通過總結,我們可以更好地了解自己在學習和工作中的優(yōu)勢和不足。在撰寫總結時,應注重突出重點和核心內容。以下是一些總結的范文,供大家參考和借鑒。
數據挖掘論文摘要篇一
數據挖掘技術在金融業(yè)、醫(yī)療保健業(yè)、市場業(yè)、零售業(yè)和制造業(yè)等很多領域都得到了很好的應用。針對交通安全領域中交通事故數據利用率低的現狀,可以通過數據挖掘對相關交通事故數據進行統(tǒng)計分析,從而發(fā)現其中的關聯,這對提升交通安全水平具有非常重要的意義。
數據挖掘(datamining)即對大量數據進行有效的分類統(tǒng)計,從而整理出有規(guī)律的、有價值的、潛在的未知信息。一般來講,這些數據存在極大的隨機性和不完全性,其包括各行各業(yè)各個方面的數據。數據挖掘是一個結合了數據庫、人工智能、機器學習的學科,涉及統(tǒng)計數據和技術理論等領域。
關聯分析作為數據挖掘中的重要組成部分,其主要作用就是通過數據之間的相互關聯從而發(fā)現數據集中某種未知的聯系。關聯分析最初是在20世紀90年代初被提出來的,一直備受關注。已被廣泛應用于各行各業(yè),包括醫(yī)療體檢、電子商務、商業(yè)金融等各個領域。關聯規(guī)則的挖掘一般可分成兩個步驟[1]:
(1)找出頻繁項集,不小于最小支持度的項集;
(2)生成強關聯規(guī)則,不小于最小置信度的關聯規(guī)則。相對于生成強關聯規(guī)則,找出頻繁項集這一步比較麻煩。l等人在1994年提出的apriori算法是生成頻繁項集的經典算法[2]。apriori算法使用了level-wise搜索的迭代方法,即用k-項集探索(k+1)-項集。apriori算法在整體上可分為兩個部分。
(1)發(fā)現頻集。這個部分是最重要的,開銷相繼產生了各種各樣的頻集算法,專門用于發(fā)現頻集,以降低其復雜度、提高發(fā)現頻集的效率。
(2)利用所獲得的頻繁項集各種算法主要致力產生強關聯規(guī)則。當然頻集構成的聯規(guī)則未必是強關聯規(guī)則,還要檢驗構成的關聯規(guī)則的支持度和支持度是否超過它們的閾值。apriori算法找出頻繁項集分為兩步:連接和剪枝。
(1)連接。集合lk-1為頻繁k-1項集的集合,它通過與自身連接就可以生成候選k項集的集合,記作ck。
(2)剪枝。頻繁k項集的集合lk是ck的子集。剪枝首先利用apriori算法的性質(頻繁項集的所有非空子集都是頻繁的,如果不滿足這個條件,就從候選集合ck中刪除)對ck進行壓縮;然后,通過掃描所有的事務,確定壓縮后ck中的每個候選的支持度;最后與設定的最小支持度進行比較,如果支持度不小于最小支持度,則認為該候選項是頻繁的。目前,在互聯網技術及科學技術的快速發(fā)展下,人工智能、機器識別等技術興起,關聯分析也被越來越多應用其中,并在不斷發(fā)展中提出了大量的改進算法。
近年來,我國越來越多的學者將數據挖掘關聯分析應用于道路交通事故的研究中,主要是分析道路、車輛、行人以及環(huán)境等因素與交通事故之間的某種聯系。pande和abdel-aty[3]通過關聯分析研究了美國佛羅里達州20xx年非交叉口發(fā)生的道路交通事故,重點分析了各個不同的影響因素與交通事故之間的內在聯系,通過研究得出如下結論,道路照明條件不足是引發(fā)道路交通事故的主要因素,除此之外,還發(fā)現天氣惡劣的環(huán)境下道路彎道的直線段也極易發(fā)生交通事故。graves[4]利用數據挖掘技術中的關聯規(guī)則對歐洲道路交通事故進行了分析,主要研究了交通事故與道路設施狀況之間的關聯,通過研究發(fā)現了易導致交通事故發(fā)生的各個道路設施狀況因素,此研究為歐洲路面建設及投資提供了強大的決策支持。我國學者董立巖在研究道路交通事故數據的文獻中,將粗糙集與關聯分析進行了融合,提出了基于偏好信息的決策規(guī)則簡約算法并將其應用其中,通過分析發(fā)現了道路交通事故的未知規(guī)律。王艷玲通過關聯分析中的因子關聯樹模型重點分析了影響道路交通事故最重要的因子,發(fā)現在道路交通事故常見的誘因人、車、路及環(huán)境中對事故影響最大的因子是環(huán)境。許卉瑩等利用關聯分析、聚類分析以及決策樹分析三種數據挖掘技術對道路交通事故數據進行分析,最終得出了科學的道路交通事故預防和交通安全管理決策依據。尚威等在研究中,對大量的道路交通數據進行了有效整合,并在此基礎上按照交通事故相關因素的不同特點整理出與事故發(fā)生有關的字段數據,形成新的事故數據記錄表,然后再根據多維關聯規(guī)則對記錄的相關數據進行分析,從而發(fā)現了事故誘導因素記錄字段值和事故結果字段值組成的道路交通事故頻繁字段的組合。張聽等在充分掌握聚類數據挖掘理論與方法的基礎上,提出了多目標聚類分析框架和一個啟發(fā)式的聚類算法k-wanmi,并將其用在道路交通事故的聚類研究中對不同權重的屬性進行了多目標分析。同樣,許宏科也利用該方法對公路隧道交通流數據進行了聚類分析,其在研究中不僅明確了隧道交通流的峰值規(guī)律,而且還根據這種規(guī)律制訂了隧道監(jiān)控設備的不同控制方案,對提高隧道交通安全的水平做了極大的貢獻。徐磊和方源敏在研究中,提出了由簡化信息熵構造的改進c4.5決策樹算法,并將其應用在交通事故數據的研究中,對交通數據進行了正確分類,發(fā)現了一些隱藏的規(guī)則和知識,為交通管理提供了依據。劉軍、艾力斯木吐拉、馬曉松運用多維關聯規(guī)則分析交通事故記錄,從而找到導致交通事故發(fā)生次數多的主要原因,并且指導相關部門作出相應的決策。楊希剛運用關聯規(guī)則為現實中的交通事故的預防提供依據。吉林大學的吳昊等人,基于關聯規(guī)則的理論基礎,定義了公路交通事故屬性模型,并結合改進后的apriori算法,分析了交通事故歷史數據信息,為有關單位和用戶尋找道路黑點(即事故多發(fā)點)提供了技術支援和決策幫助。
通過數據挖掘中的關聯分析方法雖然能夠對道路交通事故的相關因素進行清晰的分析,但是目前在這一方面的研究仍有不足之處。因為關聯分析在道路交通事故的研究中往往只能片面發(fā)現某一種或幾種因素影響交通事故的規(guī)律,很難將所有影響因素結合起來進行全面系統(tǒng)的分析。然而道路交通事故的發(fā)生通常都是由相應因素導致,而后事故當事人意識到危險源的存在并采取措施,直到事故發(fā)生的連續(xù)過程,整體來看體現了時序性。也就是說,道路交通事故是受到一系列按照時間先后順序排列的影響因素組合共同作用而發(fā)生的,從整體的角度出發(fā)研究事故發(fā)生機理更加科學。
數據挖掘論文摘要篇二
由于信息技術的迅速發(fā)展,現代的檔案管理模式與過去相比,也有了很大的變化,也讓如今的檔案管理模式有了新的挑戰(zhàn)。讓人們對信息即時、大量地獲取是目前檔案管理工作和檔案管理系統(tǒng)急切需要解決的問題。
(一)數據挖掘技術。數據挖掘是指從大量的、不規(guī)則、亂序的數據中,進行分析歸納,得到隱藏的,未知的,但同時又含有較大價值的信息和知識。它主要對確定目標的有關信息,使用自動化和統(tǒng)計學等方法對信息進行預測、偏差分析和關聯分析等,從而得到合理的結論。在檔案管理中使用數據挖掘技術,能夠充分地發(fā)揮檔案管理的作用,從而達到良好的檔案管理工作效果。(二)數據挖掘技術分析。數據挖掘技術分析的方法是多種多樣的,其主要方法有以下幾種:1.關聯分析。指從已經知道的信息數據中,找到多次展現的信息數據,由信息的說明特征,從而得到具有相同屬性的事物特征。2.分類分析。利用信息數據的特征,歸納總結相關信息數據的數據庫,建立所需要的數據模型,從而來識別一些未知的信息數據。3.聚類分析。通過在確定的數據中,找尋信息的價值聯系,得到相應的管理方案。4.序列分析。通過分析信息的前后因果關系,從而判斷信息之間可能出現的聯系。
在進行現代檔案信息處理時,傳統(tǒng)的檔案管理方法已經不能滿足其管理的要求,數據挖掘技術在這方面確有著顯著的優(yōu)勢。首先,檔案是較為重要的信息記錄,甚至有些檔案的重要性大到無價,因此對于此類的珍貴檔案,相關的檔案管理人員也是希望檔案本身及其價值一直保持下去。不過越是珍貴的檔案,其使用率自然也就越高,所以其安全性就很難得到保障,在檔案管理中運用數據挖掘技術,可以讓檔案的信息數據得到分析統(tǒng)計,歸納總結,不必次次實物查閱,這樣就極大地提升了檔案相關內容的安全性,降低檔案的磨損率。并且可以對私密檔案進行加密,進行授權查閱,進一步提高檔案信息的安全性。其次,對檔案進行鑒定與甄別,這也是檔案工作中較困難的過程,過去做好這方面的工作主要依靠管理檔案管理員自己的能力和水平,主觀上的因素影響很大,但是數據挖掘技術可以及時對檔案進行編碼和收集,對檔案進行數字化的管理和規(guī)劃,解放人力資源,提升檔案利用的服務水平。第三,數據挖掘技術可以減少檔案的收集和保管成本,根據檔案的特點和規(guī)律建立的數據模型能為之后的工作人員建立一種標準,提升了檔案的鑒定效率。
(一)檔案信息的收集。在實施檔案管理工作時,首先需要對檔案信息數據的收集??梢赃\用相關檔案數據庫的數據資料,進行科學的分析,制定科學的說明方案,對確定的數據集合類型和一些相關概念的模型進行科學說明,利用這些數據說明,建立準確的數據模型,并以此數據模型作為標準,為檔案信息的快速分類以及整合奠定基礎。例如,在體育局的相關網站上提供問卷,利用問卷來得到的所需要的信息數據,導入數據庫中,讓數據庫模型中保有使用者的相關個人信息,通過對使用者的信息數據進行說明,從而判斷使用者可能的類型,提升服務的準確性。因此,數據挖掘技術為檔案信息的迅速有效收集,為檔案分類以及后續(xù)工作的順利展開,提供了有利條件,為個性化服務的實現提供了保證。(二)檔案信息的分類。數據挖掘技術具有的屬性分析能力,可以將數據庫中的信息進行分門別類,將信息的對象通過不同的特征,規(guī)劃為不同的分類。將數據挖掘技術運用到檔案管理中時,可以簡單快速地找到想要的檔案數據,能根據數據中使用者的相關數據,找尋使用者在數據庫中的信息,使用數據模型的分析能力,分析出使用者的相關特征。利如,在使用者上網使用網址時,數據挖掘技術可以充分利用使用者的搜索數據以及網站的訪問記錄,自動保存用戶的搜索信息、搜索內容、下載次數、時間等,得到用戶的偏好和特征,對用戶可能存在的需求進行預測和分類,更加迅速和準確的,為用戶提供個性化的服務。(三)檔案信息的整合。數據挖掘技術可以對新舊檔案的信息進行整合處理,可以較為簡單地將“死檔案”整合形成為“活檔案”,提供良好的檔案信息和有效的檔案管理。例如,對于企事業(yè)單位而言,培訓新員工的成本往往比聘請老員工的成本要高出很多。對老員工的檔案信息情況進行全體整合,使檔案資源充分發(fā)揮作用,將檔案數據進行總結和規(guī)劃,根據數據之間的聯系確定老員工流失的原因,然后建立清晰、明白的數據庫,這樣可以防止人才流失,也能大大提高檔案管理的效率。
綜上所述,在這個信息技術迅速跳躍發(fā)展的時代,將數據挖掘技術運用到檔案管理工作中是時代發(fā)展的需求與必然結果。利用數據挖掘技術,可以使檔案管理工作的效率大大提升,不僅減少了搜索檔案信息的時間,節(jié)省人力物力,避免資源的浪費,還能幫助用戶在海量的信息數據中,快速找到所需的檔案數據信息。數據挖掘技術的運用,使靜態(tài)的檔案信息變成了可以“主動”為企事業(yè)單位的發(fā)展,提供有效的個性化服務的檔案管家,推動了社會的快速發(fā)展。
[2]宇然,數據挖掘技術研究以及在檔案計算機管理系統(tǒng)中的應用[d].沈陽工業(yè)大學,20xx.
[3]吳秀霞,關于檔案管理方面的數據挖掘分析及應用探討[j].經營管理者,20xx:338.
