教案是教師在備課過程中編寫的一份詳細指導教學的書面記錄。那么如何編寫一個優(yōu)秀的教案呢?首先,要確保教學目標明確,以學生的學習需求和能力水平為基礎(chǔ),設(shè)置合理的教學目標,將課程內(nèi)容和教學目標有機地結(jié)合起來。其次,要根據(jù)教學內(nèi)容選擇合適的教學方法和教學手段,包括講授、演示、實驗、討論等,以提高學生的學習興趣和參與度。還要合理安排教學步驟,確保教學過程緊湊有序,環(huán)環(huán)相扣,使學生在實踐中逐步掌握知識和技能。最后,要注意評估和反饋,通過形成性評價和結(jié)果性評價,及時了解學生的學習情況,及時調(diào)整教學策略,提供有效的反饋,以促進學生的個性化發(fā)展。教案范文供大家參考,希望能給大家?guī)硪恍╈`感和啟發(fā)。
人教版七年級數(shù)學教案完整篇一
(1)能用代數(shù)式表示實際問題中的數(shù)量關(guān)系.
(2)理解單項式、單項式的次數(shù),系數(shù)等概念,會指出單項式的次數(shù)和系數(shù).
講授法、談話法、討論法。
【教學重點】。
單項式的有關(guān)概念。
【教學難點】。
負系數(shù)的確定以及準確確定一個單項式的次數(shù)。
【課前準備】。
教師準備教學用課件。
【教學過程】。
一、新課引入。
教師操作課件,展示章前圖案以及字幕,學生觀看并思考下列問題:
1.青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
分析:(1)根據(jù)速度、時間和路程之間的關(guān)系:路程=速度×時間.列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米).
(2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米).
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米.
思路點撥:上述問題(1)可由學生自己完成,問題(2)、(3)先由學生思考、交流的基礎(chǔ)上教師引導學生分析怎樣列式.
上述的3個問題中的數(shù)量關(guān)系我們分別用含有字母的式子表示,通過本章學習,我們還可以將上述問題(2)、(3)進行加減運算,化簡.
kb2.下面,我們再來看幾個用含字母的式子表示數(shù)量關(guān)系的問題.
用含有字母的式子填空,看看列出的式子有什么特點.
(1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的單價是_______元.
(3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米.
(4)數(shù)n的相反數(shù)是_______.
教師課堂巡視,關(guān)注中下程度的學生,及時引導,學生探究交流.
上面各問題的代數(shù)式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數(shù)字與字母之間,字母與字母之間都是乘法運算,它們都是數(shù)字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數(shù)與字母的積的式子叫做單項式.單獨的一個數(shù)或一個字母也是單項式.如:-2,a,,都是單項式,而,1+x都不是單項.
單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù),例如:6a2的系數(shù)是6,a3的系數(shù)是1,-n的系數(shù)是-1,-的系數(shù)是-.
單項式表示數(shù)字與字母相乘時,通常把數(shù)字寫成前面,當一個單項式的系數(shù)是1或-1時通常省略不寫.
一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù).例如,2.5x中字母x的指數(shù)是1,2.5x是一次單項式;vt中字母v與t的指數(shù)和是2,vt是二次單項式,-ab2c中字母a、b、c的指數(shù)和是4,-ab2c是4次單項式.
人教版七年級數(shù)學教案完整篇二
(4)設(shè)n是一個數(shù),則它的相反數(shù)是________.
