合理的教案設(shè)計可以提高課堂教學的活躍度和吸引力。教案應該根據(jù)教材內(nèi)容和學科特點,選取合適的教學資源。在這里,我們?yōu)榇蠹曳窒硪恍﹥?yōu)秀的教案范例,供大家參考。
初中數(shù)學因式分解教案篇一
會應用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法。
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性.
3.情感、態(tài)度與價值觀。
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值.
重、難點與關(guān)鍵。
1.重點:利用平方差公式分解因式.
2.難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來.
教學方法。
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式).
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
初中數(shù)學因式分解教案篇二
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
如多項式。
其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用。
寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么。
1、教學實例:學案示例。
2、課堂練習:學案作業(yè)。
3、課堂:
4、板書:
5、課堂作業(yè):學案作業(yè)。
6、教學反思:
初中數(shù)學因式分解教案篇三
1、知識與能力:
1)進一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學模型的過程,發(fā)展學生的抽象概括能力。
3.情感、態(tài)度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學生體驗數(shù)學來源于生活,服務(wù)于生活。
2)通過對問題的探究,培養(yǎng)學生認真踏實的學習態(tài)度和科學嚴謹?shù)膶W習方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。
(三)教學重點、難點和關(guān)鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學模型,利用所學的知識來進行解答。
初中數(shù)學因式分解教案篇四
1、知識與能力:
1)進一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學模型的過程,發(fā)展學生的抽象概括能力。
3.情感、態(tài)度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學生體驗數(shù)學來源于生活,服務(wù)于生活。
2)通過對問題的探究,培養(yǎng)學生認真踏實的學習態(tài)度和科學嚴謹?shù)膶W習方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。
(三)教學重點、難點和關(guān)鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學模型,利用所學的知識來進行解答。
【教法與學法】。
(一)教法分析。
為了突出教學重點,突破教學難點,按照學生的認知規(guī)律和心理特征,在教學過程中,我采用了以下的教學方法:
1.采用情境教學法。整節(jié)課圍繞測量物體高度這個問題展開,按照從易到難層層推進。在數(shù)學教學中,注重創(chuàng)設(shè)相關(guān)知識的現(xiàn)實問題情景,讓學生充分感知“數(shù)學來源于生活又服務(wù)于生活”。
2.貫徹啟發(fā)式教學原則。教學的各個環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學生的思路,把啟發(fā)式思想貫穿與教學活動的全過程。
3.采用師生合作教學模式。本節(jié)課采用師生合作教學模式,以師生之間、生生之間的全員互動關(guān)系為課堂教學的核心,使學生共同達到教學目標。教師要當好“導演”,讓學生當好“演員”,從充分尊重學生的潛能和主體地位出發(fā),課堂教學以教師的“導”為前提,以學生的“演”為主體,把較多的課堂時間留給學生,使他們有機會進行獨立思考,相互磋商,并發(fā)表意見。
(二)學法分析。
按照學生的認識規(guī)律,遵循教師為主導,學生為主體的指導思想,在本節(jié)課的學習過程中,采用自主探究、合作交流的學習方式,讓學生思考問題、獲取知識、掌握方法,運用所學知識解決實際問題,啟發(fā)學生從書本知識到社會實踐,學以致用,力求促使每個學生都在原有的基礎(chǔ)上得到有效的發(fā)展。
【教學過程】。
一、知識梳理。
1、判斷兩三角形相似有哪些方法?
1)定義:2)定理(平行法):。
3)判定定理一(邊邊邊):。
4)判定定理二(邊角邊):。
5)判定定理三(角角):。
2、相似三角形有什么性質(zhì)?
對應角相等,對應邊的比相等。
(通過對知識的梳理,幫助學生形成自己的知識結(jié)構(gòu)體系,為解決問題儲備理論依據(jù)。)。
二、情境導入。
胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230多米。據(jù)考證,為建成大金字塔,共動用了10萬人花了時間.原高146.59米,但由于經(jīng)過幾千年的風吹雨打,頂端被風化吹蝕.所以高度有所降低。
(數(shù)學教學從學生的生活體驗和客觀存在的事實或現(xiàn)實課題出發(fā),為學生提供較感興趣的問題情景,幫助學生順利地進入學習情景。同時,問題是知識、能力的生長點,通過富有實際意義的問題能夠激活學生原有認知,促使學生主動地進行探索和思考。)。
三、例題講解。
例1(教材p49例3——測量金字塔高度問題)。
《相似三角形的應用》教學設(shè)計分析:根據(jù)太陽光的光線是互相平行的特點,可知在同一時刻的陽光下,豎直的兩個物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
解:略(見教材p49)。
問:你還可以用什么方法來測量金字塔的高度?(如用身高等)。
解法二:用鏡面反射(如圖,點a是個小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)。
例2(教材p50練習?——測量河寬問題)。
《相似三角形的應用》教學設(shè)計《相似三角形的應用》教學設(shè)計分析:設(shè)河寬ab長為xm,由于此種測量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應用》教學設(shè)計.再解x的方程可求出河寬.
