高中數(shù)學(xué)必修教案滬教版范文(14篇)

格式:DOC 上傳日期:2023-11-12 10:54:07
高中數(shù)學(xué)必修教案滬教版范文(14篇)
時間:2023-11-12 10:54:07     小編:翰墨

編寫教案需要教師具備豐富的教學(xué)經(jīng)驗和系統(tǒng)的教學(xué)知識。教案的編寫可以借鑒其他教師的經(jīng)驗和教學(xué)方法,但要根據(jù)自身情況進行適當調(diào)整。高效課堂教學(xué)教案范文,助教師提高教學(xué)效果和學(xué)生學(xué)習(xí)質(zhì)量。

高中數(shù)學(xué)必修教案滬教版篇一

3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

重點:理解平面直角坐標中點與數(shù)的一一對應(yīng)關(guān)系;

難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。

教師準備四張大的紙質(zhì)坐標格子。

一、溫故知新,導(dǎo)入新課。

游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。

我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。

二、新課教學(xué)

課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點a數(shù)軸上的坐標是-4,點b數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。

學(xué)生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小

b說我們可以每個點列一個數(shù)軸???

教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標準,方便的確定每一點的位置?

結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?

得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的原點。

那有了這樣的平面直角坐標系,平面內(nèi)的點就可以用之前學(xué)的有序數(shù)對來表示了。例如:由a分別向x軸和y軸作垂線。垂足m在x軸上的`坐標是3,垂足n在y軸上的坐標是4,我們說a的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做a的坐標,記作a(3,4)

教師提問2:同學(xué)們按照這種做法,在坐標紙上標出b、c、d的坐標。

教師活動:走下講臺,關(guān)注學(xué)生的匯坐標過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。

教師提問3:在橫縱坐標軸上各標一點e、f,問:坐標原點以及這兩點的坐標是什么?

教師活動:引導(dǎo)學(xué)生思考歸納坐標軸上的點的坐標的特點。

得出結(jié)論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。

三、課程鞏固

師生互動:與學(xué)生一起回憶平面直角坐標系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標,以及坐標軸上的點的坐標特點。

“練一練”:

在黑板上貼出四張事先準備好的紙質(zhì)坐標格子,在上面標出任意的abcdefg等點,每組我點一個按坐標序列對,對應(yīng)的同學(xué)上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點。

教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學(xué)生不要氣餒,給予鼓勵,爭取下一次可以獲勝。

四、小結(jié)作業(yè):

思考平面直角坐標系中坐標與點的對應(yīng)關(guān)系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。

平面直角坐標系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成

水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;

豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

兩坐標軸的交點為平面直角坐標系的原點。

高中數(shù)學(xué)必修教案滬教版篇二

集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算。縱觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。

(二)規(guī)律方法總結(jié)。

1、集合中元素的互異性是集合概念的重點考查內(nèi)容。一般給出兩個集合,并告知兩個集合之間的關(guān)系,求集合中某個參數(shù)的范圍或值的時候,要特別驗證是否符合元素之間互異性。2、考查集合的運算和包含關(guān)系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細審題,弄清新定義的意義才是關(guān)鍵。

基本初等函數(shù)。

基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標,掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運用數(shù)形結(jié)合思想來解題的能力。

(二)規(guī)律方法總結(jié)。

1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結(jié)合考查綜合應(yīng)用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。

2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價的,特別要考慮到對數(shù)函數(shù)定義域。

高中數(shù)學(xué)必修教案滬教版篇三

初中新課程中數(shù)學(xué)知識點刪了很多要求,如“立方和、立方差”公式,“韋達定理”,“十字相乘法分解因式”等。雖然初中新課程對這些知識點不作要求,但是從高中數(shù)學(xué)教學(xué)的實踐來看,學(xué)生掌握了這些知識點對學(xué)習(xí)新的知識有一定的促進作用,因此,建議教師可根據(jù)學(xué)生和教學(xué)的實際情況,做適當?shù)难a充,同時,初中學(xué)習(xí)的有理數(shù)乘方及運算性質(zhì)和二次函數(shù),這些知識也要進行必要的復(fù)習(xí)等,這樣有利于后期的教學(xué)。