(5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款元。
2.請學生說出所列代數(shù)式的意義。
(設(shè)計意圖:讓學生會用單項式表示現(xiàn)實生活中的數(shù)量關(guān)系,進一步感悟用字母表示數(shù)的簡潔、方便,使用的廣泛性。)。
3.請學生觀察所列代數(shù)式包含哪些運算,有何共同運算特征。
(由小組討論后,經(jīng)小組推薦人員回答)。
(設(shè)計意圖:教師提出問題,激發(fā)學生學習的欲望、學習的積極性、主動性,以此為載體感悟單項式的特征,為歸納單項式概念作好準備)。
二、新授內(nèi)容。
1、單項式。
通過上述特征的描述,從而概括單項式的概念,:
單項式:即由_____與______的乘積組成的代數(shù)式稱為單項式。
補充:單獨_________或___________也是單項式,如a,5。
2.練習:判斷下列各代數(shù)式哪些是單項式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;(6)-xy2;(7)-5。
解:是單項式的有(填序號):________________________。
人教版七年級數(shù)學教案完整篇三
1、讓學生生自主探索小數(shù)的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
2、使學生體會小數(shù)加減運算在生活、學習中的廣泛應用,體會數(shù)學的工具性作用。
3、激發(fā)學生學習小數(shù)加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
教學重難點。
教學重點:用豎式計算小數(shù)加減法。
教學難點:理解小數(shù)點對齊的算理。
教學工具。
多媒體課件。
教學過程。
(一)情景引入。
師:同學們,你們還記得嗎?整數(shù)的加減法是怎樣計算的?讓我們用一道習題回顧一下。
(呈現(xiàn)多媒體,學生自主完成習題并總結(jié)計算算理)。
師:同學們你們可真棒,那么今天我們學習小數(shù)的加減法(引出課題并板書)。
(二)例題講解。
(1)小麗買了下面兩本書,一共花了多少錢?
(2)《數(shù)學家的故事》比《童話選》貴多少錢?
生:好的。
(展示小麗遇到的問題(1),并讓學生列出算式)。
師:根據(jù)咱們總結(jié)的整數(shù)加減法的算理,想一想這個式子怎么計算呢?
(讓學生大膽的去嘗試,小組討論,并列出豎式)。
師:你們發(fā)現(xiàn)小數(shù)加減法計算時需要注意什么?
生1:注意數(shù)位對齊。
生2:注意小數(shù)點要對齊。
生3:……。
老師小結(jié):小數(shù)點要對齊,得數(shù)的小數(shù)點也要對齊。
師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
(讓學生自主解決,并再回憶需要注意什么?)。
完成后學生給予總結(jié),完成小數(shù)加減法的時候需要注意什么?
(三)習題鞏固。
課本72頁做一做。
課后小結(jié)。
學生談一談本節(jié)課你學到了什么?
給出總結(jié):計算小數(shù)加、減法,先把各數(shù)的小數(shù)點對齊(也就是把相同數(shù)位上的數(shù)對齊),再按照整數(shù)加、減法的法則進行計算,最后在得數(shù)里對齊橫線上的小數(shù)點點上小數(shù)點。
課后習題。
一、計算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、豎式計算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解決問題。
1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
板書。
計算小數(shù)加、減法,先把各數(shù)的小數(shù)點對齊(也就是把相同數(shù)位上的數(shù)對齊),再按照整數(shù)加、減法的法則進行計算,最后在得數(shù)里對齊橫線上的小數(shù)點點上小數(shù)點。
人教版七年級數(shù)學教案完整篇四
為了讓學生通過實例了解數(shù)軸的概念和數(shù)軸的畫法,知道如何在數(shù)軸上表示有理數(shù)。為大家分享了七年級數(shù)學數(shù)軸的課件教學,歡迎借鑒!
教學目標。
1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應關(guān)系;
3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學。
教學難點。
數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。
知識重點。
教學過程(師生活動)設(shè)計理念。
設(shè)置情境引入課題。
教師通過實例、課件演示得到溫度計讀數(shù).。
(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。
(小組討論,交流合作,動手操作)創(chuàng)設(shè)問題情境,激發(fā)學生的學習熱情,發(fā)現(xiàn)生活中的數(shù)學點表示數(shù)的感性認識。
合作交流。
探究新知教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?
從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。
尋找規(guī)律。
歸納結(jié)論問題3:
1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?
3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?
4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?