數據挖掘論文摘要篇三
[1]劉瑩。基于數據挖掘的商品銷售預測分析[j].科技通報。2014(07)。
[2]姜曉娟,郭一娜?;诟倪M聚類的電信客戶流失預測分析[j].太原理工大學學報。2014(04)。
[3]李欣海。隨機森林模型在分類與回歸分析中的應用[j].應用昆蟲學報。2013(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛?;谪惾~斯網絡的客戶流失分析研究[j].計算機工程與科學。2013(03)。
[5]翟健宏,李偉,葛瑞海,楊茹。基于聚類與貝葉斯分類器的網絡節(jié)點分組算法及評價模型[j].電信科學。2013(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補法對隨機缺失的二分類變量資料處理效果的比較[j].鄭州大學學報(醫(yī)學版).2012(05)。
[7]黃杰晟,曹永鋒。挖掘類改進決策樹[j].現代計算機(專業(yè)版).2010(01)。
[8]李凈,張范,張智江。數據挖掘技術與電信客戶分析[j].信息通信技術。2009(05)。
[9]武曉巖,李康?;虮磉_數據判別分析的隨機森林方法[j].中國衛(wèi)生統(tǒng)計。2006(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現代情報。2003(01)。
[13]俞馳?;诰W絡數據挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學2009。
[14]馮軍。數據挖掘在自動外呼系統(tǒng)中的應用[d].北京郵電大學2009。
[15]于寶華?;跀祿诰虻母呖紨祿治鯷d].天津大學2009。
[16]王仁彥。數據挖掘與網站運營管理[d].華東師范大學2010。
[19]賈治國。數據挖掘在高考填報志愿上的應用[d].內蒙古大學2005。
[22]阮偉玲。面向生鮮農產品溯源的基層數據庫建設[d].成都理工大學2015。
[23]明慧。復合材料加工工藝數據庫構建及數據集成[d].大連理工大學2014。
[25]岳雪?;诤A繑祿诰蜿P聯測度工具的設計[d].西安財經學院2014。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學2015。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學2014。
“大數據”到底有多大?根據研究機構統(tǒng)計,僅在2011年,全球數據增量就達到了1.8zb(即1.8萬億gb),相當于全世界每個人產生200gb以上的數據。這種增長趨勢仍在加速,據保守預計,接下來幾年中,數據將始終保持每年50%的增長速度。
縱觀人類歷史,每一次劃時代的變革都是以新工具的出現和應用為標志的。蒸汽機把人們從農業(yè)時代帶入了工業(yè)時代,計算機和互聯網把人們從工業(yè)時代帶入了信息時代,而如今大數據時代已經到來,它源自信息時代,又是信息時代全方位的深化應用與延伸。大數據時代的生產原材料是數據,生產工具則是大數據技術,是對信息時代所產生的海量數據的挖掘和分析,從而快速地獲取有價值信息的技術和應用。
概括來講,大數據有三個特征,可總結歸納為“3v”,即量(volume)、類(variety)、時(velocity)。量,數據容量大,現在數據單位已經躍升至zb級別。類,數據種類多,主要來自業(yè)務系統(tǒng),例如社交網絡、電子商務和物聯網應用。時,處理速度快,時效性要求高,從傳統(tǒng)的事務性數據到實時或準實時數據。
數據挖掘,又稱為知識發(fā)現(knowledgediscovery),是通過分析每個數據,從大量數據中尋找其規(guī)律的技術。知識發(fā)現過程通常由數據準備、規(guī)律尋找和規(guī)律表示3個階段組成。數據準備是從數據中心存儲的數據中選取所需數據并整合成用于數據挖掘的數據集;規(guī)律尋找是用某種方法將數據集所含規(guī)律找出來;規(guī)律表示則是盡可能以用戶可理解的方式(如可視化)將找出的規(guī)律表示出來。
“數據海量、信息缺乏”是相當多企業(yè)在數據大集中之后面臨的尷尬問題。目前,大多數事物型數據庫僅實現了數據錄入、查詢和統(tǒng)計等較低層次的功能,無法發(fā)現數據中存在的有用信息,更無法進一步通過數據分析發(fā)現更高的價值。如果能夠對這些數據進行分析,探尋其數據模式及特征,進而發(fā)現某個客戶、群體或組織的興趣和行為規(guī)律,專業(yè)人員就可以預測到未來可能發(fā)生的變化趨勢。這樣的數據挖掘過程,將極大拓展企業(yè)核心競爭力。例如,在網上購物時遇到的提示“瀏覽了該商品的人還瀏覽了如下商品”,就是在對大量的購買者“行為軌跡”數據進行記錄和挖掘分析的基礎上,捕捉總結購買者共性習慣行為,并針對性地利用每一次購買機會而推出的銷售策略。
隨著社會的進步和信息通信技術的發(fā)展,信息系統(tǒng)在各行業(yè)、各領域快速拓展。這些系統(tǒng)采集、處理、積累的數據越來越多,數據量增速越來越快,以至用“海量、爆炸性增長”等詞匯已無法形容數據的增長速度。
2011年5月,全球知名咨詢公司麥肯錫全球研究院發(fā)布了一份題為《大數據:創(chuàng)新、競爭和生產力的。下一個新領域》的報告。報告中指出,數據已經滲透到每一個行業(yè)和業(yè)務職能領域,逐漸成為重要的生產因素;而人們對于大數據的運用預示著新一波生產率增長和消費者盈余浪潮的到來。2012年3月29日,美國政府在白宮網站上發(fā)布了《大數據研究和發(fā)展倡議》,表示將投資2億美元啟動“大數據研究和發(fā)展計劃”,增強從大數據中分析萃取信息的能力。
在電力行業(yè),堅強智能電網的迅速發(fā)展使信息通信技術正以前所未有的廣度、深度與電網生產、企業(yè)管理快速融合,信息通信系統(tǒng)已經成為智能電網的“中樞神經”,支撐新一代電網生產和管理發(fā)展。目前,國家電網公司已初步建成了國內領先、國際一流的信息集成平臺。隨著三地集中式數據中心的陸續(xù)投運,一級部署業(yè)務應用范圍的拓展,結構化和非結構化數據中心的上線運行,電網業(yè)務數據從總量和種類上都已初具規(guī)模。隨著后續(xù)智能電表的逐步普及,電網業(yè)務數據將從時效性層面進一步豐富和拓展。大數據的“量類時”特性,已在海量、實時的電網業(yè)務數據中進一步凸顯,電力大數據分析迫在眉睫。
當前,電網業(yè)務數據大致分為三類:一是電力企業(yè)生產數據,如發(fā)電量、電壓穩(wěn)定性等方面的數據;二是電力企業(yè)運營數據,如交易電價、售電量、用電客戶等方面的數據;三是電力企業(yè)管理數據,如erp、一體化平臺、協(xié)同辦公等方面的數據。如能充分利用這些基于電網實際的數據,對其進行深入分析,便可以提供大量的高附加值服務。這些增值服務將有利于電網安全檢測與控制(包括大災難預警與處理、供電與電力調度決策支持和更準確的用電量預測),客戶用電行為分析與客戶細分,電力企業(yè)精細化運營管理等等,實現更科學的需求側管理。
例如,在電力營銷環(huán)節(jié),針對“大營銷”體系建設,以客戶和市場為導向,省級集中的95598客戶服務、計量檢定配送業(yè)務屬地化管理的營銷管理體系和24小時面向客戶的營銷服務系統(tǒng),可通過數據分析改善服務模式,提高營銷能力和服務質量;以分析型數據為基礎,優(yōu)化現有營銷組織模式,科學配置計量、收費和服務資源,構建營銷稽查數據監(jiān)控分析模型;建立各種針對營銷的系統(tǒng)性算法模型庫,發(fā)現數據中存在的隱藏關系,為各級決策者提供多維的、直觀的、全面的、深入的分析預測性數據,進而主動把握市場動態(tài),采取適當的營銷策略,獲得更大的企業(yè)效益,更好地服務于社會和經濟發(fā)展。此外,還可以考慮在電力生產環(huán)節(jié),利用數據挖掘技術,在線計算輸送功率極限,并考慮電壓等因素對功率極限的影響,從而合理設置系統(tǒng)輸出功率,有效平衡系統(tǒng)的安全性和經濟性。
公司具備非常好的從數據運維角度實現更大程度信息、知識發(fā)現的條件和基礎,完全可以立足數據運維服務,創(chuàng)造數據增值價值,提供并衍生多種服務。以數據中心為紐帶,新型數據運維的成果將有可能作為一種新的消費形態(tài)與交付方式,給客戶帶來全新的使用體驗,打破傳統(tǒng)業(yè)務系統(tǒng)間各自為陣的局面,進一步推動電網生產和企業(yè)管理,從數據運維角度對企業(yè)生產經營、管理以及堅強智能電網建設提供更有力、更長遠、更深入的支撐。
這個問題太籠統(tǒng),基本上算法和應用是兩個人來做的,可能是數據挖掘職位。做算法的比較少,也比較高級。
其實所謂做算法大多數時候都不是設計新的算法(這個可以寫論文了),更多的是技術選型,特征工程抽取,最多是實現一些已經有論文但是還沒有開源模塊的算法等,還是要求扎實的算法和數據結構功底,以及豐富的分布式計算的知識的,以及不錯的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大讀書數據挖掘崗位都是做應用,數據清洗,用現成的庫建模,如果你自己不往算法或者架構方面繼續(xù)提升,和其他的開發(fā)崗位的性質基本沒什么不同,只要會編程都是很容易入門的。
實際情況不太清楚,由于數據挖掘和大數據這個概念太火了,肯定到處都有人招聘響應的崗位,但是二線城市可能僅僅是停留在概念上,很多實際的工作并沒有接觸到足夠大的數據,都是生搬硬套框架(從我面試的人的工作經驗上看即使是在北上廣深這種情況也比較多見)。
只是在北上廣深,可能接觸到大數據的機會多一些。而且做數據挖掘現在熱點的技術比如python,spark,scala,r這些技術除了在一線城市之外基本上沒有足夠的市場(因為會的人太少了,二線城市的公司找不到掌握這些技術的人,不招也沒人學)。
所以我推測二線城市最多的還是用java+hadoop,或者用java寫一些spark程序。北上廣深和二線城市程序員比待遇是欺負人,就不討論了。
和傳統(tǒng)的前后端程序員相比,最主要的去別就是對編程水平的要求。從我招聘的情況來看,做數據挖掘的人編程水平要求可以降低一個檔次,甚至都不用掌握面向對象。
但是要求技術全面,編程、sql,linux,正則表達式,hadoop,spark,爬蟲,機器學習模型等技術都要掌握一些。前后端可能是要求精深,數據挖掘更強調廣博,有架構能力更好。
打基礎是最重要的,學習一門數據挖掘常用的語言,比如python,scala,r;學習足夠的linux經驗,能夠通過awk,grep等linux命令快速的處理文本文件。掌握sql,mysql或者postgresql都是比較常用的關系型數據庫,搞數據的別跟我說不會用數據庫。
補充的一些技能,比如nosql的使用,elasticsearch的使用,分詞(jieba等模塊的使用),算法的數據結構的知識。
我覺得應當學習,首先hadoop和hive很簡單(如果你用aws的話你可以開一臺emr,上面直接就有hadoop和hive,可以直接從使用學起)。
我覺得如果不折騰安裝和部署,還有l(wèi)inux和mysql的經驗,只要半天到一天就能熟悉hadoop和hive的使用(當然你得有l(wèi)inux和mysql的基礎,如果沒有就先老老實實的學linux和mysql,這兩個都可以在自己的pc上安裝,自己折騰)。
spark對很多人來說才是需要學習的,如果你有java經驗大可以從java入門。如果沒有那么還是建議從scala入門,但是實際上如果沒有java經驗,scala入門也會有一定難度,但是可以慢慢補。
所以總的來說spark才足夠難,以至于需要學習。
如果上面任何一個問題的答案是no,我都不建議直接轉行或者申請高級的數據挖掘職位(因為你很難找到一個正經的數據挖掘崗位,頂多是一些打擦邊球的崗位,無論是實際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現在是學生還是已經再做一些前段后端、運維之類的工作你都有足夠的時間補齊這些基礎知識。
補齊了這些知識之后,第一件事就是了解大數據生態(tài),hadoop生態(tài)圈,spark生態(tài)圈,機器學習,深度學習(后兩者需要高等數學和線性代數基礎,如果你的大學專業(yè)學這些不要混)。
數據挖掘論文摘要篇四
網絡的發(fā)展帶動了電子商務市場的繁華,大量的商品、信息在現有的網絡平臺上患上以交易,大大簡化了傳統(tǒng)的交易方式,節(jié)儉了時間,提高了效力,但電子市場繁華違后暗藏的問題,同樣成為人們關注的焦點,凸起表現在海量信息的有效應用上,如何更為有效的管理應用潛伏信息,使他們的最大功效患上以施展,成為人們現在鉆研的重點,數據發(fā)掘技術的發(fā)生,在必定程度上解決了這個問題,但它也存在著問題,需要不斷改善。
數據發(fā)掘(datamining)就是從大量的、不完整的、有噪聲的、隱約的、隨機的原始數據中,提取隱含在其中的、人們事前不知道的、但又是潛伏有用的信息以及知識的進程。或者者說是從數據庫中發(fā)現有用的知識(kdd),并進行數據分析、數據融會(datafusion)和決策支撐的進程。數據發(fā)掘是1門廣義的交叉學科,它匯聚了不同領域的鉆研者,特別是數據庫、人工智能、數理統(tǒng)計、可視化、并行計算等方面的學者以及工程技術人員。
數據發(fā)掘技術在電子商務的利用。
在對于web的客戶走訪信息的發(fā)掘中,應用分類技術可以在internet上找到未來的潛伏客戶。使用者可以先對于已經經存在的走訪者依據其行動進行分類,并依此分析老客戶的1些公共屬性,抉擇他們分類的癥結屬性及互相間瓜葛。對于于1個新的走訪者,通過在web上的分類發(fā)現,辨認出這個客戶與已經經分類的老客戶的1些公共的描寫,從而對于這個新客戶進行正確的分類。然后從它的分類判斷這個新客戶是有益可圖的客戶群仍是無利可圖的客戶群,抉擇是不是要把這個新客戶作為潛伏的客戶來對于待??蛻舻念愋涂隙ê?,可以對于客戶動態(tài)地展現web頁面,頁面的內容取決于客戶與銷售商提供的產品以及服務之間的關聯。若為潛伏客戶,就能夠向這個客戶展現1些特殊的、個性化的頁面內容。
在電子商務中,傳統(tǒng)客戶與銷售商之間的空間距離已經經不存在,在internet上,每一1個銷售商對于于客戶來講都是1樣的,那末使客戶在自己的銷售站點上駐留更長的時間,對于銷售商來講則是1個挑戰(zhàn)。為了使客戶在自己的網站上駐留更長的時間,就應當全面掌握客戶的閱讀行動,知道客戶的興致及需求所在,并依據需求動態(tài)地向客戶做頁面舉薦,調劑web頁面,提供獨有的1些商品信息以及廣告,以使客戶滿意,從而延長客戶在自己的網站上的駐留的時間。