解:略(見教材p50)。
問:你還可以用什么方法來測量河的寬度?
解法二:如圖構(gòu)造相似三角形(解法略).
四、鞏固練習。
五、回顧小結(jié)。
一)相似三角形的應用主要有如下兩個方面。
1測高(不能直接使用皮尺或刻度尺量的)。
2測距(不能直接測量的兩點間的距離)。
二)測高的方法。
測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長的比例”的原理解決。
三)測距的方法。
測量不能到達兩點間的距離,常構(gòu)造相似三角形求解。
(落實教師的引導作用以及學生的主體地位,既訓練學生的概括歸納能力,又有助于學生在歸納的過程中把所學的知識條理化、系統(tǒng)化。)。
六、拓展提高。
怎樣利用相似三角形的有關(guān)知識測量旗桿的高度?
七、作業(yè)。
課本習題27.210題、11題。
初中數(shù)學因式分解教案篇五
教學過程中滲透類比的數(shù)學思想,形成新的知識結(jié)構(gòu)體系;設(shè)置探究式教學,讓學生經(jīng)歷知識的形成,從而達到對知識的深刻理解與靈活應用。
學法:自主、合作、探索的學習方式。
在教學活動中,既要提高學生獨立解決問題的能力,又要培養(yǎng)團結(jié)協(xié)作精神,拓展學生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
初中數(shù)學因式分解教案篇六
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標。
(1)會推導乘法公式。
(2)在應用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關(guān)鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。
2.1平方差公式1課時。
2.2完全平方公式2課時。
2.3用提公因式法進行因式分解1課時。
初中數(shù)學因式分解教案篇七
會應用平方差公式進行因式分解,發(fā)展學生推理能力。
2、過程與方法。
經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。
3、情感、態(tài)度與價值觀。
培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應用價值。
1、重點:利用平方差公式分解因式。
2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。
3、關(guān)鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應用公式的方面上來。
采用“問題解決”的教學方法,讓學生在問題的'牽引下,推進自己的思維。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式。
(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。
(1)(a+5)(a—5)=a2—52=a2—25;
(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。
【教師活動】引導學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。
1、分解因式:a2—25;2、分解因式16m2—9n。
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2—25=a2—52=(a+5)(a—5)。
(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。
【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。
平方差公式:a2—b2=(a+b)(a—b)。
評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2—9y2;(2)16x4—y4;
(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;
(5)m2(16x—y)+n2(y—16x)。
【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。
【學生活動】分四人小組,合作探究。
解:(1)x2—9y2=(x+3y)(x—3y);
(5)m2(16x—y)+n2(y—16x)。
=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。
初中數(shù)學因式分解教案篇八
1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。
2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。
3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。
4、單獨一個數(shù)或一個字母也是單項式。
5、只含有字母因式的單項式的系數(shù)是1或―1。
6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。
7、單獨的一個非零常數(shù)的次數(shù)是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數(shù)包括它前面的符號。
10、單項式的系數(shù)是帶分數(shù)時,應化成假分數(shù)。
11、單項式的系數(shù)是1或―1時,通常省略數(shù)字"1"。
12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數(shù)項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
1、單項式和多項式統(tǒng)稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學習的分式。
1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。
去括號法則:如果括號前是"十"號,把括號和它前面的"+"號去掉,括號里各項都不變符號;如果括號前是"一"號,把括號和它前面的"一"號去掉,括號里各項都改變符號。
2、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
合并同類項:
1).合并同類項的概念:
把多項式中的同類項合并成一項叫做合并同類項。
2).合并同類項的法則:
同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
3).合并同類項步驟:
a.準確的找出同類項。
b.逆用分配律,把同類項的.系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。
c.寫出合并后的結(jié)果。
4).在掌握合并同類項時注意:
a.如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0.
