編寫教案需要充分考慮學(xué)生的學(xué)習(xí)特點和教學(xué)環(huán)境的實際情況。教案的編寫應(yīng)該注重教學(xué)過程的設(shè)計和學(xué)生的參與性。如果你對教案的編寫和使用還不太熟悉,可以參考下面的教案范文進行學(xué)習(xí)和借鑒。
初二數(shù)學(xué)教案一次函數(shù)篇一
一次函數(shù)的圖像與性質(zhì)的口訣:
一次函數(shù)是直線,圖像經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點一直線;。
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠。
初二數(shù)學(xué)教案一次函數(shù)篇二
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標。
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;。
2.應(yīng)用平行四邊形的判定解決實際問題;。
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;。
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;。
2.通過探索式證明法開拓思路,發(fā)展思維能力;。
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點。
重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法。
小組討論、合作探究。
課時安排。
3課時。
教學(xué)媒體。
課件、
教學(xué)過程。
第一課時。
(一)引入。
初二數(shù)學(xué)教案一次函數(shù)篇三
一、學(xué)生起點分析:
學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。
學(xué)生的活動經(jīng)驗基礎(chǔ):學(xué)生能夠根據(jù)已知條件準確畫出一次函數(shù)圖象,能夠認識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認識,有小組合作學(xué)習(xí)經(jīng)驗.
二、學(xué)習(xí)任務(wù)分析:
本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的教學(xué)目標為:
2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;。
3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
教學(xué)重點。
教學(xué)難點。
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
四、教法學(xué)法。
1.教法學(xué)法。
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準備。
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標紙.
五、教學(xué)過程。
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.
初二數(shù)學(xué)教案一次函數(shù)篇四
課件出示教材第75頁圖4-1及相關(guān)問題,并由學(xué)生討論完成題目.
師:在現(xiàn)實生活中一個量隨另一個量的變化而變化的現(xiàn)象大量存在.函數(shù)就是研究一些量之間確定性依賴關(guān)系的數(shù)學(xué)模型.(板書課題)。
二、探究新知。
函數(shù)的相關(guān)概念.
(1)課件出示教材第76頁“做一做”第1題.
師:層數(shù)n和物體總數(shù)y之間是什么關(guān)系?
引導(dǎo)學(xué)生得出:只要給定層數(shù),就能求出物體總數(shù).
(2)課件出示教材第76頁“做一做”第2題.
師:在關(guān)系式t=t+273中,兩個變量中若知道其中一個,是否可以確定另外一個?
一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù),其中x是自變量.
表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法.
對于自變量在可取值范圍內(nèi)的一個確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值稱為當自變量等于a時的函數(shù)值.
理解函數(shù)概念時應(yīng)注意:
(1)在某一變化過程中有兩個變量x與y.
(2)這兩個變量互相聯(lián)系,當變量x取一個確定的值時,變量y的值就隨之確定.
(3)對于變量x的每一個值,變量y都有唯一的一個值與它對應(yīng),如在關(guān)系式y(tǒng)2=x(x0)中,當x=9時,y對應(yīng)的值為3或-3,不唯一,則y不是x的函數(shù).
師:上述問題中,自變量能取哪些值?
指出要根據(jù)實際問題確定自變量的取值范圍.
初二數(shù)學(xué)教案一次函數(shù)篇五
1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標。
1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
2.鼓勵學(xué)生用多種方法進行說理。
情感與態(tài)度目標。
1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。
教材分析。
教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準備,由學(xué)生自我操作。也可由教師演示。
教學(xué)重點:平行四邊形的判別方法。
教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。
學(xué)情分析。
初二學(xué)生對平面圖形的認識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
教學(xué)流程。
一、創(chuàng)設(shè)情境,引入新課。
師:請同學(xué)們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學(xué)生活動:學(xué)生按小組進行探索。
初二數(shù)學(xué)教案一次函數(shù)篇六
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
【能力目標】通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.
【情感目標】通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
【教學(xué)難點】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
初二數(shù)學(xué)教案一次函數(shù)篇七
2、過程與方法。
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維、
3、情感、態(tài)度與價值觀。
培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值、
1、重點:一次函數(shù)的應(yīng)用、
2、難點:一次函數(shù)的應(yīng)用、
3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維、
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的。應(yīng)用、
y=。
拓展:若a城有肥料300噸,b城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?