(小組討論,交流歸納)。
歸納出一般結(jié)論,教科書第12的歸納。這些問題是本節(jié)課要求學會的技能,教學中要以學生探究學習為主來完成,教師可結(jié)合教科書給學生適當指導。
鞏固練習。
教科書第12頁練習。
小結(jié)與作業(yè)。
課堂小結(jié)請學生。
總結(jié)。
:
1,數(shù)軸的三個要素;
2,數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。
本課作業(yè)。
1,必做題:教科書第18頁習題1.2第2題。
2,選做題:教師自行安排。
教學反思:
1,數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學生易于體驗和接受,讓學生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學生的抽象和概括能力,也體出了從感性認識,到理性認識,到抽象概括的認識規(guī)律。
2,教學過程突出了情竟到抽象到概括的主線,教學方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學思想方法。
人教版七年級數(shù)學教案完整篇五
1.單項式:只含有數(shù)和字母的乘積的代數(shù)式叫做單項式.單獨的一個數(shù)或一個字母也是單項式.它的本質(zhì)特征在于:
(1)不含加減運算;。
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數(shù)、系數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù).單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數(shù)項.一個多項式中,次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù).
4.整式:單項和多項式統(tǒng)稱整式.
人教版七年級數(shù)學教案完整篇六
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質(zhì),并會利用所學知識進行簡單的推理。
[教學重點與難點]。
1.教學重點:垂線的定義及性質(zhì)。
2.教學難點:垂線的畫法。
[教學過程設(shè)計]。
一、復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的.性質(zhì)。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關(guān)系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義。
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線ab、cd互相垂直,記作,垂足為o。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)。
反之,
(二)垂線的畫法。
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經(jīng)過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
3、經(jīng)過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經(jīng)過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質(zhì)。
經(jīng)過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質(zhì)1過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁。
探究:
如圖,連接直線l外一點p與直線l上各點o,
a,b,c,……,其中(我們稱po為點p到直線。
l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
性質(zhì)2連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成:垂線段最短。
(四)點到直線的距離。
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,po的長度叫做點p到直線l的距離。
人教版七年級數(shù)學教案完整篇七
2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;。
3.使學生初步了解數(shù)形結(jié)合的思想方法,培養(yǎng)學生相互聯(lián)系的觀點。
教學建議。
一、重點、難點分析。
本節(jié)的重點是初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與上點的對應關(guān)系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎(chǔ).
二、知識結(jié)構(gòu)。
有了,數(shù)和形得到了初步結(jié)合,這有利于對數(shù)學問題的研究,數(shù)形結(jié)合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下表:
定義。
三要素。
應用。
數(shù)形結(jié)合。
規(guī)定了原點、正方向、單位長度的直線叫。
原點。
正方向。
單位長度。
幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)。
比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大。
在理解并掌握概念的基礎(chǔ)之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。
三、教法建議。
小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關(guān),但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
關(guān)于有理數(shù)與上的點的對應關(guān)系,應該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應的關(guān)系。根據(jù)幾個有理數(shù)在上所對應的點的相互位置關(guān)系,應該能夠判斷它們之間的大小關(guān)系。通過點與有理數(shù)的對應關(guān)系及其應用,逐步滲透數(shù)形結(jié)合的思想。
四、的相關(guān)知識點。
1.的概念。
(1)規(guī)定了原點、正方向和單位長度的直線叫做.
這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.
(2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù).
以是理解有理數(shù)概念與運算的重要工具.有了,數(shù)和形得到初步結(jié)合,數(shù)與表示數(shù)的圖形(如)相結(jié)合的思想是學習數(shù)學的重要思想.另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小.因此,應重視對的學習.
2.的畫法。
(1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。
3.用比較有理數(shù)的大小。
(1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
(2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
(3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“”的寫法,正確應寫成“”。
五、定義的理解。
1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
2.所有的有理數(shù),都可以用上的點表示.例如:在上畫出表示下列各數(shù)的點(如圖2).
a點表示-4;b點表示-1.5;。
o點表示0;c點表示3.5;。
d點表示6.
從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:
正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).