2、思維能力和運算能力的進一步強化。

初中新課程的內(nèi)容傾向于基礎(chǔ)性、普及性、應(yīng)用性和直觀性,學(xué)生的實踐能力很強,但學(xué)生的數(shù)學(xué)思維能力有所欠缺,尤其是抽象思維能力較弱,這對高中數(shù)學(xué)學(xué)習(xí)的影響很大。因此,教師要逐漸培養(yǎng)學(xué)生的抽象思維能力。同時,由于初中大量使用計算器,學(xué)生的計算能力很弱,這與高中數(shù)學(xué)要求學(xué)生要有較強的化簡、變形、推理及運算能力有一定的差距,從教學(xué)的實踐來看,學(xué)生作業(yè)中出現(xiàn)的大量錯誤與計算能力較弱有很大關(guān)系。因此,建議教師可根據(jù)學(xué)生的實際情況,從高一開始就要切實提高學(xué)生的運算能力。

3、抓住學(xué)科特點,做好順利過渡。

高中數(shù)學(xué)知識量大,理論性、綜合性強,同時高中課時少,學(xué)生基礎(chǔ)差等,知識的難度和對學(xué)生能力的要求和初中相比都有較大的提高(如“集合”、“映射”、“函數(shù)”等都比較抽象,難度大,“函數(shù)”等知識綜合性較強)。學(xué)好高中數(shù)學(xué)需要學(xué)生具有較強的閱讀能力、運算能力、邏輯推理能力、抽象思維能力及分析問題、解決問題的綜合能力,這與初中數(shù)學(xué)知識點較少,難度較低,形成較大的差距。因此,教師要能夠根據(jù)實際情況及時調(diào)整教學(xué)方法和教學(xué)過程,使學(xué)生能順利進入高中并能盡快適應(yīng)高中的數(shù)學(xué)學(xué)習(xí)。

高中數(shù)學(xué)必修教案滬教版篇四

對重點內(nèi)容應(yīng)重點復(fù)習(xí).首先擬出主要內(nèi)容,然后有目的有針對性地做相關(guān)內(nèi)容的題目,著重收集主要題型和技巧解法,像小論文式地重組知識,不要盲目地做題,要有針對性地選題,回味練習(xí).

高考數(shù)學(xué)命題除了著重考查基礎(chǔ)知識外,還十分重視對數(shù)學(xué)方法的考查,如配方法、換元法、分離常數(shù)法等操作性較強的數(shù)學(xué)方法.同學(xué)們在復(fù)習(xí)時應(yīng)對每一種方法的實質(zhì),它所適應(yīng)的題型,包括解題步驟都熟練掌握.其次應(yīng)重視對數(shù)學(xué)思想的理解及運用,如函數(shù)思想、數(shù)形結(jié)合思想.

應(yīng)注意實際問題的解決和探索性試題的研究。

現(xiàn)在各地風(fēng)行素質(zhì)教育,呼吁改革考試命題.增強運用數(shù)學(xué)知識解決實際問題的試題,在其他省市的高考命題中已經(jīng)體現(xiàn),而且難度較大,這一部分尤其是探索性命題在平時學(xué)習(xí)中較少涉及,希望同學(xué)們把近幾年其他省、市高考試題中有關(guān)此內(nèi)容的題目集中研究一下,有備無患.這一階段,重點是提高學(xué)生的綜合解題能力,訓(xùn)練學(xué)生的解題策略,加強解題指導(dǎo),提高應(yīng)試能力.

高中數(shù)學(xué)必修教案滬教版篇五

1. 掌握數(shù)軸的三要素,能正確畫出數(shù)軸。

2、會用數(shù)軸上的點表示有理數(shù);;會求一個有理數(shù)的相反數(shù);能利用數(shù)軸比較有理數(shù)的大小。

【過程與方法】 經(jīng)歷從現(xiàn)實情景抽象出數(shù)軸的過程,體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系

【情感態(tài)度與價值觀】 感受數(shù)形結(jié)合的思想方法;

【教學(xué)重點】會說出數(shù)軸上已知點所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。

【教學(xué)難點】利用數(shù)軸比較有理數(shù)的大小。

(一)創(chuàng)設(shè)情境,引入課題

(1)(出示投影1)問題:三個溫度計所表示的溫度是多少?

學(xué)生回答.