課本p119練習(xí)、
由學(xué)生自我本節(jié)課的表現(xiàn)、
課本p120習(xí)題14、2第9,10,11題、
1、一次函數(shù)的應(yīng)用例:
練習(xí):
初二數(shù)學(xué)教案一次函數(shù)篇八
知識與技能:
進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題;。
過程與方法。
在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維;在解決實際問題過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
情感態(tài)度與價值觀:
在現(xiàn)實問題的解決中,使學(xué)生初步認識數(shù)學(xué)與人類生活的密切聯(lián)系,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點。
教學(xué)難點。
從函數(shù)圖象中正確讀取信息。
教學(xué)過程:
一、情境引入。
一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖所示,結(jié)合圖象回答下列問題.
(1)農(nóng)民自帶的零錢是多少?
(2)試求降價前y與x之間的關(guān)系。
(3)由表達式你能求出降價前每千克的土豆價格是多少?
二、問題解決。
l1反映了某公司產(chǎn)品的銷售收入與銷售量的關(guān)系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關(guān)系,根據(jù)圖意填空:
初二數(shù)學(xué)教案一次函數(shù)篇九
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3。可得直線與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
初二數(shù)學(xué)教案一次函數(shù)篇十
2、能正確且較為熟練地運用去括號的符號法則去化簡代數(shù)式過程與方法目標學(xué)習(xí)目標。
1、通過觀察、合作交流、討論總結(jié)等活動得出去括號的符號法則,培養(yǎng)學(xué)生觀察、分析、總結(jié)的能力。
2、通過例題講解,和鞏固練習(xí),培養(yǎng)學(xué)生的計算能力班級:初一四班nn。
1、數(shù)學(xué)知識:
2、數(shù)學(xué)思想方法:布置作業(yè):板書設(shè)計nn教學(xué)反思nn。
初二數(shù)學(xué)教案一次函數(shù)篇十一
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
初二數(shù)學(xué)教案一次函數(shù)篇十二
一,填空題:
1。為鼓勵節(jié)約用水,某市規(guī)定:每月每戶用水不超過10立方米,按每立方米1。5元收取水費若每月每戶用水超過10立方米,則超過部分每立方米另加收0。5元。設(shè)每月每戶的用水量為(立方米),應(yīng)繳水費為(元),試寫出當用水量超過10立方米時,水費(元)與(立方米)之間的函數(shù)關(guān)系式:_____________________。若某戶某月交水費25元,則該用戶當月用水__________立方米。
2。某市市內(nèi)電話費(元)與通話時間。
t(分鐘)之間的函數(shù)關(guān)系圖象如圖。
所示,則通話7分鐘需付電話費元。
3,直線可以由直線向平移個單位得到。
二,選擇題。
1。汽車開始行駛時,油箱內(nèi)有油40升,如果每小時耗油5升,則油箱內(nèi)的余油量q(升)與行駛時間t(小時)之間的函數(shù)關(guān)系的圖象應(yīng)是()。
(a)(b)(c)(d)。
2。如圖,oa,ba分別表示甲,乙兩名學(xué)生運動的一次函數(shù)圖象,圖中s和t分別。
表示運動路程和時間,根據(jù)圖象判斷快者的速度比慢者的速度每秒快()。
a,2。5米b,2米c,1。5米d,1米。
3。(四川省)汽車由重慶駛往相距400千米的成都,如果汽車的平均速度是100千米/時,那么汽車距成都的路程s(千米)與行駛時間t(小時)的關(guān)系用圖象表示應(yīng)為()。
abcd。
a。1個b。2個c。3個d。4個。
5兩個一次函數(shù)和圖象的交點坐標是()。
(a)(2,3)(b)(2―3)(c)(―2,3)(d)(―2,―3)。
三解答題;。
1,已知正比例函數(shù)的`圖像與一次函數(shù)的圖像交于點p(3,―6)。
(1)求,的值;(2)如果一次函數(shù)與軸交于點a,求a點的坐標。
2,先在同一直角坐標系中畫出一次函數(shù)的圖象,并求出這兩條直線與橫軸圍成三角形的面積。
3,已知一次函數(shù)的圖象與正比例平行,且通過點m(0,4)。
若點(―8,m)和(n,5)在一次函數(shù)的圖象上,試求m,n的值。
求,的解析式。
求點a,b,c,d的坐標。
初二數(shù)學(xué)教案一次函數(shù)篇十三
一、學(xué)生起點分析:
學(xué)生已了解方程的基本概念和性質(zhì),并能熟練解二元一次方程,也能整體系統(tǒng)地審清題意,能從具體問題的數(shù)量關(guān)系中找出等量關(guān)系并列出二元一次方程組;學(xué)生也基本能夠運用方程的思想解決實際問題。初中二年級的學(xué)生,正處于少年期,已具備了初步的抽象、概括和分析問題解決問題能力,要培養(yǎng)他們敢于面對挑戰(zhàn)和勇于克服困難的意志.鼓勵他們大膽嘗試,敢于發(fā)表自己的看法,以從中獲得成功的體驗,激發(fā)學(xué)習(xí)激情.