數據發(fā)掘技術可提高站點的效力,web設計者再也不完整依托專家的定性指點來設計網站,而是依據走訪者的信息特征來修改以及設計網站結構以及外觀。站點上頁面內容的支配以及連接就如超級市場中物品的貨架左右1樣,把擁有必定支撐度以及信任度的相干聯的物品擺放在1起有助于銷售。網站盡量做到讓客戶等閑地走訪到想走訪的頁面,給客戶留下好的印象,增添下次走訪的機率。
通過web數據發(fā)掘,企業(yè)可以分析顧客的將來行動,容易評測市場投資回報率,患上到可靠的市場反饋信息。不但大大降低公司的運營本錢,而且便于經營決策的制訂。
數據發(fā)掘在利用中面臨的問題。
一數據發(fā)掘分析變量的選擇。
數據發(fā)掘的基本問題就在于數據的數量以及維數,數據結構顯的無比繁雜,數據分析變量即是在數據發(fā)掘中技術利用中發(fā)生的,選擇適合的分析變量,將提高數據發(fā)掘的效力,尤其合用于電子商務中大量商品和用戶信息的處理。
針對于這1問題,咱們完整可以用分類的法子,分析出不同信息的屬性和呈現頻率進而抽象出變量,運用到所選模型中,進行分析。
二數據抽取的法子的選擇。
數據抽取的目的是對于數據進行濃縮,給出它的緊湊描寫,如乞降值、平均值、方差值、等統(tǒng)計值、或者者用直方圖、餅狀圖等圖形方式表示,更主要的是他從數據泛化的角度來討論數據總結。數據泛化是1種把最原始、最基本的信息數據從低層次抽象到高層次上的進程??刹扇《嗑S數據分析法子以及面向屬性的歸納法子。
三數據趨勢的。預測。
數據是海量的,那末數據中就會隱含必定的變化趨勢,在電子商務中對于數據趨勢的預測尤為首要,尤其是對于客戶信息和商品信息公道的預測,有益于企業(yè)有效的決策,取得更多地利潤。但如何對于這1趨勢做出公道的預測,現在尚無統(tǒng)1標準可尋,而且在進行數據發(fā)掘進程中大量數據構成文本后格式的非標準化,也給數據的有效發(fā)掘帶來了難題。
針對于這1問題的發(fā)生,咱們在電子商務中可以利用聚類分析的法子,把擁有類似閱讀模式的用戶集中起來,對于其進行詳細的分析,從而提供更合適、更令用戶滿意的服務。聚類分析法子的優(yōu)勢在于便于用戶在查看日志時對于商品及客戶信息有全面及清晰的把握,便于開發(fā)以及執(zhí)行未來的市場戰(zhàn)略,包含自動給1個特定的顧客聚類發(fā)送銷售郵件,為1個顧客聚類動態(tài)地扭轉1個特殊的站點等,這不管對于客戶以及銷售商來講都是成心義。
四數據模型的可靠性。
數據模型包含概念數據模型、邏輯數據模型、物理模型。數據發(fā)掘的模型目前也有多種,包含采集模型、處理模型及其他模型,但不管哪一種模型都不是很成熟存在缺點,對于數據模型不同采取不同的方式利用??赡馨l(fā)生不同的結果,乃至差異很大,因而這就觸及到數據可靠性的問題。數據的可靠性對于于電子商務來講尤為首要作用。
針對于這1問題,咱們要保障數據在發(fā)掘進程中的可靠性,保證它的準確性與實時性,進而使其在最后的結果中的準確度到達最高,同時在利用模型進程中要盡可能全面的分析問題,防止片面,而且分析結果要由多人進行評價,從而最大限度的保證數據的可靠性。
五數據發(fā)掘觸及到數據的私有性以及安全性。
大量的數據存在著私有性與安全性的問題,尤其是電子商務中的各種信息,這就給數據發(fā)掘造成為了必定的阻礙,如何解決這1問題成了技術在利用中的癥結。
為此相干人員在進行數據發(fā)掘進程中必定要遵照職業(yè)道德,保障信息的秘要性。
六數據發(fā)掘結果的不肯定性。
數據發(fā)掘結果擁有不肯定性的特征,由于發(fā)掘的目的不同所以最后發(fā)掘的結果自然也會千差萬別,以因而這就需要咱們與所要發(fā)掘的目的相結合,做出公道判斷,患上出企業(yè)所需要的信息,便于企業(yè)的決策選擇。進而到達提高企業(yè)經濟效益,取得更多利潤的目的。
數據發(fā)掘可以發(fā)現1些潛伏的用戶,對于于電子商務來講是1個不可或者缺的技術支撐,數據發(fā)掘的勝利請求使用者對于指望解決問題的領域有深入的了解,數據發(fā)掘技術在必定程度上解決了電子商務信息不能有效應用的問題,但它在運用進程中呈現的問題也亟待人們去解決。相信數據發(fā)掘技術的改良將推動電子商務的深刻發(fā)展。
數據挖掘論文摘要篇五
近些年來,已經有越來越多的企業(yè)把通信、網絡技術和計算機應用引入企業(yè)的日常管理工作和業(yè)務開發(fā)處理當中,企業(yè)的各類信息化程度也在不斷提高?,F代科技信息技術的廣泛應用已經顯著的提高了企業(yè)的工作效率和經濟效益。但是,在使用信息技術給企業(yè)帶來的方便、快捷的同時,也不斷的出現了新的問題和需求。企業(yè)經過多年積累了大量的歷史數據,這些數據對企業(yè)當前的日常經營活動幾乎沒有任何的使用價值,成了留之無用棄之可惜的累贅。而且儲藏這些歷史數據會對企業(yè)造成很大的困難和費用開銷。為此數據挖掘技術應用在網絡營銷中勢在必行,全面細致的分析數據庫資源并從中提取有價值的信息來對商業(yè)決策進行支持,從而來控制運營成本、提高經濟效益。本文將從網絡營銷中數據挖掘技術的幾個應用進行探討和分析。
客戶關系管理在網絡營銷,商業(yè)競爭是一家以客戶為中心的競技狀態(tài)的客戶,留住客戶,擴大客戶基礎,建立密切的客戶關系,客戶需求分析和創(chuàng)造客戶需求等,是非常關鍵的營銷問題。客戶關系管理,營銷和信息技術領域是一個新概念,這在90年代初,軟件產品在上世紀90年代后期出現的誕生。目前,在國內和國外的此類產品的研究和發(fā)展階段。然而,繼續(xù)與數據倉庫和數據挖掘技術的進步和發(fā)展,客戶關系管理,也是對實際應用階段。crm的目標是管理者與客戶的互動,提升客戶價值,提高客戶滿意度,提高客戶的忠誠度,還發(fā)現,市場營銷和銷售渠道,然后尋找新客戶,提高客戶的利潤貢獻率的最終目的是為了推動社會和經濟效益??蛻絷P系管理的目的,應用是改善企業(yè)與客戶的關系,它是企業(yè)和服務本質管理和協(xié)調,以滿足客戶的需求,企業(yè)政策支持這項工作,并聯系客戶服務加強管理,提高客戶滿意度和品牌忠誠度。
然而,數據挖掘可以應用到很多方面的crm和不同階段,包括以下內容:
(1)“一對一”營銷的內部工作人員認識到,客戶是在這個領域的企業(yè),而不是貿易發(fā)展生存的關鍵。與每一個客戶接觸的過程,也是了解客戶的進程,而且也讓客戶了解業(yè)務流程。
(2)企業(yè)與客戶之間的銷售應該是一種商業(yè)關系不斷向前發(fā)展。客戶和營銷公司成立這種方式,而且有許多方法可以使這種與客戶的關系,往往以改善包括:延長時間,客戶關系和維護客戶關系,以進一步加強相互交往過程中,公司可以在對方取得聯系更多的利潤。
(3)客戶對客戶盈利能力分析。我們的客戶盈利能力是非常不同的,如果你不明白客戶盈利能力,很難制定有效的營銷策略,以獲取最有價值的客戶,或進一步提高客戶的忠誠度的價值。數據挖掘技術可以用來預測客戶在市場條件變化不同的盈利能力。它可以找到所有這些行為和使用模型來預測客戶行為模式的客戶交易盈利水平或新客戶找到高利潤。
(4)在所有部門維護客戶關系的競爭日趨激烈,企業(yè)獲得新客戶的成本上升,因此,保持現有客戶的關系變得越來越重要。對于企業(yè)客戶可分為三大類:沒有價值或者低價值的客戶,不容易失去寶貴的客戶,并不斷尋找更多的優(yōu)惠,更有價值的服務給客戶。前兩個類型的客戶,客戶關系管理,現代化,然而,最具潛力的市場活動,是第三個層次的用戶,而且還特別需求和營銷工具,以保護客戶,可以減緩企業(yè)經營成本,而且還獲得了寶貴的客戶。數據挖掘還可以發(fā)現,由于客戶流失,該公司能夠滿足這些客戶的需要,采取適當措施,保持銷售。
(5)客戶訪問企業(yè)業(yè)務系統(tǒng)資源,包括能夠獲得新客戶的關鍵指標。為了提供這些新的資源,包括企業(yè)搜索客戶誰不知道該產品的客戶,可能是競爭對手,服務客戶。這些細分客戶,潛在客戶可以幫助企業(yè)完成檢查。
通過挖掘客戶的有關數據,可以對客戶進行分類,找出其相同點和不同點,以便為客戶提供個性化的產品和服務,使企業(yè)和客戶之間能夠通過網絡進行有效的溝通和信息交流。例如,關聯分析,客戶在購買某種商品時,有可能會連帶著購買其他的相關產品,這樣購買的某種商品和連帶購買的其他相關產品之間就存在著某種關聯,企業(yè)可以針對這種關聯進行分析,分析出規(guī)律,已制定有效的營銷策略來長效的起到吸引客戶連帶消費,購買其他產品的營銷策略。它能夠智能化地從大量的數據中提取出有用的信息和知識,為企業(yè)的管理人員提供決策支持。數據挖掘技術使數據庫技術進入了一個更高級的階段,它不僅能對過去的數據進行查詢和遍歷,并且能夠找出過去數據之間的潛在聯系,從而促進信息的傳遞。
客戶群體的劃分也會用到數據挖掘,沒有基于數據挖掘的客戶劃分,就沒有真正的差異化、個性化營銷,就沒有現代營銷的根本。做為企業(yè)的領導者,不管你的企業(yè)是賣產品的還是賣服務,第一個應該準確把握的商業(yè)問題就是你的目標客戶群體,他們是誰,有什么特點和行為模式,有那些獨特的喜好可以作為營銷的突破口,有多大的多長久的贏利價值。這些問題是你整個商業(yè)運做的核心和基礎,不了解你的客戶,下面的路就根本別指望能走下去了。數據挖掘營銷應用中的客戶群體劃分可以科學有效的解決這個問題,也能給企業(yè)找到一個合理的營銷定位。
數據挖掘技術在90年代開始應用于信用評估與風險分析中。企業(yè)在進行網絡營銷的過程中會受到各種各樣的來自買方的信用風險的威脅,隨著市場競爭的加劇,貿易信用已經成為企業(yè)成功開發(fā)客戶和加強客戶關系的重要條件。客戶信用管理主要是搜集儲存客戶信息,因為客戶既是企業(yè)最大的財富來源,也是風險的主要來源。為了讓企業(yè)在這方面更少的受到威脅,可以利用數據挖掘技術發(fā)現企業(yè)經常面臨的詐騙行為或延付貨款行為,進而進行回避。同時盡可能把客戶信用風險控制在交易發(fā)生之前是成功信用管理的根本。因此,充分獲取客戶的詳細資料并做出安全的決策非常重要。
客戶信用風險管理應用數據挖掘技術的優(yōu)勢:
(3)數據挖掘技術也可以適應各種形式的數據,數據挖掘可以是連續(xù)的數據,離散數據,而其他形式的數據處理,以便在更大的靈活性,在選擇指標時,更加符合客觀實際的信用風險模型。
為現代信用風險管理方法有兩個:第一是所謂的指數法,其基礎是信用相關業(yè)務的某些特性來企業(yè)信用評估;第二類是所謂的結構化方法,根據歷史數據和市場數據模擬在企業(yè)資產價值變化的動態(tài)持續(xù)的過程,然后確定其企業(yè)信用的位置。
網絡營銷作為適應網絡經濟時代的網絡虛擬市場的新營銷理論,是市場營銷理念在新時期的發(fā)展和應用。它能夠智能化地從大量的數據中提取出有用的信息和知識,為企業(yè)的管理人員提供決策支持。數據挖掘技術使數據庫技術進入了一個更高級的階段,它不僅能對過去的數據進行查詢和遍歷,并且能夠找出過去數據之間的潛在聯系,從而促進信息的傳遞。
1.維護原有客戶,挖掘潛在新客戶。
網絡營銷中銷售商可以通過客戶的訪問記錄來挖掘出客戶的潛在信息,跟據客戶的興趣與需求向客戶有針對性的做個性化的推薦,制定出客戶滿意的產品服務。在做好維護原有老客戶的基礎上,通過對數據的挖掘,利用分類技術,也可以尋找出潛在的客戶,通過對web日志的挖掘,可以對已經存在的訪問者進行分類,根據這種精細的分類,還可以找到潛在的新客戶。
2.制定營銷策略,優(yōu)化促銷活動。
對于保留的商品訪問記錄和銷售記錄進行挖掘,可以發(fā)現客戶的訪問規(guī)律,了解客戶消費的生命周期,起伏規(guī)律,結合市場形勢的變化,針對不同的商品和客戶群制定不同的營銷策略,保證促銷活動針對客戶群有的放矢,收到意想不到的效果。
3.降低運營成本,提高競爭力。
網絡營銷的管理者可以通過數據挖掘發(fā)現市場反饋的可靠信息,預測客戶未來的購買行為,有針對性的進行營銷活動,還可以根據產品訪問者的瀏覽習慣來覺定產品廣告的位置,使廣告有針對性的起到宣傳的效果。從而提高廣告的投資回報率,從而能降低運營成本,提高且的核心競爭力。
4.對客戶進行個性化推薦。
根據客戶采礦活動對網絡規(guī)則,有針對性的網絡營銷平臺,提供“個性化”服務。個性化服務是在服務策略和服務內容的不同客戶的不同,其本質是客戶為中心的web服務的需求。它通過收集和分析客戶資料,以了解客戶的利益和購買行為,然后采取主動,以達到建議的服務。
5.完善網絡營銷網站的設計。
1馮英健著,《網絡營銷基礎與實踐》,清華大學出版社,20xx年1月第1版。
2.,and.sky-shairoh,esinknowledgediscoveryanddatamining.aaai/mitpress,menlopark,ca.1996:。
數據挖掘論文摘要篇六
摘要:大數據和智游都是當下的熱點,沒有大數據的智游無從談“智慧”,數據挖掘是大數據應用于智游的核心,文章探究了在智游應用中,目前大數據挖掘存在的幾個問題。
隨著人民生活水平的進一步提高,旅游消費的需求進一步上升,在云計算、互聯網、物聯網以及移動智能終端等信息通訊技術的飛速發(fā)展下,智游應運而生。大數據作為當下的熱點已經成了智游發(fā)展的有力支撐,沒有大數據提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強、信息依存度高的產業(yè)[1],這讓其與大數據自然產生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內外對于智游還沒有一個統(tǒng)一的學術定義,但在與大數據相關的描述中,有學者從大數據挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數據,并深入挖掘這些數據的潛在重要價值信息,然后利用這些信息為相關部門或對象提供服務[2]。這一定義充分肯定了在發(fā)展智游中,大數據挖掘所起的至關重要的作用,指出了在智游的過程中,數據的收集、儲存、管理都是為數據挖掘服務,智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時間基本實現智游的目標[3],過去幾年,國家旅游局的相關動作均為了實現這一目標。但是,在借助大數據推動智游的可持續(xù)性發(fā)展中,大數據所產生的價值卻亟待提高,原因之一就是在收集、儲存了大量數據后,對它們深入挖掘不夠,沒有發(fā)掘出數據更多的價值。
智游的發(fā)展離不開移動網絡、物聯網、云平臺。隨著大數據的不斷發(fā)展,國內許多景區(qū)已經實現wi-fi覆蓋,部分景區(qū)也已實現人與人、人與物、人與景點之間的實時互動,多省市已建有旅游產業(yè)監(jiān)測平臺或旅游大數據中心以及數據可視化平臺,從中進行數據統(tǒng)計、行為分析、監(jiān)控預警、服務質量監(jiān)督等。通過這些平臺,已基本能掌握跟游客和景點相關的數據,可以實現更好旅游監(jiān)控、產業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設還需加強。雖然通訊網絡已基本能保證,但是大部分景區(qū)還無法實現對景區(qū)全面、透徹、及時的感知,更為困難的是對平臺的建設。在數據共享平臺的建設上,除了必備的硬件設施,大數據實驗平臺還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務、旅行社、旅游網站等。如此多的部門相關聯,要想建立一個完整全面的大數據實驗平臺,難度可想而知。