(2)在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容―數(shù)軸(板書課題)

(二)得出定義,揭示內(nèi)涵

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(教師示范畫數(shù)軸,邊說邊畫):

(1)畫直線,取原點

(2)標正方向

(3)選取單位長度,標數(shù)(強調(diào):負數(shù)從0向左寫起)。

概念:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。

(三)強化概念,深入理解

1、下列圖形哪些是數(shù)軸,哪些不是,為什么?

學(xué)生回答,相互糾正,理解數(shù)軸三要素,鞏固數(shù)軸概念。

2、學(xué)生自己在練習(xí)本上畫一個數(shù)軸。教師在黑板上畫

(四)動手練習(xí),歸納總結(jié)

1、在數(shù)軸上的點表示有理數(shù)。

一個學(xué)生在黑板上完成,其他同學(xué)在自己所畫數(shù)軸上完成。

明確“任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示”

2.指出數(shù)軸上a,b,c,d各點分別表示什么數(shù)。@師愿教育

3、通過數(shù)軸比較有理數(shù)的大小。觀察類比溫度計回答問題

(1)在數(shù)軸上表示的兩個數(shù),(右 ) 邊的數(shù)總比 ( 左)邊的數(shù)大;

(2)正數(shù)都(大于 )0,負數(shù)都(小于)0;正數(shù)(大于)一切負數(shù)。

例1、比較下列各數(shù)的.大小: -1.5 , 0.6, -3, -2

鞏固所學(xué)知識

(五)、歸納小結(jié),強化思想

師生總結(jié)本課內(nèi)容。

1、數(shù)軸的概念,數(shù)軸的三要素

2、數(shù)軸上兩個不同的點所表示的兩個有理數(shù)大小關(guān)系

3、所有的有理數(shù)都可以用數(shù)軸上的點來表示

師:你感到自己今天的表現(xiàn)怎樣?

習(xí)題2.2 1、2、3

選作第4題

高中數(shù)學(xué)必修教案滬教版篇六

根據(jù)德國心理學(xué)家艾賓浩斯繪制的遺忘曲線,學(xué)生對知識的遺忘遵從先快后慢的規(guī)律,有效的回憶可以加深對知識的理解,掌握知識的內(nèi)在聯(lián)系,延緩知識的遺忘。教師要采用不同的形式,整理階段的基礎(chǔ)知識,使內(nèi)容條理化、清晰化地呈現(xiàn)在同學(xué)的面前,從而完成由厚到薄的過程,對重難點和關(guān)鍵點,進行重點的、有針對性的講解。配以適當?shù)木毩?xí),提高學(xué)生對基本知識和基本方法的深刻性和準確性的理解掌握。促進學(xué)生科學(xué)合理的知識結(jié)構(gòu)的形成,使知識系統(tǒng)化和網(wǎng)絡(luò)化。

舊知檢測。

要想有效的提高課堂的復(fù)習(xí)效率,就須克服“眼高手低”的毛病。很多同學(xué)上課時處于一種混沌的狀態(tài),一聽就懂,一做就錯;一聽就會,一到自己做就不會了。為避免這樣的情況,就必須讓學(xué)生更好地了解自己知識的掌握情況??梢栽O(shè)置幾個基礎(chǔ)的填空和一個左右的解答題,通過解答的過程讓學(xué)生“自知自明”。激發(fā)起興趣,有效地提高復(fù)習(xí)的效率。

精選精講。

精心的選擇適量的典型例題,分析解決這些問題應(yīng)該是一堂復(fù)習(xí)課的核心內(nèi)容。解題的目的絕不是僅僅解決這個問題本身,而是要給出通性通法,揭示解決問題的一般規(guī)律,熟練掌握數(shù)學(xué)思想方法,提高學(xué)生分析問題、解決問題的能力。

高中數(shù)學(xué)必修教案滬教版篇七

函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對應(yīng)說”,這是對函數(shù)本質(zhì)特征的進一步認識,也是學(xué)生認識上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對學(xué)生今后的學(xué)習(xí)起著深刻的影響。

本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

二、重難點分析。

根據(jù)對上述對教材的分析及新課程標準的要求,確定函數(shù)的概念既是本節(jié)課的重點,也應(yīng)該是本章的難點。

三、學(xué)情分析。

1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點下的函數(shù)定義,并具體研究了幾類最簡單的函數(shù),對函數(shù)已經(jīng)有了一定的感性認識;另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應(yīng)來描繪函數(shù)概念,是一個抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。