b.不要漏掉不能合并的項。
c.只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。
說明:合并同類項的關(guān)鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
2)按去括號法則去括號。
3)合并同類項。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡。
(2)代入計算。
(3)對于某些特殊的代數(shù)式,可采用"整體代入"進行計算。
1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。
2、底數(shù)相同的冪叫做同底數(shù)冪。
3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。
初中數(shù)學因式分解教案篇九
3、通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
重點:通過具體例子了解公式、應用公式。
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關(guān)系,在具體例子的基礎(chǔ)上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2、在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導新公式。
3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
初中數(shù)學因式分解教案篇十
1.通過實驗,使學生相信經(jīng)過大量的重復實驗后得到的頻率值確實可以作為隨機事件每次發(fā)生的機會的估計值,體會隨機事件中所隱含著的確定性內(nèi)涵。
2.使學生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養(yǎng)學生合作學習的能力,并學會與他人交流思維的過程和結(jié)果。
重點:頻率與機會的關(guān)系。
難點:如何用頻率估計機會的大?。拷虒W準備數(shù)枚相同的圖釘。
一、提出問題。
上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的`頻率,當頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機會的估計。
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的機會有多大?
二、分組實驗。
1.兩個學生一個小組,一人拋擲,一人記錄。
每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)。
教師負責把各小組的結(jié)果登錄在黑板上。
3.列出統(tǒng)計表,繪制折線圖。
4.根據(jù)實驗結(jié)果估計一下釘尖觸地的機會是百分之幾?
三、深入思考。
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?
能把兩個小組的實驗數(shù)據(jù)合起來進行實驗嗎?
四、概括小結(jié)。
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察。
觀察課本第105頁表15.2.1和圖15.2.2。
當實驗進行到多少次以后,所得頻率值就趨于平穩(wěn)了?
(小結(jié):實驗到頻率值較穩(wěn)定時,結(jié)果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機會的估計值。)。
六、鞏固練習。
課本第107頁練習第1、2題。
七、課堂小結(jié)。
這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。
八、布置作業(yè)。
1、課本第108頁習題15.2第2題。
2、課本第106頁做一做。
2、數(shù)字之積為奇數(shù)與偶數(shù)的機會。
初中數(shù)學因式分解教案篇十一
數(shù)學的解題方法是隨著對數(shù)學對象的研究的深入而發(fā)展起來的。六年級的
同學
們很快就要小學
畢業(yè),中學的大門已經(jīng)向我們敞開。為了能進一步學好數(shù)學,有必要掌握初中數(shù)學的特點尤其是解題方法。下面介紹的解題方法,都是初中數(shù)學中最常用的',有些方法也是中學教學大綱要求掌握的。因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
以上就是為大家提供的“初中數(shù)學解題方法:因式分解法”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。
初中數(shù)學因式分解教案篇十二
會用列一元二次方程的方法解有關(guān)面積、體積方面的應用題。
(1)列方程解應用題的步驟?
(2)長方形的周長、面積?長方體的體積?
據(jù)題意:(19—2x)(15—2x)=77。
整理后,得x2—17x+52=0,
解得x1=4,x2=13。
∴當x=13時,15—2x=—11(不合題意,舍去)。
答:截取的小正方形邊長應為4cm,可制成符合要求的無蓋盒子。
練習1章節(jié)前引例.。
學生筆答、板書、評價。
練習2教材p。42中4。
學生筆答、板書、評價。
注意:全面積=各部分面積之和。
剩余面積=原面積—截取面積。
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的寬為xcm,則長為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x—125=0。
解這個方程x1=9。0,x2=—14。0(不合題意,舍去)。
當x=9。0時,x+17=26。0,x+12=21。0.。
答:可以選用寬為21cm,長為26cm的長方形鐵皮。
教師引導,學生板書,筆答,評價。
3.進一步體會數(shù)字在實踐中的應用,培養(yǎng)學生分析問題、解決問題的能力。
教材p42中a3、6、7。
教材p41中3、4。
初中數(shù)學因式分解教案篇十三
1、理解并掌握三角形中位線的概念、性質(zhì),會利用三角形中位線的性質(zhì)解決有關(guān)問題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過程,讓學生實現(xiàn)動手實踐、自主探索、合作交流的學習過程。
3、通過對問題的探索研究,培養(yǎng)學生分析問題和解決問題的能力以及思維的靈活性。
4、培養(yǎng)學生大膽猜想、合理論證的科學精神。
探索并運用三角形中位線的性質(zhì)。
運用轉(zhuǎn)化思想解決有關(guān)問題。
創(chuàng)設(shè)情境——建立數(shù)學模型——應用——拓展提高。
情境創(chuàng)設(shè):測量不可達兩點距離。
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想:四邊形bcfd是什么四邊形。
探索:如何說明四邊形bcfd是平行四邊形?