大數據時代缺的不是數據,而是方法。大數據在旅游行業(yè)的應用前景非常廣闊,但是面對大量的數據,不懂如何收集有用的數據、不懂如何對數據進行挖掘和利用,那么“大數據”猶如礦山之中的廢石。旅游行業(yè)所涉及的結構化與非結構化數據,通過云計算技術,對數據的收集、存儲都較為容易,但對數據的挖掘分析則還在不斷探索中。大數據的挖掘常用的方法有關聯分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數據進行挖掘。其中,相關性分析方法通過關聯多個數據來源,挖掘數據價值。但針對旅游數據,采用這些方法挖掘數據的價值信息,難度也很大,因為旅游數據中冗余數據很多,數據存在形式很復雜。在旅游非結構化數據中,一張圖片、一個天氣變化、一次輿情評價等都將會對游客的旅行計劃帶來影響。對這些數據完全挖掘分析,對游客“行前、行中、行后”大數據的實時性挖掘都是很大的挑戰(zhàn)。
2017年,數據安全事件屢見不鮮,伴著大數據而來的數據安全問題日益凸顯出來。在大數據時代,無處不在的數據收集技術使我們的個人信息在所關聯的數據中心留下痕跡,如何保證這些信息被合法合理使用,讓數據“可用不可見”[4],這是亟待解決的問題。同時,在大數據資源的開放性和共享性下,個人隱私和公民權益受到嚴重威脅。這一矛盾的存在使數據共享程度與數據挖掘程度成反比。此外,經過大數據技術的分析、挖掘,個人隱私更易被發(fā)現和暴露,從而可能引發(fā)一系列社會問題。
大數據背景下的旅游數據當然也避免不了數據的安全問題。如果游客“吃、住、行、游、娛、購”的數據被放入數據庫,被完全共享、挖掘、分析,那游客的人身財產安全將會受到嚴重影響,最終降低旅游體驗。所以,數據的安全管理是進行大數據挖掘的前提。
大數據背景下的智游離不開人才的創(chuàng)新活動及技術支持,然而與專業(yè)相銜接的大數據人才培養(yǎng)未能及時跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數據統(tǒng)計未來3~5年大數據行業(yè)將面臨全球性的人才荒,國內智游的構建還缺乏大量人才。
在信息化建設上,加大政府投入,加強基礎設施建設,整合結構化數據,抓取非結構化數據,打通各數據壁壘,建設旅游大數據實驗平臺;在挖掘方法上,對旅游大數據實時性數據的挖掘應該被放在重要位置;在數據安全上,從加強大數據安全立法、監(jiān)管執(zhí)法及強化技術手段建設等幾個方面著手,提升大數據環(huán)境下數據安全保護水平。加強人才的培養(yǎng)與引進,加強產學研合作,培養(yǎng)智游大數據人才。
參考文獻。
數據挖掘論文摘要篇七
計算機技術的不斷發(fā)展,信息技術不斷加強,在社會新的發(fā)展趨勢下,以往的傳統(tǒng)管理模式落后于現代化發(fā)展的管理水平。為了創(chuàng)新檔案管理的模式,提高檔案管理的質量,在現代檔案信息管理系統(tǒng)中引入數據挖掘技術。
數據挖掘技術是一種基于統(tǒng)計學、人工智能等等技術基礎上,能夠自動分析原有數據,從而做出歸納整理,并對其潛在的模式進行挖掘的決策支持過程,簡單來說就是從一系列復雜的數據中提取人們需要的潛在性信息。
二十世紀末,計算機挖掘技術產生。其一般用到的方法有:
(1)孤立點分析。孤立點分析法主要用于對于特殊信息的挖掘。
(2)聚類分析。聚類分析方法是在指定的對象中,對其價值聯系進行搜索。
(3)分類分析。分類分析就是找出具有一定特點的數據,對需要解讀的數據進行識別。
(4)關聯性分析。關聯性分析方法是對指定數據中出現頻繁的數據進行挖掘。
(5)序列分析。與關聯性分析法一樣,由數據之間內在的聯系得出潛在的關聯。
1.3計算機挖掘技術的形式分析。
計算機挖掘技術在使用過程中,收集到的數據不同,數據收集的方法也就不同。在對數據挖掘技術進行形式分析的時候,主要用到:分類形式、粗糙集形式、相關規(guī)則形式。
系統(tǒng)中的應用計算機挖掘技術,能夠將隱藏的信息挖掘出來并進行總結和利用,運用到檔案管理中來,在充分發(fā)揮挖掘技術作用的同時,極大的提高了檔案數據的利用價值。數據挖掘技術在檔案管理系統(tǒng)中,一般用到的方法為:
2.1收集法。
該方法在對數據庫中的數據進行分析的基礎上,建立對已知數據詳細描述的概念模型。然后將每個測試的樣本與此模型進行比較,若有一個模型在測試中被認可,就可以以此模型對管理的對象分類。例如,檔案管理員就某事向客戶進行問卷調查并將答案輸入到數據庫中。在該數據庫中,對客戶的回答進行具體屬性描述,當有新的回答內容輸入的時候,系統(tǒng)會自動對該客戶需求分類,在減輕管理員工作壓力的同時,提高了檔案管理的效率。
2.2保留法。
該方法是防止老客戶檔案丟失并將客戶留住的過程。對于任何一個企業(yè)來說,發(fā)展一個新的客戶的成本要遠遠高于留住一個來客戶的成本。在客戶保留的過程中,對客戶檔案流失原因的分析至關重要,因此,采用挖掘技術對其進行分析是必要的。
2.3分類法。
通過計算機挖掘技術對檔案進行分類,按照不同的性質進行系統(tǒng)的劃分,將所有相似或相通的檔案進行整理,在人們需要的時候,能夠快速的被提取出來,提高了檢索的效率和分類的專業(yè)性。
計算機挖掘技術的應用,對檔案管理方式的不斷完善有著極其重要的意義,其重要性主要體現在:
3.1對檔案的保護更全面。
一部分具有歷史意義的檔案,隨著保存的時間不斷增加,其年代感加強,意義和價值增大。相應的,利用的頻率會隨著利用的價值增加,也更容易被損壞從而導致檔案信息壽命折損,此外,管理不當造成泄密,使檔案失去了原本的利用價值,這種存在于檔案管理和利用之間的矛盾,使得檔案管理面臨著巨大的難題。挖掘技術的運用,緩解了這種矛盾,在檔案管理工作中具有重要的意義。
3.2提升檔案管理的質量。
在檔案信息管理系統(tǒng)中引入計算機挖掘技術,使得檔案信息管理打破了傳統(tǒng)的模式,通過挖掘技術,對管理的模式有了極大的創(chuàng)新,工作人員以往繁重的工作壓力得到釋放,時間和精力更加豐富,在對檔案管理的細節(jié)方面也就更加注意,同時也加快了對檔案的數據信息進行處理的速度,提升檔案管理的整體質量。
綜上所述,計算機數據挖掘技術涉及的內容很廣,對挖掘技術的運用,使得各行各業(yè)的發(fā)展水平得到了很大的提高,推動社會經濟的發(fā)展,帶動社會發(fā)展模式的創(chuàng)新。在檔案管理中使用計算機挖掘技術,使得檔案信息保存的方法及安全性有了很大的提高。同時,也需要檔案信息管理人員在進行檔案信息管理的時候,能合理利用計算機信息挖掘技術,在提高工作效率的同時,促進管理模式的不斷創(chuàng)新,以適應時代發(fā)展的要求。
數據挖掘論文摘要篇八
發(fā)現的是用戶感興趣的知識;發(fā)現的知識應當能夠被接受、理解和運用。也就是發(fā)現全部相對的知識,是具有特定前提與條件,面向既定領域的,同時還容易被用戶接受。數據挖掘屬于一種新型的商業(yè)信息處理技術,其特點為抽取、轉化、分析商業(yè)數據庫中的大規(guī)模業(yè)務數據,從中獲得有價值的商業(yè)數據。簡單來說,其實數據挖掘是一種對數據進行深入分析的方法。因此,可以描述數據挖掘為:根據企業(yè)設定的工作目標,探索與分析企業(yè)大量數據,充分揭示隱藏的、未知的規(guī)律性,并且將其轉變?yōu)榭茖W的方法。數據挖掘發(fā)現的最常見知識包括:
1.1.1廣義知識體現相同事物共同性質的知識,是指類別特點的概括描述知識。按照數據的微觀特點對其表征的、具有普遍性的、極高概念層次的知識積極發(fā)現,是對數據的高度精煉與抽象。發(fā)現廣義知識的方法與技術有很多,例如數據立方體和歸約等。
1.1.2關聯知識體現一個事件與其他事件之間形成的關聯知識。假如兩項或者更多項之間形成關聯,則其中一項的屬性數值就能夠借助其他屬性數值實行預測。
1.1.3分類知識體現相同事物共同特點的屬性知識與不同事物之間差異特點知識。
1.2.1明確業(yè)務對象對業(yè)務問題清楚定義,了解數據挖掘的第一步是數據挖掘目的。挖掘結果是無法預測的,但是研究的問題是可預見的,僅為了數據挖掘而數據挖掘一般會體現出盲目性,通常也不會獲得成功?;谟脩籼卣鞯碾娮由虅諗祿诰蜓芯縿⒎遥ɑ葜萆藤Q旅游高級職業(yè)技術學校,廣東惠州516025)摘要:隨著互聯網的出現,全球范圍內電子商務正在迅速普及與發(fā)展,在這樣的環(huán)境下,電子商務數據挖掘技術應運而生。電子商務數據挖掘技術是近幾年來數據挖掘領域中的研究熱點,基于用戶特征的電子商務數據挖掘技術研究將會解決大量現實問題,為企業(yè)確定目標市場、完善決策、獲得最大競爭優(yōu)勢,其應用前景廣闊,促使電子商務企業(yè)更具有競爭力。主要分析了電子商務內容、數據挖掘技術和過程、用戶細分理論,以及基于用戶特征的電子商務數據挖掘。
1.2.2數據準備第一選擇數據:是按照用戶的挖掘目標,對全部業(yè)務內外部數據信息積極搜索,從數據源中獲取和挖掘有關數據。第二預處理數據:加工選取的數據,具體對數據的完整性和一致性積極檢查,并且處理數據中的噪音,找出計算機丟失的數據,清除重復記錄,轉化數據類型等。假如數據倉庫是數據挖掘的對象,則在產生數據庫過程中已經形成了數據預處理。
1.2.3變換數據轉換數據為一個分析模型。這一分析模型是相對于挖掘算法構建的。構建一個與挖掘算法適合的分析模型是數據挖掘獲得成功的重點??梢岳猛队皵祿斓南嚓P操作對數據維度有效降低,進一步減少數據挖掘過程中數據量,提升挖掘算法效率。
1.2.4挖掘數據挖掘獲得的經濟轉化的數據。除了對選擇科學挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過程都是相互的,也就是用戶對某些挖掘參數能夠積極控制。
1.2.5評價挖掘結果這個過程劃分為兩個步驟:表達結果和評價結果。第一表達結果:用戶能夠理解數據挖掘得到的模式,可以通過可視化數據促使用戶對挖掘結果積極理解。第二評價結果:用戶與機器對數據挖掘獲得的模式有效評價,對冗余或者無關的模式及時刪除。假如用戶不滿意挖掘模式,可以重新挑選數據和挖掘算法對挖掘過程科學執(zhí)行,直到獲得用戶滿意為止。
用戶細分是指按照不同用戶的屬性劃分用戶集合。目前學術界和企業(yè)界一般接受的是基于用戶價值的細分理論,其不僅包含了用戶為企業(yè)貢獻歷史利潤,還包含未來利潤,也就是在未來用戶為企業(yè)可能帶來的利潤總和?;谟脩魞r值的細分理論選擇客戶當前價值與客戶潛在價值兩個因素評價用戶。用戶當前價值是指截止到目前用戶對企業(yè)貢獻的總體價值;用戶潛在價值是指未來用戶可能為企業(yè)創(chuàng)造的價值總和。每個因素還能夠劃分為兩個高低檔次,進一步產生一個二維的矩陣,把用戶劃分為4組,價值用戶、次價值用戶、潛在價值用戶、低價值用戶。企業(yè)在推廣過程中根據不同用戶應當形成對應的方法,投入不同的資源。很明顯對于企業(yè)來說價值用戶最重要,被認為是企業(yè)的玉質用戶;其次是次價值用戶,被認為是金質用戶,雖然數量有限,卻為企業(yè)創(chuàng)造了絕大部分的利潤;其他則是低價值用戶,對企業(yè)來說價值最小,成為鉛質用戶,另外一類則是潛在價值用戶。雖然這兩類用戶擁有較多的數量,但是為企業(yè)創(chuàng)造的價值有限,甚至很小。需要我們注意的是潛在價值用戶利用再造用戶關系,將來極有可能變成價值用戶。從長期分析,潛在價值用戶可以是企業(yè)的隱形財富,是企業(yè)獲得利潤的基礎。將采用數據挖掘方法對這4類用戶特點有效挖掘。
3.1設計問卷。
研究的關鍵是電子商務用戶特征的數據挖掘,具體包含了價值用戶特征、次價值用戶特征、潛在價值用戶特征,對電子商務用戶的認知度、用戶的需求度分析。問卷內容包括3部分:其一是為被調查者介紹電子商務的概念與背景;其二是具體調查被調查對象的個人信息,包含了性別、年齡、學歷、感情情況、職業(yè)、工作、生活地點、收入、上網購物經歷;其三是問卷主要部分,是對用戶對電子商務的了解、需求、使用情況的指標設計。
3.2調查方式。
本次調查的問卷主體是電腦上網的人群,采用隨機抽象的方式進行網上訪問。一方面采用大眾聊天工具,利用電子郵件和留言的方式發(fā)放問卷,另一方面在大眾論壇上邀請其填寫問卷。
(1)選擇數據挖掘的算法利用clementine數據挖掘軟件,采用c5.o算法挖掘預處理之后數據。
(2)用戶數據分析。
1)電子商務用戶認知度分析按照調查問卷的問題“您知道電子商務嗎?”得到對電子商務用戶認知情況的統(tǒng)計,十分了解20.4%,了解30.1%,聽過但不了解具體使用方法40.3%,從未聽過8.9%。很多人僅聽過電子商務,但是并不清楚具體的功能與應用方法,甚至有一小部分人沒有聽過電子商務。對調查問卷問題“您聽過電子商務的渠道是什么?”,大部分用戶是利用網了解電子商務的,占40.2%;僅有76人是利用紙質報刊雜志上知道電子商務的并且對其進行應用;這也表明相較于網絡宣傳紙質媒體推廣電子商務的方法缺乏有效性。
2)電子商務用戶需求用戶希求具體是指使用產品服務人員對應用產品或服務形成的需求或者期望。按照問題“假如你曾經使用電子商務,你覺得其用途怎樣,假如沒有使用過,你覺得其對自己有用嗎?”得到了認為需要和十分需要的數據,覺得電子商務有用的用戶為40.7%,不清楚是否對自己有用的用戶為56.7%,認為不需要的僅有2.4%。
3)電子商務用戶應用意愿應用意愿是指消費者對某一產品服務進行應用或者購買的一種心理欲望。按照問題“假如可以滿足你所關心的因素,未來你會繼續(xù)應用電子商務嗎?”獲得的數據可知,在滿足各種因素時,將來一年之內會應用電子商務的用戶為78.2%,一定不會應用電子商務的用戶為1.4%。表明用戶形成了較為強烈的應用電子商務欲望,電子商務發(fā)展前景很好?;谟脩籼卣鞯碾娮由虅諗祿芯?,電子商務企業(yè)通過這一結果能夠更好地實行營銷和推廣,對潛在用戶積極定位,提高用戶體驗,積極挖掘用戶價值。分析為企業(yè)準確營銷和推廣企業(yè)提供了一個有效的借鑒。
互聯網中數據是最寶貴的資源之一,大量數據中包含了很大的潛在價值,對這些數據深入挖掘對互聯網商務、企業(yè)推廣、傳播信息發(fā)揮了巨大的作用。近些年來,數據挖掘技術獲得了信息產業(yè)的極大重視,具體原因是出現了大量的數據,能夠廣泛應用,并且需要轉化數據成為有價值的信息知識。通過基于用戶特征的電子商務數據挖掘研究,促使電子商務獲得巨大發(fā)展機會,發(fā)現潛在用戶,促使電子商務企業(yè)精準營銷。
數據挖掘論文摘要篇九
