)平行四邊形的底和三角形的底有什么關(guān)系?

這個(gè)平行四邊形的高和三角形的高有什么關(guān)系?

這個(gè)平行四邊形的面積和其中一個(gè)三角形的面積有什么關(guān)系?

多邊形的內(nèi)角和教案四年級(jí)篇十五

知識(shí)與技能:掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

重點(diǎn):多邊形內(nèi)角和定理的探索和應(yīng)用。

教學(xué)難點(diǎn):邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。

教學(xué)過(guò)程。

第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問(wèn)題,引入新(3分鐘,學(xué)生思考問(wèn)題,入)。

1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無(wú)處不在的多邊形.。

2.工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?

第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。

第三環(huán)節(jié)實(shí)驗(yàn)探究(12分鐘,學(xué)生動(dòng)手操作,探究?jī)?nèi)角和)。

(以四人小組為單位展開(kāi)探究活動(dòng))。

活動(dòng)一:利用四邊形探索四邊形內(nèi)角和。

要求:先獨(dú)立思考再小組合作交流完成.)。

(師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥.)。

(生思考后交流,把不同的方案在紙上完成.)。

……(組間交流,教師展示幾種方法)。

進(jìn)而引導(dǎo)學(xué)生得出:我們是把四邊形的問(wèn)題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問(wèn)題得到解決!進(jìn)一步提出新的探索活動(dòng)。

活動(dòng)二:探索五邊形內(nèi)角和。

(要求:獨(dú)立思考,自主完成.)。

第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進(jìn)行推算)。

教學(xué)過(guò)程:

探索n邊形內(nèi)角和,并試著說(shuō)明理由。

(結(jié)合出示的圖表從代數(shù)角度猜測(cè)公式,并從幾何意義加以解讀)。

n邊形的內(nèi)角和=(n—2)180°。

正n邊形的一個(gè)內(nèi)角==。

第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。

搶答題:

1.正八邊形的內(nèi)角和為_(kāi)______.

3.一個(gè)多邊形每個(gè)內(nèi)角的度數(shù)是150°,則這個(gè)多邊形的邊數(shù)是_______.

應(yīng)用發(fā)散:

第六環(huán)節(jié)時(shí)小結(jié):(3分鐘,學(xué)生填表)。

第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。

b組(中等生)1。

c組(后三分之一生)1。

教學(xué)反思:

多邊形的內(nèi)角和教案四年級(jí)篇十六

學(xué)生已經(jīng)學(xué)過(guò)三角形的內(nèi)角和定理的知識(shí)基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達(dá)能力還稍稍有點(diǎn)欠缺。針對(duì)這種情況,我會(huì)引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強(qiáng)對(duì)數(shù)學(xué)知識(shí)的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語(yǔ)言表達(dá)能力。

1.知識(shí)與技能:運(yùn)用三角形內(nèi)角和定理來(lái)推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計(jì)算公式。

2.過(guò)程與方法:經(jīng)理探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流的意識(shí)。

3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)化歸的思想和實(shí)際應(yīng)用的價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。

1、請(qǐng)看:我身后的建筑物是什么?——水立方。我看到水立方時(shí)發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)。

知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁(yè)“動(dòng)腦筋”

【教學(xué)說(shuō)明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵(lì)學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.

預(yù)設(shè)回答:能,可以引對(duì)角線,將多邊形分成幾個(gè)三角形。

讓學(xué)生合作交流討論,展示探究成果。教材第35頁(yè)“探究”

n邊形有幾個(gè)內(nèi)角?是否可以“轉(zhuǎn)化”為多個(gè)三角形的角來(lái)求得呢?如何“轉(zhuǎn)化”?

【教學(xué)說(shuō)明】通過(guò)五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會(huì)數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過(guò)程和數(shù)學(xué)思考方法.

例:教材第36頁(yè)例1。

【教學(xué)說(shuō)明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個(gè)多邊形的內(nèi)角和或它的邊數(shù),加深知識(shí)的理解與運(yùn)用.

1、若從一個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā),最多可以引10條對(duì)角線,則它是()。

a.十三邊形b.十二邊形。

c.十一邊形d.十邊形。

2、十二邊形的內(nèi)角和為,已知一個(gè)多邊形的內(nèi)角和是1260°,則這個(gè)多邊形的邊數(shù)是。

【教學(xué)說(shuō)明】由學(xué)生自主完成,教師及時(shí)了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運(yùn)用知識(shí)解決問(wèn)題的過(guò)程.對(duì)需要幫助的學(xué)生及時(shí)點(diǎn)撥并加以強(qiáng)化.在完成上述題目后,讓學(xué)生完成練習(xí)冊(cè)中本課時(shí)的對(duì)應(yīng)訓(xùn)練部分.

1、這節(jié)課你有什么新的收獲?

教材第36頁(yè)練習(xí)1、2題。

邊數(shù)越多,內(nèi)角和就越大;

每增加一條邊,內(nèi)角和就增加180度。

多邊形的內(nèi)角和教案四年級(jí)篇十七

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請(qǐng)同學(xué)們回憶一下這些圖形的概念。找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià)。

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件。(先看畫面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫,可以按順時(shí)針或逆時(shí)針的順序。

練習(xí):課本124頁(yè)1、2題。

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。

5.四邊形的對(duì)角線:

(四)四邊形的內(nèi)角和定理。

定理:四邊形的內(nèi)角和等于.