二、教學(xué)任務(wù)分析:
基于以上對學(xué)生情況的分析,特制定以下教學(xué)任務(wù):
1、在具體問題的解決過程中提高學(xué)生的解二元一次方程組的技能;。
3、進一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.
4、通過\'雞兔同籠\',把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的\'趣\';進一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神;通過對祖國文明史的了解,培養(yǎng)學(xué)生愛國主義精神,樹立為中華崛起而學(xué)習(xí)的信心.
教學(xué)重點。
教學(xué)難點。
1、讀懂古算題;。
2、根據(jù)題意找出等量關(guān)系,列出方程.
三、教學(xué)過程設(shè)計。
本節(jié)課設(shè)計了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):引入課題;第二環(huán)節(jié):典型例題;第三環(huán)節(jié):闖關(guān)練習(xí);第四環(huán)節(jié):反饋練習(xí);第五環(huán)節(jié):感悟和收獲;第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):引入課題。
活動內(nèi)容1:例1今有雉(兔)同籠,上有三十五頭,下有九十四足,問雉兔各幾何?
提問:
(1)\'上有三十五頭\'的意思是什么?\'下有九十四足\'呢?
(2)你能解決這個有趣的問題嗎?
寫出解題過程,讓學(xué)生討論對不對,有沒有不同的思路和觀點;最后在學(xué)生充分討論的基礎(chǔ)上,老師用多媒體課件,給出正確的答案.)。
初二數(shù)學(xué)教案一次函數(shù)篇十四
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關(guān)系,小華八點離開家,十四點回到家,根據(jù)這個曲線圖,請回答下列問題:
(1)到達離家最遠的地方是幾點?離家多遠?
(2)何時開始第一次休息?休息多長時間?
(3)小華在往返全程中,在什么時間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時離家21千米?(寫出計算過程)。
初二數(shù)學(xué)教案一次函數(shù)篇十五
過程與方法。
了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想,從而“變陌生為熟悉”
情感態(tài)度與價值觀。
利用小組合作探討學(xué)習(xí),使學(xué)生領(lǐng)會樸素的辯證唯物主義思想。
教學(xué)重點。
教學(xué)難點。
初二數(shù)學(xué)教案一次函數(shù)篇十六
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準確的.
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.
1.教學(xué)目標
知識與技能目標
(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法目標
(2) 通過做一做引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
(3) 情感與態(tài)度目標
(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
2.教學(xué)重點
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
3.教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標紙.
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.
第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
3.在一次函數(shù)y= 的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程.
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.
前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進入下一環(huán)節(jié).
第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:1.解方程組
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的`圖像.
(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2) 求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標打下基礎(chǔ).
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.
第三環(huán)節(jié) 典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點坐標是 .
意圖:設(shè)計例1進一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊.
效果:進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
第四環(huán)節(jié) 反饋練習(xí)
內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點為 ,則 .
2.已知一次函數(shù) 與 的圖像都經(jīng)過點a(2,0),且與 軸分別交于b,c兩點,則 的面積為( ).
(a)4 (b)5 (c)6 (d)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點坐標可以看作哪個方程組的解?
意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.
效果:加深了兩條直線交點的坐標就是對應(yīng)的函數(shù)表達式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
第五環(huán)節(jié) 課堂小結(jié)
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1) 方程組的解是對應(yīng)的兩條直線的交點坐標;
(2) 兩條直線的交點坐標是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.
意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進一步明確學(xué)什么,學(xué)了有什么用.
第六環(huán)節(jié) 作業(yè)布置
習(xí)題7.7
附: 板書設(shè)計
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解.因此為了準確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.