因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用,表示是正數(shù);反之,知道是正數(shù)也可以表示為。
同理,,表示是負數(shù);反之是負數(shù)也可以表示為。
3.正常見幾種錯誤。
1)沒有方向。
2)沒有原點。
3)單位長度不統(tǒng)一。
人教版七年級數(shù)學教案完整篇八
1、生物圈中的綠色植物類群有:藻類植物、苔蘚植物、蕨類植物、種子植物,其中前三種植物生長到一定的時期會產(chǎn)生一種叫做孢子的生殖細胞。因為通過孢子進行繁殖,所以又稱為孢子植物(沒有種子植物)。
2、藻類植物大多數(shù)生活在水中(如淡水:水綿,衣藻海水:紫菜、海帶)。
(1)形態(tài)結(jié)構(gòu):沒有根、莖、葉的分化。
(2)營養(yǎng)方式:藻類植物細胞里都含有葉綠素能進行光合作用,營養(yǎng)方式為自養(yǎng)。
(3)繁殖方式:用孢子進行繁殖。
3、藻類植物在生物圈中作用:
(1)生物圈中氧氣的重要來源。
(2)水生生物的食物來源。(如魚類餌料)。
(3)供食用。(如海帶紫菜)。
(4)藥用。
4、苔蘚植物大多數(shù)生活在陸地上的潮濕環(huán)境(葫蘆蘚、地錢、樹干苔蘚)。
(1)形態(tài)結(jié)構(gòu):一般都很矮小,通常具有類似莖和葉的分化,但是莖中沒有導管,葉中也沒有葉脈,根非常簡單,稱為假根(只起固定植物體作用)。
(2)營養(yǎng)方式:苔蘚植物細胞里都含有葉綠素,能進行光合作用。
(3)繁殖方式:用孢子(生殖細胞)進行繁殖。苔蘚植物是監(jiān)測空氣污染程度的指示植物。
5、蕨類植物多數(shù)生活在陰濕的環(huán)境中(如里白、貫眾、滿江紅)。
(1)形態(tài)結(jié)構(gòu):有根、莖、葉的分化,在這些器官中有專門運輸物質(zhì)的通道——輸導組織。
(2)營養(yǎng)方式:蕨類植物細胞里都含有葉綠素能進行光合作用,營養(yǎng)方式為自養(yǎng)。
(3)繁殖方式:用孢子(生殖細胞)進行繁殖。
蕨類植物與人類的關(guān)系及其在生物圈中的作用:
(1)可供食用,如蕨菜。
(2)可供藥用,如卷柏、貫眾等。
(3)作為綠肥和飼料,如滿江紅。
(4)煤的來源。
6、種子植物的分類:根據(jù)子葉數(shù)目分為:
(1)雙子葉植物:胚里具有兩片子葉的植物(葉脈網(wǎng)狀),營養(yǎng)都儲存在子葉中。如蠶豆、大豆、花生。
(2)單子葉植物:胚里具有一片子葉的植物(葉脈弧形),營養(yǎng)大部分儲存在胚乳中。如水稻、小麥、高粱。
7、種子的結(jié)構(gòu):
(1)種皮:保護作用。
(2)胚(包含胚芽、胚軸、胚根、子葉)是新植物的幼體,將來能發(fā)育成一個植物體。
(3)只有單子葉植物有胚乳。子葉、胚乳中儲藏的營養(yǎng)物質(zhì)是胚發(fā)育成幼苗時養(yǎng)料的來源。
8、種子和孢子的比較:種子中含有豐富的營養(yǎng)物質(zhì),具有適應環(huán)境的結(jié)構(gòu)特點,如果環(huán)境過于干燥或寒冷,它可以處于休眠狀態(tài)。孢子只是一個細胞,只有散落在溫暖潮濕的環(huán)境中才能萌發(fā)。
10、被子植物成為地球上分布最廣泛的植物原因:被子植物一般都具有非常發(fā)達的輸導組織,從而保證了體內(nèi)水分和營養(yǎng)物質(zhì)高效率地運輸;它們一般都能開花和結(jié)果,所結(jié)的果實能夠保護里面的種子,不少果實還能幫助種子傳播。
生物實驗題解題技巧。