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決。

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

證明:(1)(四邊形的內(nèi)角和等于),

練習(xí):

1.課本124頁(yè)3題。

小結(jié):

知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。

作業(yè):課本130頁(yè)2、3、4題。

多邊形的內(nèi)角和教案四年級(jí)篇十八

《探索多邊形的內(nèi)角和》一課終于上完了,然而對(duì)這一課的思考才剛剛開(kāi)始,正如周夢(mèng)莉校長(zhǎng)所說(shuō),我們的目標(biāo)不是這一課本身,而是對(duì)于這一課的研究給我們數(shù)學(xué)教學(xué)的一點(diǎn)啟發(fā)。

有幸與實(shí)驗(yàn)小學(xué)趙麗老師同時(shí)選中《多邊形的內(nèi)角和》這一課,但我們從不同角度不同方式對(duì)它進(jìn)行了解讀。20世紀(jì)90年代,因?yàn)檗r(nóng)村小學(xué)學(xué)生人數(shù)的急劇減少,我們學(xué)校在課堂上嘗試性的進(jìn)行了分層異步教學(xué),在同一節(jié)課中,根據(jù)學(xué)生認(rèn)知水平差異,把學(xué)生分成a,b兩組,在組內(nèi)又依托知識(shí)水平相近原則,把3,4名學(xué)生分為一個(gè)小組,通常采用合——分——合的模式進(jìn)行教學(xué),即,當(dāng)a組同學(xué)教學(xué)時(shí),b組自學(xué),反之亦然,經(jīng)過(guò)與普通班的對(duì)比研究,發(fā)現(xiàn)復(fù)式班學(xué)生在學(xué)習(xí)效果上有著明顯的成效。基于這一基礎(chǔ),我采用分層的模式來(lái)進(jìn)行多邊形的內(nèi)角和的教學(xué),這一嘗試,讓我對(duì)自己的.數(shù)學(xué)教學(xué)有了如下反思:

1,以經(jīng)驗(yàn)為基礎(chǔ),讓學(xué)生得到不同的發(fā)展。

基于學(xué)生的認(rèn)知經(jīng)驗(yàn)及活動(dòng)經(jīng)驗(yàn),對(duì)學(xué)生進(jìn)行分組,以期達(dá)到不同的學(xué)生在數(shù)學(xué)上得到不同程度的發(fā)展的目標(biāo),學(xué)習(xí)能力較強(qiáng)的同學(xué)要能吃飽,學(xué)習(xí)能力較弱的同學(xué)要在原有基礎(chǔ)上有所進(jìn)步。在實(shí)際教學(xué)中,對(duì)于a組和b組的學(xué)生,除了在教學(xué)形式上有所區(qū)別外,a組教學(xué)為主,b組自學(xué)為主,我在教學(xué)時(shí)間的分配上對(duì)ab組并沒(méi)有顯著區(qū)分,在以后的嘗試探索中,我應(yīng)對(duì)a組加以更細(xì)致的教學(xué)指導(dǎo),對(duì)b組更大膽的放手,讓學(xué)生上臺(tái)說(shuō),做,教,減少b組的教學(xué)時(shí)間。

2,勇于放手,培養(yǎng)學(xué)生自學(xué)的能力。

在一開(kāi)始設(shè)計(jì)b組的學(xué)習(xí)單時(shí),即使b組同學(xué)學(xué)習(xí)能力較強(qiáng),但出于對(duì)學(xué)生的擔(dān)憂,擔(dān)心學(xué)生想不到用分一分的方法,在學(xué)習(xí)單上,我引導(dǎo)學(xué)生,多邊形能夠分成幾個(gè)三角形,內(nèi)角和怎么算。而周校長(zhǎng)建議我,是否能給學(xué)生更多的空間,把“小問(wèn)題”變?yōu)椤按髥?wèn)題”,直接提問(wèn)學(xué)生,多邊形的內(nèi)角和是多少,讓學(xué)生去嘗試探索各種方法,而不僅局限于轉(zhuǎn)化為三角形內(nèi)角和的方法。在后來(lái)的實(shí)際教學(xué)中,采用了“大問(wèn)題”的提問(wèn)方式,我驚喜的發(fā)現(xiàn),學(xué)生的探究自學(xué)能力比我預(yù)想的出色許多。

3,細(xì)節(jié)入手,培養(yǎng)學(xué)生良好習(xí)慣。

小學(xué)數(shù)學(xué)良好習(xí)慣的培養(yǎng)不僅對(duì)學(xué)生自身的數(shù)學(xué)學(xué)習(xí)有所裨益,對(duì)課堂教效果的影響更是尤為明顯。在分層教學(xué)的模式中,為避免ab組互相間的干擾,必須在課堂上對(duì)每組學(xué)生提出明確的要求,課前乃至平時(shí)都要對(duì)學(xué)生的學(xué)習(xí)習(xí)慣進(jìn)行培養(yǎng),這樣才能讓我們的數(shù)學(xué)老師對(duì)課堂全局的把握更加深刻,才能夠讓數(shù)學(xué)課堂井然有序,數(shù)學(xué)教學(xué)效果得到最大程度的保證。

“授人以魚(yú),不如授人以漁?!蔽覀兊臄?shù)學(xué)分層教學(xué)不光是為了學(xué)生掌握某一定的知識(shí),而是讓學(xué)生在不同的學(xué)習(xí)方式中不斷感悟體會(huì),尋找適合自己的學(xué)習(xí)方法,最終以得到不同程度的發(fā)展。

多邊形的內(nèi)角和教案四年級(jí)篇十九

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。

教學(xué)目標(biāo):

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫,可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

5.四邊形的對(duì)角線:

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

【本文地址:http://www.aiweibaby.com/zuowen/9605994.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