活動二:探索三角形中位線的性質(zhì)。
應用。
練習及解決情境問題。
例題教學。
操作——猜想——驗證。
拓展:數(shù)學實驗室。
小結(jié):布置作業(yè)。
初中數(shù)學因式分解教案篇十四
王老師的《因式分解》這節(jié)課,他上的這節(jié)課每個環(huán)節(jié)層層遞進,落實有效,教學流程自然流暢,有獨創(chuàng)性。教學設(shè)計張弛有度,實施過程中有水到渠成的銜接美。教師教態(tài)大方,親和力強,對學生啟發(fā)點撥到位,駕馭課堂的能力強,整節(jié)課,學生在愉悅、寬松和諧的學習氛圍中,學得輕松,學得愉快。收到良好的教學效果。其中印象最深的環(huán)節(jié)有:
1.新課引入十分好,但沒把握好進一步解讀課題的機會。
2.教師結(jié)構(gòu)設(shè)計的很好,教學過程中相當自然。
3.課堂小結(jié)很好,把因式分解(平方差公式)的特點進行了全面的概括,但略顯課堂時間較緊。
4.練習設(shè)計由易到難,層層遞進,若教師再講的少一點,教學效果可能較佳。
5.作為一名實習教師,在原有的基礎(chǔ)上有很多進步,課上得相當不錯。
6.教師的'語言親和力強,學生和教師配合默契,課堂氣氛高漲,但略顯教師講課過多。
7.陳老師能根據(jù)我班級學生特點,設(shè)計教學內(nèi)容,教學效果體現(xiàn)得更佳。
8.教師在教學過程中缺少讓學生“感悟”的過程。
9.教師教學語言規(guī)范,教態(tài)自然,對學生有親和力,教室互相到位,對學生的學習有一定的幫助。
10.能為學生提供大量數(shù)學活動的機會,讓學生成為課堂學習的主人。
通過這次評課,讓我在教材教法、課堂教學策略等方面受益匪淺,并希望課堂上一些新理念、策略充實以后教學實踐中。
初中數(shù)學因式分解教案篇十五
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面。現(xiàn)將檢查情況總結(jié)如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設(shè)計完整,教學重點、難點突出,設(shè)置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文李雅芳等能突出對學科素養(yǎng)的高度關(guān)注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側(cè)重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務(wù)實、有針對性。
2、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
3、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足。
特點:
1、能按進度布置作業(yè),作業(yè)設(shè)置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。
3、學生在書寫方面有很大進步。從檢查可以發(fā)現(xiàn)教師對學生作業(yè)的書寫格式有明確的要求。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數(shù)學因式分解教案篇十六
原式變形后,利用完全平方公式變形,計算即可得到結(jié)果.
此題考查了因式分解的應用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.
22.已知等式配方后,利用非負數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長.
此題考查了因式分解的應用,熟練掌握完全平方公式是解本題的關(guān)鍵.
23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.
此題考查了因式分解的應用,熟練掌握平方差公式是解本題的關(guān)鍵.
24.本題考查了分式的化簡求值,解答此題的關(guān)鍵是把分式化到最簡,然后代值計算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
初中數(shù)學因式分解教案篇十七
2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;。
3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;。
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的`方程.
1.情景導入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補助,得到方程:80a+150b=902880.2.
2.新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學習:
4.課堂練習:
1)已知:5xm-2yn=4是二元一次方程,則m+n=;。
2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_。
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);。
(2)二元一次方程解的不定性和相關(guān)性;。
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
本章的課后的方程式鞏固提高練習。
初中數(shù)學因式分解教案篇十八
引導學生觀察上面所列的算式:。
它們與我們以前學過的算式有什么區(qū)別?點出課題(板書課題)。
概念:像這樣含有字母的數(shù)學表達式稱為代數(shù)式。
先判別下列哪些是代數(shù)式?再說說你對代數(shù)式構(gòu)成的看法.【師】:引導學生觀察算式,并與以前學過的算式相比較,得出概念.
在學生交流的基礎(chǔ)上點明代數(shù)式的構(gòu)成。
讓學生經(jīng)歷代數(shù)式概念產(chǎn)生的過程,使學生在數(shù)學活動過程中建構(gòu)自己的數(shù)學知識,獲得對概念的理解,發(fā)展數(shù)學能力。改變學生的學習方式,變"學會"為"會學"。
師生互動探索新知。
??動手計算再探新知。
??歡樂游戲鞏固新知。
對代數(shù)式構(gòu)成的理解:。
(1)一個代數(shù)式由數(shù)、表示數(shù)的字母和運算符號組成.這里的運算指加、減、乘、除、乘方和開方6種運算.
(2)為了今后研究和表述方便,規(guī)定單獨一個數(shù)或者字母也稱代數(shù)式.
【本文地址:http://www.aiweibaby.com/zuowen/11906842.html】