四、目標分析。

1、理解函數(shù)的概念,會用函數(shù)的定義判斷函數(shù),會求一些最基本的函數(shù)的定義域、值域。

2、通過對實際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。

3、通過對函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。

五、教法學(xué)法。

本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計問題情景,引導(dǎo)學(xué)生主動探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與,通過不斷探究、發(fā)現(xiàn),在師生互動、生生互動中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動認知過程。

學(xué)法方面,學(xué)生通過對新舊兩種函數(shù)定義的對比,在集合論的觀點下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

2、設(shè)計理念。

3、教學(xué)目標。

情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、

4、重點難點。

重點:任意角三角函數(shù)的定義、

難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、

5、學(xué)情分析。

6、教法分析。

7、學(xué)法分析。

本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標。

高中數(shù)學(xué)必修教案滬教版篇八

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當達到以下學(xué)習(xí)目標:

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設(shè)置這些問題,都是為了加強數(shù)學(xué)思想方法的教學(xué)。

加強與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準備,能使整套教科書成為一個有機整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。

《課程標準》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強,創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機械地模仿一些常見數(shù)學(xué)問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。

1.1正弦定理和余弦定理(約3課時)

1.2應(yīng)用舉例(約4課時)

1.3實習(xí)作業(yè)(約1課時)

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。

2.適當安排一些實習(xí)作業(yè),目的是讓學(xué)生進一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達實習(xí)過程和實習(xí)結(jié)果能力,增強學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

高中數(shù)學(xué)必修教案滬教版篇九

生物對環(huán)境的指示作用。

駱駝刺——干旱環(huán)境;荷花——水濕環(huán)境;。

“棗發(fā)芽,種棉花”——植物對氣候的指示;。

矮牽牛葉片受損——二氧化硫污染的指示。

11、土壤的形成及其在地理環(huán)境中的作用。

形成過程:

風(fēng)化低等生物著生高等植物著生。

巖石成土母質(zhì)原始土壤成熟土壤。

生物在土壤形成過程起著主導(dǎo)作用。

低等植物和微生物在母質(zhì)上著生,標志成土的開始。

生物的出現(xiàn),使巖體風(fēng)化加快,母質(zhì)肥力不斷發(fā)展;。

生物對母質(zhì)的改造:一是有機質(zhì)的積累過程;二是養(yǎng)分元素的富集過程。

選擇性吸收光合作用。

礦物養(yǎng)分植物有機質(zhì)。

土壤肥力腐殖質(zhì)。

土壤在地理環(huán)境中的作用。

土壤是地表物質(zhì)循環(huán)和能量轉(zhuǎn)化非?;钴S的場所,是聯(lián)系有機界和無機界的中心環(huán)節(jié);。

土壤具有能夠生長植物的肥力特性,為植物生長提供條件,從而使地表面貌發(fā)生了根本變化。

12、自然資源與人類活動的相互關(guān)系(待查)。

自然資源能為人類生產(chǎn)和生活提供原料、能源和必不可少的物質(zhì)條件;。

開發(fā)利用自然資源需要一定的技術(shù)條件和資金投入。

13、土地資源、氣候資源、海洋資源、水資源、生物資源、礦物資源的特征和組成。

(1)陸地自然資源。

自然資源屬性組成共性特征。

氣候資源可再生光、熱量、降水、風(fēng)等。

水資源可再生。

生物資源可再生。

礦物資源非可再生。

(2)海洋資源。

類型組成特征。

海洋化學(xué)資源食鹽、鎂、溴、淡水等。

海洋生物資源魚、蝦、貝、藻等海洋漁業(yè)資源主要集中在沿海大陸架海域。

海洋礦產(chǎn)資源大陸架:油、氣等濱海帶:砂礦海盆:錳結(jié)核。

海洋能源潮汐發(fā)電和波浪發(fā)電等可再生、能量密度小、無污染目前工程投資大、效益不高。

海洋空間資源生產(chǎn)空間、通信空間、電力輸送、儲藏空間、文化娛樂空間、交通運輸空間。

14、人們在開發(fā)利用自然資源的過程中可能出現(xiàn)的問題,以及采取的措施(待查)。

15、氣象災(zāi)害、地質(zhì)地貌災(zāi)害的危害,自然災(zāi)害的監(jiān)測和防災(zāi)減災(zāi)措施。

氣象災(zāi)害。

類別危害監(jiān)測和防減災(zāi)措施。

暴雨洪澇暴雨會造成嚴重的洪澇災(zāi)害。

干旱糧食減產(chǎn)、人畜飲水困難,影響經(jīng)濟發(fā)展和社會安定。

無有效的防御手段,提前發(fā)布準確的寒潮警報可減少一定損失。

地質(zhì)災(zāi)害。

類別危害監(jiān)測和防減災(zāi)措施地質(zhì)災(zāi)害的關(guān)聯(lián)性。

地震危害和影響最大的地質(zhì)災(zāi)害。

高中數(shù)學(xué)必修教案滬教版篇十

本節(jié)課力的合成,是在學(xué)生了解力的基本性質(zhì)和常見幾種力的基礎(chǔ)上,通過等效替代思想,研究多個力的合成方法,是對前幾節(jié)內(nèi)容的深化。

本節(jié)重點介紹力的合成法則——平行四邊形定則,但實際這是所有矢量運算的共同工具,為學(xué)習(xí)其他矢量的運算奠定了基礎(chǔ)。

更重要的是,力的合成是解決力學(xué)問題的基礎(chǔ),對今后牛頓運動定律、平衡問題、動量與能量問題的理解和應(yīng)用都會產(chǎn)生重要影響。

因此,這節(jié)課承前啟后,在整個高中物理學(xué)習(xí)中占據(jù)著非常重要的地位。

二、教學(xué)目標定位。

為了讓學(xué)生充分進行實驗探究,體驗獲取知識的過程,本節(jié)內(nèi)容分兩課時來完成,今天我說課的內(nèi)容為本節(jié)內(nèi)容的第一課時。根據(jù)上述教材分析,考慮到學(xué)生的實際情況,在本節(jié)課的教學(xué)過程中,我制定了如下教學(xué)目標:。

一、知識與技能。

理解合力、分力、力的合成的概念理解力的合成本質(zhì)上是從等效的角度進行力的替代。

探究求合力的方法——力的平行四邊形定則,會用平行四邊形定則求合力。

二、過程與方法。

通過學(xué)習(xí)合力和分力的概念,了解物理學(xué)常用的方法——等效替代法。

通過實驗探究方案的設(shè)計與實施,體驗科學(xué)探究的過程。

三、情感態(tài)度與價值觀。

培養(yǎng)學(xué)生的合作精神,激發(fā)學(xué)生學(xué)習(xí)興趣,形成良好的學(xué)習(xí)方法和習(xí)慣。

培養(yǎng)認真細致、實事求是的實驗態(tài)度。

根據(jù)以上分析確定本節(jié)課的重點與難點如下:

一、重點。

合力和分力的概念以及它們的關(guān)系。

實驗探究力的合成所遵循的法則。

二、難點。

平行四邊形定則的理解和運用。

三、重、難點突破方法——教法簡介。

本堂課的重、難點為實驗探究力的合成所遵循的法則——平行四邊形定則,為了實現(xiàn)重難點的突破,讓學(xué)生真正理解平行四邊形定則,就要讓學(xué)生親自體驗規(guī)律獲得的過程。

因此,本堂課在學(xué)法上采用學(xué)生自主探究的實驗歸納法——通過重現(xiàn)獲取知識和方法的思維過程,讓學(xué)生親自去體驗、探究、歸納總結(jié)。體現(xiàn)學(xué)生主體性。

實驗歸納法的步驟如下。這樣設(shè)計讓學(xué)生不僅能知其然,更能知其所以然,這也是本堂課突破重點和難點的重要手段。

本堂課在教法上采用啟發(fā)式教學(xué)——通過設(shè)置問題,引導(dǎo)啟發(fā)學(xué)生,激發(fā)學(xué)生思維。體現(xiàn)教師主導(dǎo)作用。

四、教學(xué)過程設(shè)計。

采用六環(huán)節(jié)教學(xué)法,教學(xué)過程共有六個步驟。

教學(xué)過程第一環(huán)節(jié)、創(chuàng)設(shè)情景導(dǎo)入新課:

第二環(huán)節(jié)、新課教學(xué):

展示合力與分力以及力的合成的概念,強調(diào)等效替代法。舉例說明等效替代法是一種重要的物理方法。

第三環(huán)節(jié)、合作探究:

首先,教師展示實驗儀器,讓學(xué)生思考如何設(shè)計實驗,,如何進行實驗?zāi)?學(xué)生面對器材可能會覺得無從下手。再次設(shè)置問題引導(dǎo)學(xué)生思維,讓學(xué)生面對儀器分組討論以下四個問題。

問題1要用動畫輔助說明。在問題2中,教師要強調(diào)結(jié)點的問題,用動畫說明。問題3中,直觀簡潔的描述力必須用力的圖示,用圖片說明。問題4讓學(xué)生注意測力計的使用,減小實驗誤差。通過對這四個問題的討論,再結(jié)合多媒體動畫的展示,使學(xué)生對探究的步驟清晰明了。

然后,學(xué)生分組實驗,合作探究,記錄合力與兩分力的大小和方向,作出力的圖示。實驗完成后請學(xué)生展示實驗結(jié)果,應(yīng)該立即可得出結(jié)論一:比較分力與合力的大小,可得互成角度的兩個力的合成,不能簡單地利用代數(shù)方法相加減.

那合力與分力到底滿足什么關(guān)系呢?

此時要引導(dǎo)學(xué)生思考:既然從數(shù)字上找不到關(guān)系,哪可不可以從幾何上找找關(guān)系呢?學(xué)生會立即猜想出o、a、c、b像是一個平行四邊形的四個頂點,ob可能是這個平行四邊形的對角線.哪么猜想是否正確呢?親自實踐才有發(fā)言權(quán),學(xué)生動手作圖:以oa、oc為鄰邊作平行四邊形oacb,看平行四邊形的對角線與ob是否重合。

學(xué)生作圖后發(fā)現(xiàn)對角線與合力很接近。教師說明實驗的誤差是不可避免的,科學(xué)家經(jīng)過很多次的、精細的實驗,最后確認對角線的長度、方向,跟合力的大小、方向一致,說明對角線就表示f1和f2的合力.由此得到結(jié)論二:力的合成法則——平行四邊形定則。

進入。

第四環(huán)節(jié):歸納總結(jié)。

將本文的word文檔下載到電腦,方便收藏和打印。

高中數(shù)學(xué)必修教案滬教版篇十一

一、教學(xué)目標:

知識與技能:了解直線參數(shù)方程的條件及參數(shù)的意義。

過程與方法:能根據(jù)直線的幾何條件,寫出直線的參數(shù)方程及參數(shù)的意義。

情感、態(tài)度與價值觀:通過觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程,培養(yǎng)創(chuàng)新意識。

二、重難點:

教學(xué)重點:曲線參數(shù)方程的定義及方法。

教學(xué)難點:選擇適當?shù)膮?shù)寫出曲線的參數(shù)方程.

三、教學(xué)方法:

啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).

四、教學(xué)過程。

(一)、復(fù)習(xí)引入:

1.寫出圓方程的標準式和對應(yīng)的參數(shù)方程。

圓參數(shù)方程(為參數(shù))。

(2)圓參數(shù)方程為:(為參數(shù))。

2.寫出橢圓參數(shù)方程.

(二)、講解新課:

如果已知直線l經(jīng)過兩個定點q(1,1),p(4,3),

那么又如何描述直線l上任意點的位置呢?

2、教師引導(dǎo)學(xué)生推導(dǎo)直線的參數(shù)方程:

(1)過定點傾斜角為的直線的。

參數(shù)方程。

(為參數(shù))。

【辨析直線的參數(shù)方程】:設(shè)m(x,y)為直線上的任意一點,參數(shù)t的幾何意義是指從點p到點m的位移,可以用有向線段數(shù)量來表示。帶符號.