深刻領(lǐng)會生物教材實驗的設(shè)計思想。做好探究性實驗大題,就要認真分析教材涉及的實驗,理解每一個實驗的原理與目的要求,弄清材料用具的選擇方法與原則。
掌握生物實驗方法和實驗步驟,深入分析實驗條件、過程、現(xiàn)象或結(jié)果的科學性、正確性、嚴謹性和可變性,能夠描述教材中經(jīng)典實驗的原理、目的、方法步驟、現(xiàn)象與結(jié)果預測及結(jié)論,為實驗設(shè)計提供科學的實驗依據(jù),搭建基本框架。
生物的學習方法和技巧。
掌握基本知識要點。
與學習其它理科一樣,生物學的知識也要在理解的基礎(chǔ)上進行記憶,但是初中階段的生物學還有著與其它學科不一樣的特點:面對生物學,同學們要思考的對象是陌生的細胞、組織、各種有機物、無機物以及他們之間奇特的邏輯關(guān)系。
因此只有在記住了這些名詞、術(shù)語之后才有可能理解生物學的邏輯規(guī)律,既所謂“先記憶,后理解”。在記住了基本的名詞、術(shù)語和概念之后,把主要精力放在學習生物學規(guī)律上。這時要著重理解生物體各種結(jié)構(gòu)、群體之間的聯(lián)系(因為生物個體或群體都是內(nèi)部相互聯(lián)系,相互統(tǒng)一的整體),也就是注意知識體系中縱向和橫向兩個方面的線索。
用生物學的基本觀點統(tǒng)領(lǐng)生物學的學習。
樹立正確的生物學觀點,可以更迅速更準確地學習生物學知識。所以在生物學學習中,要注意樹立以下生物學觀點:
1.生命物質(zhì)性觀點生物體由物質(zhì)組成,一切生命活動都有其物質(zhì)基礎(chǔ)。
2.結(jié)構(gòu)與功能相統(tǒng)一的觀點包括兩層意思:一是有一定的結(jié)構(gòu)就必然有與之相對應功能的存在;二是任何功能都需要一定的結(jié)構(gòu)來完成。
3.生物的整體性觀點系統(tǒng)論有一個重要的思想,就是整體大于各部分之和,這一思想完全適合生物領(lǐng)域。不論是細胞水平、組織水平、器官水平,還是個體水平,甚至包括種群水平和群落水平,都體現(xiàn)出整體性的特點。
4.生命活動對立統(tǒng)一的觀點生物的諸多生命活動之間,都有一定的關(guān)系,有的甚至具有對立統(tǒng)一的關(guān)系,例如,植物的光合作用和呼吸作用就是對立統(tǒng)一的一對生命活動。
5.生物進化的觀點生物界有一個產(chǎn)生和發(fā)展的過程,所謂產(chǎn)生就是生命的起源,所謂發(fā)展就是生物的進化。生物的進化遵循從簡單到復雜,從水生到陸生、從低等到高等的規(guī)律。
6.生態(tài)學觀點基本內(nèi)容是生物與環(huán)境之間是相互影響、相互作用的,也是相互依賴、相互制約的。生物與環(huán)境是一個不可分割的統(tǒng)一整體。
系統(tǒng)化和具體化的方法。
系統(tǒng)化就是把各種有關(guān)知識納入一定順序或體系的思維方法。系統(tǒng)化不單純是知識的分門別類,而且是把知識加以系統(tǒng)整理,使其構(gòu)成一個比較完整的體系。在生物學學習過程中,經(jīng)常采用編寫提綱、列出表解、繪制圖表等方式,把學過的知識加以系統(tǒng)地整理。
具體化是把理論知識用于具體、個別場合的思維方法。在生物學學習中,適用具體化的方式有兩種:一是用所學知識應用于生活和生產(chǎn)實踐,分析和解釋一些生命現(xiàn)象;二是用一些生活中的具體事例來說明生物學理論知識。
人教版七年級數(shù)學教案完整篇九
知識提要:在數(shù)學中,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸.數(shù)軸的三要素為:原點、正方向、單位長度.