隨著互聯網技術的迅速發(fā)展,尤其移動互聯網的爆發(fā)性發(fā)展,越來越多的公司憑借其備受歡迎的系統(tǒng)和app如雨后春筍般發(fā)展起來,如滴滴打車、共享單車等。海量數據自此不再是google等大公司的專利,越來越多的中小型企業(yè)也可以擁有海量數據。如何從浩如煙海的數據中挖掘出令人感興趣和有用的知識,成為越來越多的公司急需解決的問題。因此,他們對數據挖掘分析師求賢若渴。在這一社會需求下,培養(yǎng)出優(yōu)秀的數據挖掘分析師,是各個高校目前急需完成的一項任務。
目前,各大高等院校本科階段爭相開設數據挖掘課程。然而,該課程是一門相對較新的交叉學科,涵蓋了概率統(tǒng)計、機器學習、數據庫等學科的知識內容,難度較大。因此,大部分高校一般將此課程開設在研究生階段,在本科生中開設此課程的學校相對較少。另外,不同的學校將其歸入不同的專業(yè)中,如計算機專業(yè)、信息管理專業(yè)、統(tǒng)計學、醫(yī)學等。可以說,這一課程基本上處于探索的過程中。我院災害信息系于20xx年在信息管理與信息系統(tǒng)本科學生中首次開設了該課程。通過開設此課程,學生能夠掌握數據挖掘的基本原理和各種挖掘算法等,掌握數據分析和處理、高級數據庫編程等技能,達到數據聚類、分類、關聯分析的目的。然而,通過前期教學過程,我們發(fā)現教學效果不理想,存在很多問題。
1、數據內驅力差。
以往數據挖掘課程重點講授數據挖掘算法,對數據源的獲取和處理極少獲取。目前各大教材都在使用一些公共數據資源,這些數據資源有些已經非常陳舊了,比如20世紀80年代的加州房價數據。這些數據脫離現實,分析這些數據,學生沒有任何興趣和學習動力,也就無法發(fā)現價值。
大量具有難度的數據挖掘算法的學習,使學生喪失了學習興趣,學完即忘,不知所用。
3、忽視對數據預處理過程的學習。
以往所使用的公共數據源或軟件自帶數據源,數據量小,需要的預處理工作比較少;這部分內容基本只安排一次理論課、一次實驗課。而實際通過爬蟲獲取的數據源數據量大;這部分工作量比較大,需要占到整個數據挖掘工作量的一半以上。因此,一次理論課和一次實驗課是無法讓學生掌握數據預處理技能的。
4、算法編程實現難度較大。
要求學生學習一門新的編程語言,如r語言、python語言,對本科非計算機專業(yè)的學生來說難度是非常大的,尤其是課時安排只有48課時。
學生能夠理解課堂案例,但在實際應用中,無法完成整個數據分析流程。
該課程的教學對象是信息管理與信息系統(tǒng)專業(yè)本科大四學生。因此,培養(yǎng)實際應用人才,使其完成整個實際數據挖掘分析流程是教師的教學目的。筆者對智聯招聘、中華英才網、51job等幾個大型招聘網站的幾百個數據挖掘分析師相關職位進行分析,主要分析了相關職位的工作內容、職位要求以及需求企業(yè)。數據分析師主要利用數據挖掘工具對運營數據等多種數據源進行預處理、建模、挖掘、分析及優(yōu)化。該職位是受業(yè)務驅動的,特點是將現有數據與業(yè)務相結合,最大程度地變現數據價值。該職位對計算機編程等相關技術不作要求,但是需要有深厚的數據挖掘理論基礎,熟練使用主流的數據挖掘(或統(tǒng)計分析)工具?;诖?,教師可以采取以下策略進行教學改革。
1、加強對業(yè)務數據的理解。
數據挖掘分析師是受業(yè)務驅動的,所以要理解實際業(yè)務,明確本次數據挖掘要解決什么問題。教師可以構建案例庫,包括教師案例庫、學生討論案例庫。教師案例庫由教師構建,可用于課堂講授。學生案例庫由學生分組構建,并安排討論課,由學生講述、討論并提交報告。
2、加強對數據的獲取。
對學生感興趣的數據源進行挖掘,這樣才能更好地幫助學生理解吸收知識。因此,可以教授學生爬蟲技術,編寫爬蟲程序,使其自主獲取感興趣的數據。
3、加強對數據的預處理工作。
在數據挖掘之前使用數據預處理技術,能夠顯著提高數據挖掘模式的質量,降低實際挖掘所需要的時間,應將其作為整門課程的重點進行學習。增加理論課程和實驗課時,使學生掌握數據清理、數據集成、數據變換、數據歸納等數據預處理技術,并能夠應對各種復雜數據源,最終利用爬蟲程序獲取的各種數據源進行預處理工作。
教師可以選擇spssmodeler這款所見即所得的數據挖掘軟件作為配套實驗平臺。該軟件具有必需的數據預處理工具及預設的挖掘算法,學生可以把注意力放在要挖掘的數據及相關需求上,設定挖掘的主題,然后通過鼠標的點擊拖拉即可完成相關主題的數據挖掘過程。學生最終可對自己獲取并已處理過的數據進行挖掘分析。
5、加強教師外出培訓學習。
數據挖掘技術以及大數據技術是近來比較新穎而且發(fā)展迅速的技術。教師長期身處三尺講臺之上,遠離了新技術,脫離了實際。因此,需派遣教師到知名高校學習數據挖掘教學技術,到培訓機構進行系統(tǒng)學習,到企業(yè)進行實戰(zhàn)學習。
基于以上分析,形成了新的數據挖掘理論課程內容和實踐課程內容,安排如表1和表2所示。共安排48學時,其中理論課24學時,實驗課24學時。理論課重點講授數據的獲取、數據的理解、數據的預處理以及常用挖掘算法。實驗課重點學習基于spssmodeler的數據挖掘,對理論課的內容進行實踐。整個學習以工程項目為載體,該工程貫穿整個學習過程。學生通過爬蟲程序獲取自己感興趣的數據源,根據課程進度,逐步完成后續(xù)數據的理解,再進行預處理,建模分析,評估整個過程。在課程結束時,完成整個項目,并提交報告。
在數字時代,越來越多的企業(yè)急需數據挖掘分析人才。教師應以培養(yǎng)實際應用人才為目的,充分培養(yǎng)學生對數據挖掘的學習興趣,以工程項目為載體,貫穿整個課程周期。在教學中,打牢數據獲取、理解預處理這一基石,加強建模挖掘分析,弱化對晦澀算法的編程學習,使學生真正掌握數據挖掘技術,滿足社會需求。
數據挖掘論文摘要篇十
:中醫(yī)臨床理論多是由著名醫(yī)家的經驗升華形成的,反映了臨床上不同學術派系以及不同學科的優(yōu)勢特征,但這其中不免摻雜了個人主觀經驗,因此本文就中醫(yī)臨床理論研究中醫(yī)病案為基礎,對應用病案數據挖掘結果來總結和重建中醫(yī)臨床理論的方式進行了探討,認為該方法可為完善中醫(yī)臨床理論提供客觀的數據支持,使中醫(yī)臨床理論的來源更具有科學性。
科研一體化中醫(yī)臨床理論決定著中醫(yī)臨床學科的發(fā)展水平,是中醫(yī)臨床發(fā)展的動力。從古至今,中醫(yī)名醫(yī)名家輩出,他們的臨床經驗和學術思想不斷提煉升華,逐步形成了傳統(tǒng)的中醫(yī)臨床理論。新中國成立以來,中醫(yī)不斷汲取最新的科技成果,進行了大量臨床實踐,而中醫(yī)臨床理論發(fā)展緩慢,己經成為制約當代中醫(yī)學術發(fā)展的瓶頸,對如何開拓中醫(yī)臨床理論的研究,可謂見仁見智,但各種新的臨床理論常常裹挾著“各家學說”。在當今大數據和信息技術發(fā)達的背景下,運用數據挖掘技術對中醫(yī)病案進行大數據分析,客觀揭示當前中醫(yī)臨床理論的本來面目,盡可能減少個人見解的偏倚,對于推動中醫(yī)臨床理論發(fā)展具有重要的現實意義,本文就基于病案數據挖掘的中醫(yī)臨床理論重建進行探討如下。
1.1中醫(yī)古典文獻是傳統(tǒng)中醫(yī)臨床理論的基礎。
眾所周知,中醫(yī)之所以能夠屹立千年不倒,很大一部分原因是因為其有獨特的理論體系,而在這其中,中醫(yī)古典文獻做出的貢獻應該是第一位的。因為這些古典文獻的記載和流傳,為后世的醫(yī)家提供了參考和借鑒,使得我們從前人的思維上不斷創(chuàng)新,與臨床進行有機結合,不斷研究出新的適合于當前時代的臨床理論。例如,中醫(yī)學無論在理論研究還是在臨床治療方面的豐富,許多根本性的理論都是源自于《內經》。該書創(chuàng)立了藏象、經絡、診法等各方面的理論[1],勾畫了中醫(yī)理論的雛形,構建了中醫(yī)理論體系的基本框架。到后期東漢時期張仲景的《傷寒論》則是創(chuàng)造了以六經辨證和臟腑辨證為主的局面,其所倡導的“觀其脈證,知犯何逆,隨證治之”使得辨證論治登上新的高度。到了金元時期,就是百家爭鳴的時代,這期間以金元四大家為主的學派開始萌生,留下了許多可供后世醫(yī)家參考的古典文獻并創(chuàng)建了不同的臨床理論,而明清時期以葉天士和吳鞠通為首確立的衛(wèi)氣營血和三焦辨證,使溫病學的辨證理論逐步趨于完善,至今仍是指導臨床治療溫熱病的理論依據??傊?,傳統(tǒng)中醫(yī)臨床理論的構建和完善,離不開前人的摸索與貢獻,也得益于著名醫(yī)學家創(chuàng)建的傳統(tǒng)中醫(yī)理論,使得我們現在的中醫(yī)體系不斷的飽滿和充實。
1.2當代著名中醫(yī)的臨床經驗不斷提升為中醫(yī)臨床理論。
傳統(tǒng)中醫(yī)的臨床理論,在很大程度上展示著著名醫(yī)家的臨床經驗。在中醫(yī)理論與實踐發(fā)展的相互促進過程中,當代醫(yī)家通過讀書、臨證、心悟將實踐經驗不斷總結并升華為理論,又在實踐中不斷完善既有的理論,成為中醫(yī)理論發(fā)展的重要途徑和模式,而當代中醫(yī)理論的發(fā)展則需要將傳統(tǒng)理論與現代實踐相互融合起來。例如上世紀60年代時,面對中醫(yī)基礎理論中新的思想相對匱乏的這一局面,鄧鐵濤結合其治療的臨床經驗,首次提出了“五臟相關學說”。盡管當時的理論準備并不完善,但是這一理論的提出,在很大程度上完善并且取代了“五行學說”中某些模糊性和不確定性,并且隨著時代的發(fā)展,逐漸驗證了鄧老的這一經驗的正確性,也成為指導中醫(yī)臨床理論的一大重要體系[2]。又如,腦出血這一現代疾病在古代名為中風,多數是“從風而治”,認為肝臟與中風的關系最為密切。隨著時代的推進,自20世紀80年代以來,許多學者根據微觀辨證和中醫(yī)理論“離經之血便是瘀”,提出急性出血中風屬中醫(yī)血證,瘀血阻滯是急性期腦出血的最基本病機,是治療的關鍵所在[3]。故現代中醫(yī)臨床治療上多以活血化瘀法治療腦出血、腦梗塞這一系列疾病。若是仔細研讀傳統(tǒng)中醫(yī)臨床理論后,我們不難得出其構成和完善離不開當代著名醫(yī)家的臨床經驗,它是在歷經歲月的洗禮下不斷塑造成型的。
1.3傳統(tǒng)中醫(yī)臨床理論不斷將現代醫(yī)學相關內容中醫(yī)化。
傳統(tǒng)中醫(yī)臨床理論不斷吸收現代醫(yī)學的理論,將其相關內容不斷中醫(yī)化,將病人的各種證型通過五臟辨證、陰陽五行辨證以及八綱辨證劃分得越來越細化,以提供病人在中醫(yī)臨床上治療的理論依據。中醫(yī)吸取了現代醫(yī)學理論后正在不斷壯大其內容,現代醫(yī)學相關內容中醫(yī)化在許多難治疾病的辨證治療中都起到了良好的指導作用[4]。如艾滋病是古代傳統(tǒng)中醫(yī)辨證論治的空白,通過對艾滋病中醫(yī)病因病機、證候規(guī)律、治法方藥的系統(tǒng)研究,提出了“艾毒傷元”“脾為樞機”“氣虛為本”的病因病機學說,確立了艾滋病“培元解毒”“益氣健脾”的治療原則,為中醫(yī)藥防治艾滋病奠定了理論基礎,為進一步提高艾滋病的中醫(yī)藥臨床診療效果提供理論依據[5]。
2.1中醫(yī)主流理論不突出且與時俱進力度不夠。
不可否認的是,當代的中醫(yī)臨床理論發(fā)展也是存在諸多不足的,中醫(yī)理論的完善和發(fā)展是中華五千年來集體智慧的結晶,個別醫(yī)家提出的臨床理論可能各有千秋,其所立的角度和思維也不盡相同。例如,同是治療輸卵管阻塞這一疾病時,朱南孫教授認為多是由于濕蘊沖任所致,其用自擬的清熱利濕方來進行治療;而李廣文教授則認為這一疾病多是由于瘀血阻絡為主,治療上以活血祛瘀為法,擬通任種子湯進行治療[6]。又如對于“和解法”這一治療方法的理解,當代名醫(yī)蒲輔周老先生認為“寒熱并用,補瀉合劑,表里雙解,苦辛分消,調和氣血,皆謂和解”。而方和謙教授則認為“在治法上扶正祛邪,表里兼顧,此法就為和解法”。不同的醫(yī)家在面對不同的疾病,甚至是不同的理法方藥時,所持的看法常常是“各家學說”,這就導致了當前中醫(yī)臨床理論發(fā)展比較混亂,不能全面地體現中國五千年來發(fā)展過程中的中醫(yī)主流理論。目前中醫(yī)基礎理論還存在一個缺陷就是它的與時俱進力度還不夠,很多古代經典方藥的主治病癥,在當今時代已經不再多見了。比如蛔蟲導致的蛔厥這一致病因素在現代已經不再常見,對應的烏梅丸的主要適應病癥也不再是蛔厥;在針對沒有明顯臨床表現的疾病如乙肝時,按傳統(tǒng)中醫(yī)往往體現出“無證可治”的狀態(tài);傳統(tǒng)的診斷與現代檢查相結合的力度也不夠,中醫(yī)臨床基礎理論在某些程度上忽略了其與生化、b超、x光、ct等現代檢查結果的結合,并沒有用中醫(yī)理論對其做一合理的陳述;且現在臨床上很多中藥的藥理作用、性味歸經的研究作用還不夠深入、細致,其作用不能在微觀上得以解釋。這些都導致了臨床上很多情況沒有從中醫(yī)理論來認識中醫(yī),不是“以中解中”,而是“以西解中”,形成了臨床拋棄中醫(yī)理論的狀態(tài)[7]。由于中醫(yī)學是一門實踐性很強的學科,它是在哲學辨證的思想指導下,與臨床經驗不斷結合,這與西醫(yī)知識體系相比較,難免存在一定的滯后性,這都會使得中醫(yī)臨床理論發(fā)展相對的落后。
2.2部分中醫(yī)理論帶有權威專家的“個人學說”偏見。
傳統(tǒng)中醫(yī)強調個人經驗和學說,以中醫(yī)內科學為例,第八版中的腦系疾病在第九版中已經刪除,其涉及到的各種腦系疾病大多數歸屬于心系疾病與肝系疾病。根據其版本的不同,我們可以明顯看出其凸顯的中心內容及其思想不同,其多是體現編著者的理論思想,在一定程度上并沒有客觀地揭示疾病的本質,治療理論也不夠完善,一部分內容與最新研究得出的論文理論不符,這使得當代中醫(yī)臨床理論在某些程度上,帶有權威專家的“個人學說”色彩。由于現代西方先進的科技文化流入,使得中醫(yī)在一定程度上備受質疑,而正是因為人們對于中醫(yī)理論的一些偏見,才使得中醫(yī)長期讓人詬病。
3.1臨床理論應具有真實性與系統(tǒng)性。
中醫(yī)臨床理論的發(fā)展方形應當是建立在客觀并且真實的臨床實踐基礎上,從一次次臨床實踐中得出。由于歷史時代的原因以及假設推理、模式建設的廣泛使用,當代中醫(yī)臨床理論中理論與假說并存的現象較為普遍,如中醫(yī)的五運六氣學說對現代疫病預測和人體各經絡臟腑在時間上對于人體治病效果的不同等,就需要我們在扎實的文獻與臨床實踐基礎上,對醫(yī)案進行認真總結,利用科學的方法深入挖掘,開展中醫(yī)理論的去偽存真研究,以促進中醫(yī)理論的科學與健康發(fā)展。另外,傳統(tǒng)的中醫(yī)臨床治療上所用的理法方藥,多是根據個人經驗所進行的。隨著科技的不斷發(fā)展與時代的不斷進步,當代的中醫(yī)臨床理論應該在成功的中醫(yī)醫(yī)案上進行系統(tǒng)的總結,不斷挖掘和研究其微觀的結構,并隨著年月的更迭不斷更新,不斷完善,使其具有科學性和理論依據。同時,對近年來興起的傳染性非典型肺炎、艾滋病、禽流感等古人所沒有經歷過的疾病的診治,中醫(yī)就其病因病機的認識以及探究相應的診療方法,無疑也是一種理論上的創(chuàng)新[8]。通過對其進行深一層次的研究和發(fā)現,歸納出合適的治則治法,找到針對這一疾病的理法方藥,使其更具有系統(tǒng)性,使得臨床上中醫(yī)治病可以循序漸進,注重整體,也是當代臨床理論的一大發(fā)展方向。