(2)、經(jīng)過兩個定點q,p(其中)的'直線的參數(shù)方程為。其中點m(x,y)為直線上的任意一點。這里參數(shù)的幾何意義與參數(shù)方程(1)中的t顯然不同,它所反映的是動點m分有向線段的數(shù)量比。當時,m為內(nèi)分點;當且時,m為外分點;當時,點m與q重合。

(三)、直線的參數(shù)方程應(yīng)用,強化理解。

1、例題:

學(xué)生練習(xí),教師準對問題講評。反思歸納:

1)求直線參數(shù)方程的方法;。

2)利用直線參數(shù)方程求交點。

2、鞏固導(dǎo)練:

補充:

1)直線與圓相切,那么直線的傾斜角為(a)。

a.或b.或c.或d.或。

2)(坐標系與參數(shù)方程選做題)若直線與直線(為參數(shù))垂直,則.

解:直線化為普通方程是,

該直線的斜率為,

直線(為參數(shù))化為普通方程是,

該直線的斜率為,

則由兩直線垂直的充要條件,得,。

(四)、小結(jié):

(1)直線參數(shù)方程求法;。

(2)直線參數(shù)方程的特點;。

(3)根據(jù)已知條件和圖形的幾何性質(zhì),注意參數(shù)的意義。

(五)、作業(yè):

補充:設(shè)直線的參數(shù)方程為(t為參數(shù)),直線的方程為y=3x+4則與的距離為。

【考點定位】本小題考查參數(shù)方程化為普通方程、兩條平行線間的距離,基礎(chǔ)題。

解析:由題直線的普通方程為,故它與與的距離為。

五、教學(xué)反思:

高中數(shù)學(xué)必修教案滬教版篇十二

一)、培養(yǎng)良好的學(xué)習(xí)興趣。

1、課前預(yù)習(xí),對所學(xué)知識產(chǎn)生疑問,產(chǎn)生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對你的提問的評價,變?yōu)楸薏邔W(xué)習(xí)的動力。

3、思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。

5、把概念回歸自然。所有學(xué)科都是從實際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實生活,如角的概念、直角坐標系的產(chǎn)生、極坐標系的產(chǎn)生都是從實際生活中抽象出來的。只有回歸現(xiàn)實才能對概念的理解切實可靠,在應(yīng)用概念判斷、推理時會準確。

二)、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。

習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣還包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。

三)、有意識培養(yǎng)自己的各方面能力。

數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實踐活動,如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會精心設(shè)計“智力課”和“智力問題”比如對習(xí)題的解答時的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發(fā)展。

高中數(shù)學(xué)必修教案滬教版篇十三

要學(xué)好數(shù)學(xué),最關(guān)鍵的是要有一個好的基礎(chǔ)。只有打牢數(shù)學(xué)基礎(chǔ),才能夠把高中數(shù)學(xué)好,同樣只有打好基礎(chǔ),才能夠數(shù)學(xué)取得高分。打好基礎(chǔ)是最關(guān)鍵的!比如:建一棟大樓,如果地基不穩(wěn),不管大樓有多么豪華,都只是華而不實。

想學(xué)好數(shù)學(xué),對數(shù)學(xué)感興趣。

其實學(xué)好數(shù)學(xué)最好的辦法就是發(fā)自內(nèi)心由衷的想要學(xué)習(xí),渴望學(xué)習(xí),才能體會到從學(xué)習(xí)中所收獲的樂趣。自己的成就感提升,對于學(xué)習(xí)數(shù)學(xué)的積極性也就提高了,覺得數(shù)學(xué)并沒有那么難,就愿意去多接觸了。

多做題反復(fù)做,有題感。

其實學(xué)好數(shù)學(xué)辦法就是要大量做題,反復(fù)去做,題做多了就知道哪些方面需要自己去加強學(xué)習(xí),還有就是同樣做數(shù)學(xué)題做多了就會有題感。有些題,它的類型都是一樣的,題做多了之后,即使你不會做,你也會找到一些解題的思路和技巧。

高中數(shù)學(xué)必修教案滬教版篇十四

我有一個夢想》是美國著名黑人民權(quán)運動領(lǐng)袖馬丁·路德·金激情澎湃、氣勢昂揚的演講稿。20世紀50到60年代的美國,種族歧視和種族壓迫現(xiàn)象仍然十分嚴重。從中可見,本文體現(xiàn)的自由、平等觀念及為自由而進行和平抗爭的呼喚則是教師應(yīng)該重點推敲的內(nèi)容,從背景入手,逐層點撥,最終突出教學(xué)的重點。

【本文地址:http://www.aiweibaby.com/zuowen/11170857.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