1.關(guān)于數(shù)軸,下列說法最準確的是(d)。
a.一條直線。
b.有原點、正方向的一條直線。
c.有單位長度的一條直線。
d.規(guī)定了原點、正方向、單位長度的直線。
人教版七年級數(shù)學教案完整篇十
幾何圖形大?。洪L度、面積、體積等。
位置:相交、垂直、平行等。
2幾何體也簡稱體。包圍著體的是面。
3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內(nèi)。
4平面圖形:在一個平面內(nèi)的圖形就是平面圖形。
5展開圖:識記一些常用的展開圖。圓柱/圓錐的側(cè)面展開圖;。
6點線面體:是組成幾何圖形的基本元素。
7直線、射線、線段。
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
經(jīng)過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
8角。
9角的比較與運算。
角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
性質(zhì):等角(同角)的補角相等。等角(同角)的余角相等。
人教版七年級數(shù)學教案完整篇十一
1、通過豐富的實例,學生進一步認識點、線、面、體的幾何特征,感受它們之間的關(guān)系。
2、培養(yǎng)學生操作、觀察、分析、猜測和概括等能力,同時滲透轉(zhuǎn)化、化歸、變換的思想。
3、養(yǎng)成學生積極主動的學習態(tài)度和自主學習的方式。
重點:認識點、線、面、體的幾何特征,感受它們之間的關(guān)系。
難點:在實際背景中體會點的含義。
圓柱、圓錐、正方體、長方體、球、棱柱、棱錐模型。
觀察、討論.讓學生共同體會“點動成線、線動成面、面動成體。
讓學生舉出更多的“點動成線、線動成面、面動成體”的例子。
小組合作學習,學生利用學具完成教科書第114頁練習(動手轉(zhuǎn)一轉(zhuǎn))。
設(shè)計意圖:教師利用多媒體動態(tài)演示,讓學生主動參與學習活動,觀察感受,經(jīng)歷體驗圖形的變化過程,通過合作學習,感悟知識的生成、變化、發(fā)展,激發(fā)學生的聯(lián)想與再創(chuàng)造能力。學生自己動手實踐操作,加深學生印象,化解難度。
教師展示圖片(建筑或生活的實物等),讓學生找找生活中的平面、曲面、直線、點等。
讓學生找出生活中更多的包含平面、曲面、直線、曲線、點的例子。
1、課本112頁觀察,并回答它的問題。
引導學生觀察后得出結(jié)論:面與面相交得到線,線與線相交得到點。
2、113頁練習(提供實物,議一議,動手摸一摸),思考以下問題:
讓學生自己體會并小組討論得出點、線、面、體之間的關(guān)系。
2、閱讀教科書第119頁的實驗與探究,并思考有關(guān)問題。
人教版七年級數(shù)學教案完整篇十二
3,體驗數(shù)形結(jié)合的思想。
教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征。
知識重點相反數(shù)的概念。
教學過程(師生活動)設(shè)計理念。
設(shè)置情境。
引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類。
4,-2,-5,+2。
允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑?,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
(引導學生觀察與原點的距離)。
思考結(jié)論:教科書第13頁的思考。
再換2個類似的數(shù)試一試。
培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想。
深化主題提煉定義給出相反數(shù)的定義。
學生思考討論交流,教師歸納總結(jié)。
規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a。
思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關(guān)系?
練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。
深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。
強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義。
給出規(guī)律。
解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
學生交流。
分別表示+5和-5的相反數(shù)是-5和+5。
練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法。
小結(jié)與作業(yè)。
課堂小結(jié)1,相反數(shù)的定義。
2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征。
3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
本課作業(yè)1,必做題教科書第18頁習題1.2第3題。
2,選做題教師自行安排。
本課教育評注(課堂設(shè)計理念,實際教學效果及改進設(shè)想)。
1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質(zhì)均有廣泛的應用.所以本教學設(shè)計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結(jié)合的思想.
2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結(jié)合的數(shù)學方法,數(shù)與形的相互轉(zhuǎn)化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.
3,本教學設(shè)計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.