初二數(shù)學(xué)教案一次函數(shù)篇十七
3、學(xué)會開放性地尋求設(shè)計方案,培養(yǎng)分析。
教學(xué)難點用方程組刻畫和解決實際問題的過程。
知識重點經(jīng)歷和體驗用方程組解決實際問題的過程。
教學(xué)過程(師生活動)設(shè)計理念。
(出示問題)據(jù)以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結(jié)果取整數(shù))?以學(xué)生身邊的實際問題展開學(xué)習(xí),突出數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生用數(shù)學(xué)的意識。
探索分析。
研究策略以上問題有哪些解法?
學(xué)生自主探索,合作交流,整理思路:
(2)先求兩個小長方形的面積比,再計算分割線的位置.。
(3)設(shè)未知數(shù),列方程組求解.。
……。
學(xué)生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。
合作交流。
解決問題引導(dǎo)學(xué)生回顧列方程解決實際問題的基本思路。
(1)設(shè)未知數(shù)。
(2)找相等關(guān)系。
(3)列方程組。
(4)檢驗并作答。
解這個方程組得。
過長方形土地的長邊上離一端約106m處,把這塊地分。
為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。
你還能設(shè)計別的種植方案嗎?
用類似的方法,可沿平行于線段ab的方向分割長。
方形.。
教師巡視、指導(dǎo),師生共同講評.。
比較分析,加深對方程組的認識。
畫圖,數(shù)形結(jié)合,輔助學(xué)生分析。
進一步滲透模型化的思想。
引發(fā)學(xué)生思考,尋求解決途徑。
拓展探究。
按以下步驟展開問題的討論:
(l)學(xué)生獨立思考,構(gòu)建數(shù)學(xué)模型.。
(2)小組討論達成共識.。
(3)學(xué)生板書講解.。
(4)對方程組的解進行探究和討論,從而得到實際問題的結(jié)果.。
(5)針對以上結(jié)論,你能再提出幾個探索性問題嗎?以學(xué)生學(xué)習(xí)生活中遇到的。
問題展開討論,鞏固用二元一次。
小結(jié)與作業(yè)。
小結(jié)提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的`認識?
學(xué)生思考后回答、整理.。
布置作業(yè)12、必做題:教科書116頁習(xí)題8.3第1(2)、4題。
13、選做題:教科書117頁習(xí)題8.3第7題。
14、備15、選題:
(3)解方程組。
小彬看見了,說:“我來試一試.”結(jié)果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!
你能幫他們解開其中的奧秘嗎?
提示學(xué)生先動手實踐,再分析討論.。
分層次布1作業(yè).其中“必。
做題”面向全體學(xué)生,鞏固知識、
方法,加深理解廠選做題”面向。
部分學(xué)有余力的學(xué)生,給他們一。
定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。
本課所提供的例題、練習(xí)題、作業(yè)題突出體現(xiàn)以下特點:
2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關(guān)系不易發(fā)現(xiàn),問題中的未知數(shù)不。
易設(shè)定,這為學(xué)生開展探究活動提供了機會.。
初二數(shù)學(xué)教案一次函數(shù)篇十八
【知識目標】了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
【能力目標】通過討論和練習(xí),進一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標】通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【難點】判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的。數(shù)學(xué)應(yīng)用意識。
【教學(xué)過程】。
一、引入、實物投影。
2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
[1]?[2]?[3]。
初二數(shù)學(xué)教案一次函數(shù)篇十九
不知道大家有沒有過這樣的情況:在遇到一個難題的時候,絞盡腦汁的去想解題方法,仍舊解不出來,參照答案之后,才發(fā)現(xiàn),原來是某某定理理解的不到位,某某公式記得不全面。
將筆記上的重點知識標記出,進行一下系統(tǒng)的記憶之后,可以對一個的找一些專題進行一下系統(tǒng)的訓(xùn)練,最好多找一些綜合題,因為綜合題考查的知識點較多,更能夠發(fā)現(xiàn)自己的薄弱項。從而進行強化,讓自己無懈可擊。
同學(xué)們可以跟自己的同桌或者同學(xué)進行合作,互相出題為難對方,一個會出題的人必定會解題,如果題出的非常嚴謹,證明你已經(jīng)升華了。
鍛煉出題的能力也可以培養(yǎng)自己對知識、對考試的不同認識,讓自己站在出題老師的角度上去思考一道題的解題方法與技巧,視野會更加的開闊。
【本文地址:http://www.aiweibaby.com/zuowen/14286460.html】