3.2臨床理論具有信息化的特點并可持續(xù)拓展。
隨著時代的進步,當代的中醫(yī)臨床理論可以通過網絡等方式進行共享,在大數據的這一時代背景下,隨著病案的不斷報道與積累,可以將各類成功的中醫(yī)醫(yī)案進行統(tǒng)計和挖掘,其結果也會不斷進行更新和發(fā)展。不同的醫(yī)家對于某一疾病的認識角度可能不同,其表現在病位、病性、病勢和證候的判斷標準也不一樣,因此方藥規(guī)律也不一樣。而通過統(tǒng)計某一中醫(yī)或西醫(yī)疾病的較大樣本病例,并對其進行數據挖掘,可以得出整個中醫(yī)群體對于這一疾病診治的證候分布、治則治法、處方用藥等的規(guī)律,甚至可以根據統(tǒng)計的結果探索出新的方藥,分析他們的共同點和所在差異。將中醫(yī)臨床理論具有信息化的這一特點不斷地拓展下去,通過計算機等客觀科學的手段進行分析,與主觀的名老中醫(yī)傳承模式相比,更具客觀性,更容易被臨床醫(yī)生接受,對各種疾病的中醫(yī)臨床用藥也更具有指導價值。
4.1病案研究是中醫(yī)理論發(fā)展的重要基礎。
在當今大數據的時代背景下,中醫(yī)固有的傳統(tǒng)整體論科學特征有了越來越多的可供改變的空間。這種變化既為其按照自身特有的規(guī)律發(fā)展特點帶來了機遇,也給未來中醫(yī)理論的發(fā)展提出了挑戰(zhàn)。同時,學習醫(yī)案研究也是中醫(yī)學相關大學生們應該學習的一項內容。閱讀醫(yī)案是必要的訓練,也是中醫(yī)入門的方法之一。醫(yī)案的故事性引人入勝,在自然而然中接受中醫(yī)思維方法和傳統(tǒng)文化知識,同時醫(yī)案中所呈現的名醫(yī)風范,醫(yī)德對學生起到潛移默化的影響,并培養(yǎng)對專業(yè)的熱愛[9]。病案客觀、真實地直接記錄疾病診斷和治療過程,醫(yī)案研究作為中醫(yī)理論發(fā)展過程中至關重要的一環(huán),是中醫(yī)理論發(fā)展的重要基礎,以研究病案為基礎,對于中醫(yī)理論的形成和臨床上中醫(yī)積累經驗,都起到了一定的輔助提升作用。
利用多種數據挖掘技術對中醫(yī)病案中的有關信息行進行歸納、整理,是近年來傳承中醫(yī)臨床經驗的重要方法之一[10]。通過對同一種疾病的病案進行數據挖掘以分析醫(yī)者的思路和探索其用藥的。方法,對中醫(yī)臨床病案進行規(guī)范化的整理,能夠深入總結其臨床經驗,挖掘隱藏在大量病案背后的診治規(guī)律,甚至探索出新的方藥配伍,為中醫(yī)理論的發(fā)展提供一定的科學依據的同時,使得中醫(yī)理論的發(fā)展越來越現代化,不僅僅只是停留在以前的靠讀書和個人經驗的結合,也為廣大的中醫(yī)在日后的臨床治療上提供了新的思路和方向。
4.3臨床實踐推動理論發(fā)展,賦予轉化醫(yī)學新的內涵。
目前,我們通過并按數據挖掘來總結一些中醫(yī)對于治療同一種疾病所采取的診斷和用藥,可以獲得新的思路,并且為完善我們現有的中醫(yī)理論基礎可以提供可靠的理論支持。采用數據挖掘技術對中醫(yī)學術思想和臨證經驗進行研究,可以全面解析其中的規(guī)律,分析中醫(yī)個體化診療信息特征,提煉出臨證經驗中蘊藏的新理論、新力法,可以實現經驗的有效總結與傳承[11]。與此同時,要求我們用發(fā)展的眼光將現代的科技手段整合加入到傳統(tǒng)的中醫(yī)學理論中去,推陳出新,通過臨床實踐與基礎理論的不斷結合,不斷完善,推動祖國醫(yī)學現代化,譜寫有關于中醫(yī)學在轉化醫(yī)學上新的篇章。
[2]邱仕君,吳玉生。在基礎理論與臨床醫(yī)學之間———對鄧鐵濤教授五臟相關學說的理論思考[j].湖北民族學院學報(醫(yī)學版),2005,22(2):36-39.
[3]顧寧,周仲英。通下法治療急性腦出血研究進展[j].中國中醫(yī)急診,2000,9(5):227.
[4]靳士英。鄧鐵濤教授學術成就管[j].現代醫(yī)院,2004(9):1-6.
[7]孟靜巖,應森林。試論中醫(yī)基礎理論指導臨床研究的思考與途徑[j].上海中醫(yī)藥大學學報,2009(3):3-5.
數據挖掘論文摘要篇十一
隨著我國的旅游業(yè)的迅猛發(fā)展,旅游產業(yè)正邁向國際化的軌道,傳統(tǒng)旅游業(yè)積累的海量數據,沒有被有效利用,資源被極大浪費。將數據挖掘引入到旅游產業(yè)是大勢所趨。當前數據挖掘在旅游信息化建設中的應用與研究情況主要集中在高校理論界的研究,大多數研究僅僅是學術研究,真正運用到旅游行業(yè)的文章多是從某個具體的方面出發(fā),針對個別應用進行數據挖掘的融合。筆者主要研究決策樹方法在旅游信息化建設中的應用。目前,決策樹算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z統(tǒng)計算法、并行決策樹算法和sprint算法等。不同算法在執(zhí)行效率、輸出結果、可擴容性、可理解性、預測的準確性等方面各不相同??偟膩碚f,這么多決策樹算法各有優(yōu)缺點,真正將數據挖掘運用到整個旅游信息化建設中還有很多問題需要解決。
數據挖掘中常用的基本分類算法有決策樹、貝葉斯、基于規(guī)則的算法等等。其中,決策樹是目前主流的分類技術,己經成功的應用于更多行業(yè)的數據分析。在關聯規(guī)則挖掘研究中,最重要的是apriori算法,這個算法后來成為絕大多數關聯規(guī)則分類的基礎。聚類算法也是數據挖掘技術中極為重要的組成部分。與分類技術不同的是,聚類不要求對數據進行事先標定,就數據挖掘功能而言,聚類能夠可以針對數據的相異度來分析評估數據,可以作為其他對發(fā)現的簇運行的數據挖掘算法的預處理步驟。各種算法分類模型建立有所不同,但原理是大致相同的。筆者考慮決策樹算法結構簡單,便于理解,且很擅長處理非數值型數據,建模效率高,分類速度快,特別適合大規(guī)模的數據處理的優(yōu)點,結合旅游產業(yè)數據特點,故作重點分析。
旅游業(yè)數據挖掘系統(tǒng)的基本特點如下:統(tǒng)計旅游興趣;購物消費趨向;推薦其感興趣的旅游景點;在后臺管理中,通過決策樹算法對游客數量、平均年齡、景點收費、游客來自地區(qū)等進行分析總結,為旅游消費者和旅游管理者提供服務:為消費者提供吃住行購娛樂天氣各方面信息查詢、機票、車船票、酒店、景區(qū)門票、餐飲等方面的預定與現金支付、第三方支付、消費者評價、在線咨詢等方面的便利、快捷服務。為管理者提供推薦、游客管理、線路管理、景點管理、特色服務管理、機票管理、在線咨詢管理、旅游客戶關系管理等服務,提高整體服務效率和水平。
旅游業(yè)信息管理系統(tǒng)包括游客信息管理與游客信息分析兩個子模塊。根據系統(tǒng)日常運行出現的問題及時對系統(tǒng)進行維護,如添加或者刪除某個模塊功能,系統(tǒng)整體運行速度的更近等。系統(tǒng)運用數據庫層、持久化層、業(yè)務邏輯層、表示層四層體系結構,主要利用id3算法達到旅游數據信息的快速、準確分類??紤]了游客與酒店之間的關系、游客與旅游路線之間的關系、游客與旅游景點之間的關系、游客與機票、車票之間的關系、管理員與游客之間的關系、邏輯結構設計。程序之間的獨立性增加,易于擴展,規(guī)范化得到保證的同時提高了系統(tǒng)的安全性。詳細功能設計包括:用戶登錄、用戶查詢、預定及支付、后臺管理、旅游客戶管理和數據分析等方面。本系統(tǒng)中主要運用java語言就行邏輯上的處理。系統(tǒng)主要使用struts2和hibernate這兩個框架來進行整個系統(tǒng)的搭建。其中struts2主要處理業(yè)務邏輯,而hibernate主要是處理數據存儲、查詢等操作。系統(tǒng)采用tomcat服務器。系統(tǒng)模塊需要實現酒店推薦實現、景點推薦實現、天氣預報實現、旅游線路實現、特產推薦、數據分析展現功能、報表數據獲取、景區(qū)客流量變化分析實現等。需要進行后臺信息管理等功能測試以及時間測試、數據測試等性能測試。
在對數據挖掘的基本方法與技術進行總結的基礎上,結合當今數據挖掘的發(fā)展方向和研究熱點,可以發(fā)現旅游業(yè)數據挖掘算法系統(tǒng)有待進一步完善之處:訂票系統(tǒng)尚待完善。界面美化需要進一步改進。數據表之間的結構關系需要優(yōu)化,以提高數據處理能力和效率。數據挖掘工具及算法有待精細化改進。
作者:朱暉單位:河南職業(yè)技術學院。
數據挖掘論文摘要篇十二
摘要:隨著科學技術的快速發(fā)展,各種新鮮的事物和理念得到了廣泛的應用。其中機器學習算法就是一則典型案例——作為一種新型的算法,其廣泛應用于各行各業(yè)之中。本篇論文旨在探討機器學習算法在數據挖掘中的具體應用,我們利用龐大的移動終端數據網絡,加強了基于gsm網絡的戶外終端定位,從而提出了3個階段的定位算法,有效提高了定位的精準度和速度。
關鍵詞:學習算法;gsm網絡;定位;數據;。
移動終端定位技術由來已久,其主要是利用各種科學技術手段定位移動物體的精準位置以及高度。目前,移動終端定位技術主要應用于軍事定位、緊急救援、網絡優(yōu)化、地圖導航等多個現代化的領域,由于移動終端定位技術能夠帶給精準的位置服務信息,所以其在市場上還是有較大的需求的,這也為移動終端定位技術的優(yōu)化和發(fā)展,帶給了推動力。隨著通信網絡普及,移動終端定位技術的發(fā)展也得到了一些幫忙,使得其定位的精準度和速度都得到了全面的優(yōu)化和提升。同時,傳統(tǒng)的定位方法結合先進的算法來進行精準定位,目前依舊還是有較大的進步空間。在工作中我選取機器學習算法結合數據挖掘技術對傳統(tǒng)定位技術加以改善,取得了不錯的效果,但也遇到了許多問題,例如:使用機器學習算法來進行精準定位暫時無法滿足更大的區(qū)域要求,還有想要利用較低的設備成本,實現得到更多的精準定位的要求比較困難。所以本文對機器學習算法進行了深入的研究,期望能夠幫忙其更快速的定位、更精準的定位,滿足市場的需要。
數據挖掘又名數據探勘、信息挖掘。它是數據庫知識篩選中十分重要的一步。數據挖掘其實指的就是在超多的數據中透過算法找到有用信息的行為。一般狀況下,數據挖掘都會和計算機科學緊密聯系在一齊,透過統(tǒng)計集合、在線剖析、檢索篩選、機器學習、參數識別等多種方法來實現最初的目標。統(tǒng)計算法和機器學習算法是數據挖掘算法里面應用得比較廣泛的兩類。統(tǒng)計算法依靠于概率分析,然后進行相關性決定,由此來執(zhí)行運算。
而機器學習算法主要依靠人工智能科技,透過超多的樣本收集、學習和訓練,能夠自動匹配運算所需的相關參數及模式。它綜合了數學、物理學、自動化和計算機科學等多種學習理論,雖然能夠應用的領域和目標各不相同,但是這些算法都能夠被獨立使用運算,當然也能夠相互幫忙,綜合應用,能夠說是一種能夠“因時而變”、“因事而變”的算法。在機器學習算法的領域,人工神經網絡是比較重要和常見的一種。因為它的優(yōu)秀的數據處理和演練、學習的潛力較強。
而且對于問題數據還能夠進行精準的識別與處理分析,所以應用的頻次更多。人工神經網絡依靠于多種多樣的建模模型來進行工作,由此來滿足不同的數據需求。綜合來看,人工神經網絡的建模,它的精準度比較高,綜合表述潛力優(yōu)秀,而且在應用的過程中,不需要依靠專家的輔助力量,雖然仍有缺陷,比如在訓練數據的時候耗時較多,知識的理解潛力還沒有到達智能化的標準,但是,相對于其他方式而言,人工神經網絡的優(yōu)勢依舊是比較突出的。
2以機器學習算法為基礎的gsm網絡定位。
2.1定位問題的建模。
建模的過程主要是以支持向量機定位方式作為基礎,把定位的位置柵格化,面積較小的柵格位置就是獨立的一種類別,在定位的位置內,我們收集數目龐大的終端測量數據,然后利用計算機對測量報告進行分析處理,測量柵格的距離度量和精準度,然后對移動終端柵格進行預估決定,最終利用機器學習進行分析求解。
2.2采集數據和預處理。
本次研究,我們采用的模型對象是我國某一個周邊長達10千米的二線城市。在該城市區(qū)域內,我們測量了四個不同時間段內的數據,為了保證機器學習算法定位的精準性和有效性,我們把其中的三批數據作為訓練數據,最后一組數據作為定位數據,然后把定位數據周邊十米內的前三組訓練數據的相關信息進行清除。一旦確定某一待定位數據,就要在不同的時間內進行測量,按照測量出的數據信息的經緯度和平均值,再進行換算,最終,得到真實的數據量,提升定位的速度以及有效程度。
2.3以基站的經緯度為基礎的初步定位。
用機器學習算法來進行移動終端定位,其復雜性也是比較大的,一旦區(qū)域面積增加,那么模型和分類也相應增加,而且更加復雜,所以,利用機器學習算法來進行移動終端定位的過程,會隨著定位區(qū)域面積的增大,而耗費更多的時間。利用基站的經緯度作為基礎來進行早期的定位,則需要以下幾個步驟:要將邊長為十千米的正方形分割成一千米的小柵格,如果想要定位數據集內的相關信息,就要選取對邊長是一千米的小柵格進行計算,而如果是想要獲得邊長一千米的大柵格,就要對邊長是一千米的柵格精心計算。
2.4以向量機為基礎的二次定位。
在完成初步定位工作后,要確定一個邊長為兩千米的正方形,由于第一級支持向量機定位的區(qū)域是四百米,定位輸出的是以一百米柵格作為中心點的經緯度數據信息,相對于一級向量機的定位而言,二級向量機在定位計算的時候難度是較低的,更加簡便。后期的預算主要依靠決策函數計算和樣本向量機計算。隨著柵格的變小,定位的精準度將越來越高,而由于增加分類的問題數量是上升的,所以,定位的復雜度也是相對增加的。
2.5以k-近鄰法為基礎的三次定位。
第一步要做的就是選定需要定位的區(qū)域面積,在二次輸出之后,確定其經緯度,然后依靠經緯度來確定邊長面積,這些都是進行區(qū)域定位的基礎性工作,緊之后就是定位模型的訓練。以k-近鄰法為基礎的三次定位需要的是綜合訓練信息數據,對于這些信息數據,要以大小為選取依據進行篩選和合并,這樣就能夠減少計算的重復性。當然了,選取的區(qū)域面積越大,其定位的速度和精準性也就越低。
3結語。
近年來,隨著我國科學技術的不斷發(fā)展和進步,數據挖掘技術愈加重要。根據上面的研究,我們證明了,在數據挖掘的過程中,應用機器學習算法具有舉足輕重的作用。作為一門多領域互相交叉的知識學科,它能夠幫忙我們提升定位的精準度以及定位速度,能夠被廣泛的應用于各行各業(yè)。所以,對于機器學習算法,相關人員要加以重視,不斷的進行改良以及改善,切實的發(fā)揮其有利的方面,將其廣泛應用于智能定位的各個領域,幫忙我們解決關于戶外移動終端的定位的問題。
參考文獻。
[2]李運.機器學習算法在數據挖掘中的應用[d].北京郵電大學,2014.