人教版七年級數(shù)學教案完整篇十三
2.初步培養(yǎng)學生觀察、分析及概括的能力;。
3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議。
一、教學重點、難點。
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析。
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)。
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議。
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關(guān)系,在具體例子的基礎(chǔ)上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設(shè)計示例。
公式。
五、教具學具準備。
投影儀,自制膠片。
六、師生互動活動設(shè)計。
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結(jié)求圖形面積的公式.
人教版七年級數(shù)學教案完整篇十四
師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。
學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。
人教版七年級數(shù)學教案完整篇十五
2.使學生掌握求一個已知數(shù)的;。
3.培養(yǎng)學生的觀察、歸納與概括的能力.
重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.
難點:多重符號的化簡.
一、從學生原有的認知結(jié)構(gòu)提出問題。
二、師生共同研究的定義。
特點?
引導學生回答:符號不同,一正一負;數(shù)字相同.
像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。
應點有什么特點?
引導學生回答:分別在原點的兩側(cè);到原點的距離相等.
這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
3.0的是0.
這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).
三、運用舉例變式練習。
例1(1)分別寫出9與-7的;。
例1由學生完成.
在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?
引導學生觀察例1,自己得出結(jié)論:
數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。
1.當a=7時,-a=-7,7的是-7;。
2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
3.當a=0時,-a=-0,0的是0,因此,-0=0.
么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
能自己總結(jié)出簡化符號的規(guī)律嗎?
括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).
課堂練習。
1.填空:
(1)+1.3的是______;(2)-3的是______;。
(5)-(+4)是______的;(6)-(-7)是______的。
2.簡化下列各數(shù)的符號:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?
-(-8)與+(-8);-(+8)與+(-8).
四、小結(jié)。
指導學生閱讀教材,并總結(jié)本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.
五、作業(yè)。
1.分別寫出下列各數(shù)的:
2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化簡下列各數(shù):
5.填空:
(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
教學過程是以《教學大綱》中“重視基礎(chǔ)知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結(jié)合教材特點,以及學生的學習基礎(chǔ)和學習特征而設(shè)計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關(guān)的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
探究活動。
有理數(shù)a、b在數(shù)軸上的位置如圖:
將a,-a,b,-b,1,-1用“”號排列出來.
分析:由圖看出,a1,-1。
解:在數(shù)軸上畫出表示-a、-b的點:
由圖看出:-a-1。
點評:通過數(shù)軸,運用數(shù)形結(jié)合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.
人教版七年級數(shù)學教案完整篇十六
1.經(jīng)歷觀察、分析、操作、欣賞以及抽象,歸納等過程,經(jīng)歷探索圖形平移性質(zhì)的過程以及與他人合作交流的過程,進一步發(fā)展空間觀念,增強審美意識。
2.通過實例認識平移,理解平移的含義,理解平移前后兩個圖形對應點連線平行且相等的性質(zhì).
重點、難點。
重點:探索并理解平移的性質(zhì).
難點:對平移的認識和性質(zhì)的探索.
教學過程。
一、引入新課。
1.教師打開幻燈機,投放課本圖5.4-1的圖案.
2.學生觀察這些圖案、思考并回答問題.
(1)它們有什么共同的特點?
(2)能否根據(jù)其中的一部分繪制出整個圖案?
3.師生交流.
(1)這引進美麗的圖案是由若干個相同的圖案組合而成的,圖5.4-1上一排左邊的圖案(不考慮顏色)都有“基本圖形”;中間一個正方形,上、下有正立與倒立的正三角形,如圖(1);上排中間的圖案(不考慮顏色)都有“基本圖形”:正十二邊形,四周對稱著4個等邊三角形,如圖(2);上排右邊的圖案(不考慮顏色)都有“基本圖形”;正六邊形,內(nèi)接六角星,如圖(3);下排的左圖中的“基本圖形”是鴿子與橄欖枝;下排右圖中的“基本圖形”是上、下一對面朝右與面朝左的人頭像組成的圖案.
【本文地址:http://www.aiweibaby.com/zuowen/11017500.html】