數據挖掘論文摘要篇十三
數據挖掘技術在各行業(yè)都有廣泛運用,是一種新興信息技術。而在線考試系統(tǒng)中存在著很多的數據信息,數據挖掘技在在線考試系統(tǒng)有著重要的意義,和良好的應用前景,從而在眾多技術中脫穎而出。本文從對數據挖掘技術的初步了解,簡述數據挖掘技術在在線考試系統(tǒng)中成績分析,以及配合成績分析,完善教學。
隨著計算機網絡技術的快速發(fā)展,計算機輔助教育的不斷普及,在線考試是一種利用網絡技術的重要輔助教育手段,其改革有著重要的意義。數據挖掘技術作為一種新興的信息技術,其包括了人工智能、數據庫、統(tǒng)計學等學科的內容,是一門綜合性的技術。這種技術的主要特點是對數據庫中大量的數據進行抽取、轉換和分析,從中提取出能夠對教師有作用的關鍵性數據。將其運用于在線考試系統(tǒng)中,能夠很好的處理在線考試中涉及到的數據,讓在線考試的實用性和高效性得到進一步的增強,幫助教師更加快速、完整的統(tǒng)計考試信息,完善教學。
數據挖掘技術是從大量數據中"挖掘"出對使用者有用的知識,即從大量的、隨機的、有噪聲的、模糊的、不完全的實際應用數據中,"挖掘"出隱含在其中但人們事先卻不知道的,而又是對人們潛在有用的信息與知識的整個過程。
目前主要的商業(yè)數據挖掘系統(tǒng)有sas公司的enterpriseminer,spss公司的clementine,sybas公司的warehousestudio,minersgi公司的mineset,rulequestresearch公司的see5,ibm公司的intelligent,還有coverstory,knowledgediscovery,quest,explora,dbminer,workbench等。
2.1數據分類。
數據挖掘技術通過對數據庫中的數據進行分析,把數據按照相似性歸納成若干類別,然后做出分類,并能夠為每一個類別都做出一個準確的描述,挖掘出分類的規(guī)則或建立一個分類模型。
2.2數據關聯分析。
數據庫中的數據關聯是一項非常重要,并可以發(fā)現的知識。數據關聯就是兩組或兩組以上的數據之間有著某種規(guī)律性的聯系。數據關聯分析的作用就是找出數據庫中隱藏的聯系,從中得到一些對學校教學工作管理者有用的信息。就像是在購物中,就可以通過顧客的購買物品的聯系,從中得到顧客的購買習慣。
2.3預測。
預測是根據已經得到的數據,從而對未來的情況做出一個可能性的分析。數據挖掘技術能自動在大型的數據庫中做出一個較為準確的分析。就像是在市場投資中,可以通過各種商品促銷的數據來做出一個未來商品的促銷走勢。從而在投資中得到最大的回報。
數據挖掘技術融合了多個學科、多個領域的知識與技術,因此數據挖掘的方法也呈現出很多種類的形式。就目前的統(tǒng)計分析類的數據挖掘技術的角度來講,光統(tǒng)計分析技術中所用到的數據挖掘模型就回歸分析、邏輯回歸分析、有線性分析、非線性分析、單變量分析、多變量分析、最近鄰算法、最近序列分析、聚類分析和時間序列分析等多種方法。數據挖掘技術利用這些方法對那些異常形式的數據進行檢查,然后通過各種數據模型和統(tǒng)計模型對這些數據來進行解釋,并從這些數據中找出隱藏在其中的商業(yè)機會和市場規(guī)律。另外還有知識發(fā)現類數據挖掘技術,這種和統(tǒng)計分析類的數據挖掘技術完全不同,其中包括了支持向量機、人工神經元網絡、遺傳算法、決策樹、粗糙集、關聯順序和規(guī)則發(fā)現等多種方法。
4.1運用關聯規(guī)則分析教師的年齡對學生考試成績的影響。
數據挖掘技術中的關聯分析在教學分析中,是一種使用頻繁,行之有效的方法,它能挖掘出大量數據中項集之間之間有意義的關聯聯系,幫助知道教師的教學過程。例如在如今的一些高職院校中,就往往會把學生的英語四六級過級率,計算機等級等,以這些為依據來評價教師的教學效果。將數據挖掘技術中的關聯規(guī)則運用于考試的成績分析當中,就能夠挖掘出一些對學生過級率產生影響的因素,對教師的教學過程進行重要的指導,讓教師的教學效率更高,作用更強。
還可以通過關聯規(guī)則算法,先設定一個最小可信度和支持度,得到初步的關聯規(guī)則,根據相關規(guī)則,分析出教師的組成結構和過級率的影響,從來進行教師隊伍的結構調整,讓教師隊伍更加合理。
4.2采用分類算法探討對考試成績有影響的因素。
數據挖掘技術中的分類算法就是對一組對象或一個事件進行歸類,然后通過這些數據,可以進行分類模型的建立和未來的預測。分類算法可以進行考試中得到的數據進行分類,然后通過學生的一些基本情況進行探討一些對考試成績有影響的因素。分類算法可以用一下步驟實施:
4.2.1數據采集。
這種方法首先要進行數據采集,需要這幾方面的數據,學生基本信息(姓名、性別、學號、籍貫、所屬院系、專業(yè)、班級等)、學生調查信息(比如學習前的知識掌握情況、學習興趣、課堂學習效果、課后復習時間量等)、成績(學生平常學習成績,平??荚嚦煽?,各種大型考試成績等)、學生多次考試中出現的易錯點(本次考試中出現的易錯點,以往考試中出現的易錯點)。
4.2.2數據預處理。
(1)數據集成。把數據采集過程中得到的多種信息,利用數據挖掘技術中的數據庫技術生產相應的學生考試成績分析基本數據庫。(2)數據清理。在學生成績分析數據庫中,肯定會出現一些情況缺失,對于這些空缺處,就需要使用數據清理技術來進行這些數據庫中數據的填補遺漏。例如,可以采用忽略元組的方法來刪除那些沒有參加考試的學生考試數據已經在學生填寫的調查數據中村中的空缺項。(3)數據轉換。數據轉換主要功能是進行進行數據的離散化操作。在這個過程中可以根據實際需要進行分類,比如把考試成績從0~59的分到較差的一類,將60到80分為中等類,81到100分為優(yōu)秀等。(4)數據消減。數據消減的功能就是把所需挖掘的數據庫,在消減的過程又不能影響到最終的數據挖掘結果。比如在分析學生的基本學習情況的影響因素情況中,學生信息表中中出現的字段很多,可以選擇性的刪除班別、籍貫等引述,形成一份新的學生基本成績分析數據表。
4.2.3利用數據挖掘技術,得出結論。
通過數據挖掘技術在在線考試中的應用,得出這些學生數據的相關分析,比如說學生考試中的易錯點在什么地方,學生考試成績的自身原因,學生考試成績的環(huán)境原因,教師隊伍的搭配情況等等,從中得出如何調整學校教學資源,教師的教學方案調整等等,從而完善學校對學生的教學。
數據挖掘技術在社會各行各業(yè)中都有一定程度的使用,基于其在數據組織、分析能力、知識發(fā)現和信息深層次挖掘的能力,在使用中取得了顯著的成效,但數據挖掘技術中還存在著一些問題,例如數據的挖掘算法、預處理、可視化問題、模式識別和解釋等等。對于這些問題,學校教學管理工作者要清醒的認識,在在線考試系統(tǒng)中對數據挖掘信息做出合理的使用,讓數字挖掘技術在在線考試系統(tǒng)中能夠更加有效的發(fā)揮其長處,避免其在在線考試系統(tǒng)中的的缺陷。
[1]胡玉榮?;诖植诩碚摰臄祿诰蚣夹g在高校學生成績分析中的作用[j]。荊門職業(yè)技術學院學報,20xx,12(22):12.
[2][加]韓家煒,堪博(kamberm.)。數據挖掘:概念與技術(第2版)[m]范明,譯。北京:機械工業(yè)出版社,20xx.
[3]王潔?!对诰€考試系統(tǒng)的設計與開發(fā)》[j]。山西師范大學學報,20xx(2)。
[4]王長娥。數據挖掘技術在教育中的應用[j]。計算機與信息技術,20xx(11)。
數據挖掘論文摘要篇十四
數據挖掘的概念和應用已經滲透到社會生活和工業(yè)生產的各個領域。作為數據挖掘的實踐者,本人在讀數學專業(yè)的同時,也興趣盎然地涉足了數據科學和機器學習領域。在一次數據挖掘課程中,我完成了一篇論文,能讓我對數據挖掘這個領域有更深入的認識和體驗。這篇論文讓我深入了解了數據挖掘的思路,技術和應用,并且讓我體會到寫論文不僅僅是理論知識,更需要實踐的動手能力,思維的掌握能力,和成果演示的表達能力。在這篇心得體會中,我想分享我的經驗,和大家一起探究數據挖掘的獨特之處。
數據挖掘作為一個復雜的技術領域,它的研究對象可以是已有的數據集合,經修正的數據對象或者真實的數據。要想在這個領域獲得成功,首先需要有學習數據挖掘的信念。學習數據挖掘,不僅需要具有信息學、數學、統(tǒng)計、計算機等領域的基本素養(yǎng),還要具備探索、創(chuàng)新、思維、推理能力等本質要素。當我們深入學習數據挖掘技術時,我們不僅需要明``確各項技術特征,還需要全面了解不同類型的數據分析流程。
一般來說,學習數據挖掘的方法包括:學習關于數據挖掘的各種知識點、探索分享“開源”資源、通過訓練理論模型以及掌握不同實際應用場景下的數據挖掘流程等。這些方法都非常必要,同時也大大豐富了我們的數據挖掘知識儲備。
第三段:論文的核心內容。
在畢業(yè)論文寫作之中,我寫了一篇關于“基于樹模型的數據挖掘方法研究與應用”的論文。本文利用樹形神經網絡模型,并通過對數據源進行預處理和特征選擇,把語音呼叫數據與樣本數據進行匹配,并提出了樹形神經網絡模型的性能檢驗。同時,本文探討了該模型的實際應用場景以及對未來語音識別的發(fā)展具有重要的參考價值。該論文的相關資料、數據等都經過了極為詳盡的研究和討論。通過數據挖掘的方法,該論文配備有附錄和數據模型的詳細數據分析。
第四段:論文的收獲。
通過這篇論文的寫作,我除了掌握數據挖掘的基本技能,如預處理、分析等,更重要的是鍛煉了自己的學習能力、團隊溝通協(xié)作能力和美術設計等多方面的能力。通過論文的撰寫和演示,我更加深入地認識了數據挖掘應用的深度、挑戰(zhàn)和前景。
第五段:未來展望。
在未來的學習和工作中,我希望能夠不斷強化自己數據挖掘領域方面的知識儲備,加速自身的魅力和資質提升,成為引領行業(yè)的新一代人才,并在日后的實踐中不斷總結經驗,挖掘新的理論問題,依托技術優(yōu)勢和網絡平臺,推動數據挖掘與科技創(chuàng)新的合理發(fā)展,并為行業(yè)的創(chuàng)新與發(fā)展做出重要的貢獻。
數據挖掘論文摘要篇十五
摘要:在本科高年級學生中開設符合學術研究和工業(yè)應用熱點的進階課程是十分必要的。以數據挖掘課程為例,本科高年級學生了解并掌握數據挖掘的相關技術,對于其今后的工作、學習不無裨益。著重闡述數據挖掘等進階課程在本科高年級學生中的教學方法,基于本科高年級學生的實際情況,以及進階課程的知識體系特點,提出有針對性的教學方法參考,從而提高進階課程的教學效果。
關鍵詞:數據挖掘;進階課程;教學方法研究;本科高年級。
學生在本科高年級學生中開設數據挖掘等進階課程是十分必要的,以大數據、數據挖掘為例,其相關技術不僅是當前學術界的研究熱點,也是各家企事業(yè)單位招聘中重要崗位的要求之一。對于即將攻讀碩士或博士學位的學生,對于即將走上工作崗位的學生,了解并掌握一些大數據相關技術,尤其是數據挖掘技術,都是不無裨益的。在目前本科教學中,對于數據挖掘等課程的教學,由于前序課程的要求,往往是放在本科四年級進行。如何激發(fā)本科四年級學生在考研,找工作等繁雜事務中的學習興趣,從而更好地掌握數據挖掘的相關技術是本課程面臨的主要挑戰(zhàn),也是所有本科進階課程所面臨的難題之一。
1數據挖掘等進階課程所面臨的問題。
1.1進階課程知識體系的綜合性。
進階課程由于其理論與技術的先進性,往往是學術研究的前沿,工業(yè)應用的熱點,是綜合多方面知識的課程。以數據挖掘課程為例,其中包括數據庫、機器學習、模式識別、統(tǒng)計、可視化、高性能技術,算法等多方面的知識內容。雖然學生在前期的本科學習中已經掌握了部分相關內容,如數據庫、統(tǒng)計、算法等,但對于其他內容如機器學習、人工智能、模式識別、可視化等,有的是與數據挖掘課程同時開設的進階課程,有的已經是研究生的教學內容。對于進階課程繁雜的知識體系,應該如何把握廣度和深度的關系尤為重要。
1.2進階課程的教學的目的要求。
進階課程的知識體系的綜合性體現在知識點過多、技術特征復雜。從教學效益的角度出發(fā),進階課程的教學目的是在有限的課時內最大化學生的知識收獲。從教學結果的可測度出發(fā),進階課程的教學需要能夠有效驗證學生掌握重點知識的.學習成果。1.3本科高年級學生的實際情況本科高年級學生需要處理考研復習,找工作等繁雜事務,往往對于剩余本科階段的學習不重視,存在得過且過的心態(tài)。進階課程往往是專業(yè)選修課程,部分學分已經修滿的學生往往放棄這部分課程的學習,一來沒有時間,二來怕拖累學分。
2數據挖掘等進階課程的具體教學方法。
進階課程的教學理念是在有限的課時內,盡可能地提高課程的廣度,增加介紹性內容,在授課中著重講解1~2個關鍵技術,如在數據挖掘課程中,著重講解分類中的決策樹算法,聚類中的k-means算法等復雜度一般,應用廣泛的重要知識點,并利用實踐來檢驗學習成果。
2.1進階課程的課堂教學。
數據挖掘等進階課程所涉及的知識點眾多,在課堂上則采用演示和講授相結合的方法,對大部分知識點做廣度介紹,而對需要重點掌握知識點具體講授,結合實踐案例及板書。在介紹工業(yè)實踐案例的過程中,對于具體數據挖掘任務的來龍去脈解釋清楚,尤其是對于問題的歸納,數據的處理,算法的選擇等步驟,并在不同的知識點的教學中重復介紹和總結數據挖掘的一般性流程,可以加深學生對于數據挖掘的深入理解。對于一些需要記憶的知識點,在課堂上采用隨機問答的方式,必要的時候可以在每堂課的開始重復提問,提高學習的效果。
2.2進階課程的課后教學。
對于由于時間限制無法在課上深入討論的知識點,只能依靠學生在課后自學掌握。本科高年級學生的課后自學的動力不像低年級學生那么充足,可以布置需要動手實踐并涵蓋相關知識點的課后實踐,但盡量降低作業(yè)的工程量。鼓勵學生利用開源軟件和框架,基于提供的數據集,實際解決一些簡單的數據挖掘任務,讓學生掌握相關算法技術的使用,并對算法有一定的了解。利用學院與大數據相關企業(yè)建立的合作關系,在課后通過參觀,了解大數據技術在當前企業(yè)實踐中是如何應用的,激發(fā)學生的學習興趣。
2.3進階課程的教學效果考察進階課程的考察不宜采取考試的形式,可以采用大作業(yè)的形式。從具體的數據挖掘實踐中檢驗教學的成果,力求是學生在上完本課程后可以解決一些簡單的數據挖掘任務,將較復雜的數據挖掘技術的學習留給學生自己。
3結語。
數據挖掘是來源于實踐的科學,學習完本課程的學生需要真正理解,掌握相關的數據挖掘技術,并能夠在實際數據挖掘任務中應用相關算法解決問題。這也對教師的教學水平提出了挑戰(zhàn),并直接與教師的科研水平相關。在具體的教學過程中,發(fā)現往往是在講授實際科研中遇到的問題時,學生的興趣較大,對于書本上的例子則反映一般。進階課程在注重教學方法的基礎上,對于教師的科研水平提出了新的要求,這也是對于教師科研的反哺,使教學過程變成了教學相長的過程。
參考文獻:
[1]孫宇,梁俊斌,鐘淑瑛.面向工程的《數據挖掘》課程教學方法探討[j].現代計算機,2014(13).
[2]蔣盛益,李霞,鄭琪.研究性學習和研究性教學的實證研究———以數據挖掘課程為例[j].計算機教育,2014(24).
[3]張曉芳,王芬,黃曉.國內外大數據課程體系與專業(yè)建設調查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝潔.《無線傳感器網絡》課程特點、挑戰(zhàn)和解決方案[j].現代計算機,2016(35).
[5]王永紅.計算機類專業(yè)剖析中課程分析探討[j].現代計算機,2011(04).
數據挖掘論文摘要篇十六
[1]劉瑩?;跀祿诰虻纳唐蜂N售預測分析[j].科技通報。20xx(07)。
[2]姜曉娟,郭一娜?;诟倪M聚類的電信客戶流失預測分析[j].太原理工大學學報。20xx(04)。
[3]李欣海。隨機森林模型在分類與回歸分析中的應用[j].應用昆蟲學報。20xx(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛。基于貝葉斯網絡的客戶流失分析研究[j].計算機工程與科學。20xx(03)。
[5]翟健宏,李偉,葛瑞海,楊茹?;诰垲惻c貝葉斯分類器的網絡節(jié)點分組算法及評價模型[j].電信科學。20xx(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補法對隨機缺失的二分類變量資料處理效果的比較[j].鄭州大學學報(醫(yī)學版).20xx(05)。
[7]黃杰晟,曹永鋒。挖掘類改進決策樹[j].現代計算機(專業(yè)版).20xx(01)。
[8]李凈,張范,張智江。數據挖掘技術與電信客戶分析[j].信息通信技術。20xx(05)。
[9]武曉巖,李康?;虮磉_數據判別分析的隨機森林方法[j].中國衛(wèi)生統(tǒng)計。20xx(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現代情報。20xx(01)。
[13]俞馳?;诰W絡數據挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學20xx。
[14]馮軍。數據挖掘在自動外呼系統(tǒng)中的應用[d].北京郵電大學20xx。
[15]于寶華?;跀祿诰虻母呖紨祿治鯷d].天津大學20xx。
[16]王仁彥。數據挖掘與網站運營管理[d].華東師范大學20xx。
[19]賈治國。數據挖掘在高考填報志愿上的應用[d].內蒙古大學20xx。
[22]阮偉玲。面向生鮮農產品溯源的基層數據庫建設[d].成都理工大學20xx。
[23]明慧。復合材料加工工藝數據庫構建及數據集成[d].大連理工大學20xx。
[25]岳雪?;诤A繑祿诰蜿P聯測度工具的設計[d].西安財經學院20xx。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學20xx。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學20xx。
[33]俞馳。基于網絡數據挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學20xx。
[34]馮軍。數據挖掘在自動外呼系統(tǒng)中的應用[d].北京郵電大學20xx。
[35]于寶華?;跀祿诰虻母呖紨祿治鯷d].天津大學20xx。
[36]王仁彥。數據挖掘與網站運營管理[d].華東師范大學20xx。
[39]賈治國。數據挖掘在高考填報志愿上的應用[d].內蒙古大學20xx。
數據挖掘論文摘要篇十七
摘要:主要通過對數據挖掘技術的探討,對職教多年累積的教學數據運用分類、決策樹、關聯規(guī)則等技術進行分析,從分析的結果中發(fā)現有價值的數據模式,科學合理地實現教學評估,讓教學管理者能夠從中發(fā)現教學活動中存在的主要問題以便及時改進,進而輔助管理者決策做好教學管理。
關鍵詞:教學評估;數據挖掘;教學評估體系;層次分析法。
1概述。
近年來國家對中等職業(yè)教育的發(fā)展高度重視,在政策扶持與職教工作者的努力下,職業(yè)教育獲得了蓬勃的發(fā)展。如何提高教學質量、培養(yǎng)合格的高技術人才成為職教工作者研究的課題。各種調查研究結果表明:加強師資隊伍的建設,強化教師教學評估對教學質量的提高尤為重要。
所謂教學評估,就是運用系統(tǒng)科學的方法對教學活動或教育行為的價值、效果作出科學的判斷過程。教學評估方式要靈活多樣,要多途徑、多方位、多形式的發(fā)揮評估的導學作用,以鼓勵評估為主,充分發(fā)揮評估的激勵功能,促進教學的健康發(fā)展。
在中等職業(yè)學校多年的教育教學工作中積累了大量的教務管理數據、教師檔案數據等,怎樣從龐雜大量的數據中挖掘出有效提高教學質量的關鍵因素是個難題。數據挖掘技術卻可以從人工智能的角度很好地解決這一課題。通過數據挖掘技術,得到隱藏在教學數據背后的有用信息,在一定程度上為教學部門提供決策支持信息促使更好地開展教學工作,提高教學質量和教學管理水平,使之能在功能上更加清晰地認識教師教與學生學的關系及促進教育教學改革。
數據挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數據挖掘應該更正確地命名為“從數據中挖掘知識”。即數據挖掘是對巨大的數據集進行尋找和分析的計算機輔助處理過程,在這一過程中顯現先前未曾發(fā)現的模式,然后從這些數據中發(fā)掘某些內涵信息,包括描述過去和預測未來趨勢的信息。人工智能領域習慣稱知識發(fā)現,而數據庫領域習慣將其稱為數據挖掘。
數據挖掘過程包括對問題的理解和提出、數據收集、數據處理、數據變換、數據挖掘、模式評估、知識表示等過程,以上的過程不是一次完成的,其中某些步驟或者全過程可能要反復進行。對問題的理解和提出在開始數據挖掘之前,最基礎的工作就是理解數據和實際的業(yè)務問題,在這個基礎之上提出問題,對目標作出明確的定義。
2.3.1分類分析方法:是通過分析訓練集中的數據,為每個類別做出準確的描述或建立分析模型或挖掘出分類規(guī)則,以便以后利用這個分類規(guī)則對其它數據庫中的記錄進行分類的方法。2.3.2決策樹算法:是一種常用于分類、預測模型的算法,它通過將大量數據有目的的分類,從而找到一些有價值的、潛在的信息。它的主要優(yōu)點是描述簡單,分類速度快,特別適合大規(guī)模的數據處理。2.3.3聚類算法:聚類分析處理的數據對象的類是未知的。聚類分析就是將對象集合分組為由類似的對象組成的多個簇的過程。在同一個簇內的對象之間具有較高的相似度,而不同簇內的對象差別較大。2.3.4關聯規(guī)則算法:側重于確定數據中不同領域之間的關系,即尋找給定數據集中的有趣聯系。提取描述數據庫中數據項之間所存在的潛在關系的規(guī)則,找出滿足給定支持度和置信度閾值的多個域之間的依賴關系。
在以上各種算法的研究中,比較有影響的是關聯規(guī)則算法。
3教學評估體系。
評價指標體系是教學評估的基礎和依據,對評估起著導向作用,因此制定一個科學全面的評價指標體系就成為改革、完善評價的首要目標。評價指標應以指導教學實踐為目的,通過評價使教師明確教學過程中應該肯定的和需要改進的地方;以及給出設計評價指標的導向問題。
3.1教學評估體系的構建方法。
層次分析法(簡稱ahp法)是美國運籌學家t·l·saaty教授在20世紀70年代初期提出的一種簡便、靈活而又實用的多準則決策的系統(tǒng)分析方法,其原理是把一個復雜問題分解、轉化為定量分析的方法。它需要建立關于系統(tǒng)屬性的各因素多級遞階結構,然后對每一層次上的因素逐一進行比較,得到判斷矩陣,通過計算判斷矩陣的特征值和特征向量,得到其關于上一層因素的相對權重,并可自上而下地用上一層次因素的相對權重加權求和,求出各層次因素關于系統(tǒng)整體屬性(總目標層)的綜合重要度。
3.2構建教學評估指標體系的作用。
3.2.1構建的教學評估指標,作為挖掘庫選擇教學信息屬性的依據。
3.2.2通過ahp方法,能篩選出用來評價教學質量的相關重要屬性,從而入選為挖掘庫字段,這樣就減去了挖掘庫中對于挖掘目標來說影響較小的屬性,進而大大減少了挖掘的工作量,提高挖掘效率。3.2.3通過構建教學評估指標,減少了挖掘對象的字段,從而避免因挖掘字段過多,導致建立的決策樹過大,出現過度擬合挖掘對象,進而造成挖掘規(guī)則不具有很好的評價效果的現象。3.2.4提高教學質量評估實施工作的效率。
4.1學習效果評價學習評價是教育工作者的重要職責之一。評價學生的學習情況,既對學生起到信息反饋和激發(fā)學習動機的作用,又是檢查課程計劃、教學程序以至教學目的的手段,也是考查學生個別差異、便于因材施教的途徑。評價要遵循“評價內容要全面、評價方式要多元化、評價次數要多次化,注重自評與互評的有機結合”的原則。利用數據挖掘工具,對教師業(yè)務檔案數據庫、行為記錄數據庫、獎勵處罰數據庫等進行分析處理,可以即時得到教師教學的評價結果,對教學過程出現的問題進行及時指正。
另外,這種系統(tǒng)還能夠克服教師主觀評價的不公正、不客觀的弱點,減輕教師的工作量。
4.2課堂教學評價。
課堂教學評價不僅對教學起著調節(jié)、控制、指導和推動作用,而且有很強的導向性,是學校教學管理的重要組成部分,是評價教學工作成績的主要手段。實現對任課教師及教學組織工作效果做出評價,但是更重要的目的是總結優(yōu)秀的教學經驗,為教學質量的穩(wěn)定提高制定科學的規(guī)范。學校每學期都要搞課堂教學評價調查,積累了大量的數據。利用數據挖掘技術,從教學評價數據中進行數據挖掘,將關聯規(guī)則應用于教師教學評估系統(tǒng)中,探討教學效果的好壞與老師的年齡、職稱、學歷之間的聯系;確定教師的教學內容的范圍和深度是否合適,選擇的教學媒體是否適合所選的教學內容和教學對象;講解的時間是否恰到好處;教學策略是否得當等。從而可以及時地將挖掘出的規(guī)則信息反饋給教師。管理部門據此能合理配置班級的上課教師,使學生能夠較好地保持良好的學習態(tài)度,從而為教學部門提供了決策支持信息,促使教學工作更好地開展。
結束語。
數據挖掘作為一種工具,其技術日趨成熟,在許多領域取得了廣泛的應用。在教育領域里,隨著數據的不斷累積,把數據挖掘技術應用到教學評價系統(tǒng)中,讓領導者能夠從中發(fā)現教師教學活動中的主要問題,以便及時改進,進而輔助領導決策做好學校管理,提高學校管理能力和水平,同時通過建立有效的教學激勵機制來達到提高教學質量的目的。這一研究對發(fā)展中的職業(yè)教育教學管理提出了很好的建議,為教學管理工作的計算機輔助決策增添了新的內容。將數據挖掘技術應用于中職教學評估,設計開發(fā)一套行之有效的課堂教學評價系統(tǒng),是下一步要做的工作,必將有力推動職業(yè)教育的快速發(fā)展。
【本文地址:http://www.aiweibaby.com/zuowen/13954845.html】