教案是教師進行授課和教學管理的重要依據,也是學生學習的重要參考。教案的定期更新和改進是教師不斷提高教學水平和教學質量的重要保證。掌握好教案設計的關鍵,將會對教學效果有很大的提升。
高中數學二次函數有哪些教案篇一
1、中考數學試題的新穎性、靈活性越來越強。
不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養(yǎng)能力,因而相對地忽視了基礎知識、基本技能、基本方法的復習。復習中首先給出概念、公式、定理,然后講幾道例題,就通過大量的題目來訓練。其實定理、公式推證的過程就蘊含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內在的規(guī)律就去做題,試圖通過大量地做題去“悟”出某些道理。結果是“悟”不出方法、規(guī)律,理解膚淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套,照葫蘆畫瓢,將簡單問題復雜化,從而造成失分。
2、以課本為主,從教科書中尋找中考題的“影子”。
許多試題的構成是在教科書中的例題、習題的基礎上通過類比、加工改造、加強條件或減弱條件、延伸或擴展而成的,所以在復習的第一階段,應以新課程標準為依據,以教科書為藍本進行基礎知識的復習。
3、突出復習的特點。
從復習安排上來看,搞好基礎知識的復習主要依賴于系統的復習,在每一個章節(jié)復習中,為了有效地使學生弄清知識的結構,應讓學生按照自己的實際查漏補缺,有目的地自由復習。然后讓學生通過恰當的訓練,加強對概念的理解、結論的掌握、方法的運用和能力的提高。進而達到培養(yǎng)學生的抽象思維能力。
4、梳理知識,加強變式訓練。
中考命題是“依據課標,緊扣課本”的,試卷中的.許多題目是以課本中的例題和習題為例加以變化而來的。因此無論什么復習資料都不能代替教材,只有認真地復習教材中的基礎知識,掌握基本技能,同時對課本的典型題目做一些變式練習,才能靈活掌握雙基,中考中才能正確解答試題。在進行雙基復習時,要對課本知識進行梳理,重點知識在梳理中同時加強變式訓練,常用輔助。
教學。
方法,常用輔助線進行整理,以求熟練掌握。
5、理清脈絡抓基礎。
復習中要緊扣教材,夯實基礎,以基礎題型的復習和基本數學思想、數學方法等的訓練為主,穿插少量的綜合復習,同時關注新學的知識,對課本知識進行系統梳理,形成知識網絡,對典型問題進行變式訓練,達到舉一反三觸類旁通的目的,做到以不變應萬變,提高應試能力。
6、分別對待各有側重。
學習拔尖的學生,在復習中不妨加強習題訓練,在解題過程中注重邏輯關系。另外還要針對知識點的難易程度,在中考中所占的比例,有區(qū)別、側重的重點復習。同時,有目的地進行糾錯訓練,分析易錯問題。
高中數學二次函數有哪些教案篇二
《考試說明》和《考綱》是每位考生必須熟悉的最權威最準確的高考信息,通過研究應明確“考什么”、“考多難”、“怎樣考”這三個問題。
命題通常注意試題背景,強調數學思想,注重數學應用;試題強調問題性、啟發(fā)性,突出基礎性;重視通性通法,淡化特殊技巧,凸顯數學的問題思考;強化主干知識;關注知識點的銜接,考察創(chuàng)新意識。
《考綱》明確指出“創(chuàng)新意識是理性思維的高層次表現”。因此試題都比較新穎活潑。所以復習中你就要加強對新題型的練習,揭示問題的本質,創(chuàng)造性地解決問題。
2.多維審視知識結構。
高考數學試題一直注重對思維方法的考查,數學思維和方法是數學知識在更高層次上的抽象和概括。知識是思維能力的載體,因此通過對知識的考察達到考察數學思維的目的。你需要建立各部分內容的知識網絡;全面、準確地把握概念,在理解的基礎上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質;體會數學思想和解題的方法。
3.把答案蓋住看例題。
參考書上例題不能看一下就過去了,因為看時往往覺得什么都懂,其實自己并沒有理解透徹。所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看,這時要想一想,自己做的與解答哪里不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。經過上面的`訓練,自己的思維空間擴展了,看問題也全面了。如果把題目的來源搞清了,在題后加上幾個批注,說明此題的“題眼”及巧妙之處,收益將更大。
4.研究每題都考什么。
數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,要通過一題聯想到多題。你需要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,研究運用不同的思維方法解決同一數學問題的多條途徑,在分析解決問題的過程中既構建知識的橫向聯系又養(yǎng)成多角度思考問題的習慣。
與其一節(jié)課抓緊時間大汗淋淋地做二、三十道考查思路重復的題,不如深入透徹地掌握一道典型題。例如深入理解一個概念的多種內涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解;對具有共性的問題要努力摸索規(guī)律,即多題一解;不斷改變題目的條件,從各個側面去檢驗自己的知識,即一題多變。習題的價值不在于做對、做會,而在于你明白了這道題想考你什么。
5.答題少費時多辦事。
解題上要抓好三個字:數,式,形;閱讀、審題和表述上要實現數學的三種語言自如轉化(文字語言、符號語言、圖形語言)。要重視和加強選擇題的訓練和研究。不能僅僅滿足于答案正確,還要學會優(yōu)化解題過程,追求解題質量,少費時,多辦事,以贏得足夠的時間思考解答高檔題。要不斷積累解選擇題的經驗,盡可能小題小做,除直接法外,還要靈活運用特殊值法、排除法、檢驗法、數形結合法、估計法來解題。在做解答題時,書寫要簡明、扼要、規(guī)范,不要“小題大做”,只要寫出“得分點”即可。
6.錯一次反思一次。
每次考試或多或少會發(fā)生一些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現。
因此平時要注意把錯題記下來,做錯題筆記包括三個方面:
(1)記下錯誤是什么,最好用紅筆劃出。
(2)錯誤原因是什么,從審題、題目歸類、重現知識和找出答案四個環(huán)節(jié)來分析。
(3)錯誤糾正方法及注意事項。根據錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應注意些什么。你若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在高考時發(fā)生錯誤的概率就會大大減少。
7.分析試卷總結經驗。
每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。
(1)遺憾之錯。就是分明會做,反而做錯了的題。
(2)似非之錯。記憶不準確,理解不夠透徹,應用不夠自如;回答不嚴密不完整等等。
(3)無為之錯。由于不會答錯了或猜錯了,或者根本沒有作答,這是無思路、不理解,更談不上應用的問題。原因找到后就盡早消除遺憾、弄懂似非、力爭有為。切實解決“會而不對、對而不全”的老大難問題。
8.優(yōu)秀是一種習慣。
柏拉圖說:“優(yōu)秀是一種習慣”。好的習慣終生受益,不好的習慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?可采取“一慢一快”戰(zhàn)術,即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習慣。
高中數學二次函數有哪些教案篇三
1、先做簡單題,后做難題。
2、遇到較難的大題,把所有跟該題有關的知識點都寫出來,要知道數學講究步驟分。
3、若是證明題,萬一不會,可以先寫出已知條件,再寫出要證明的最后一步,再一步一步往上推,中間步驟隨便寫點。(使用于粗心的教師,但我們不提倡,重點是要平時學好)。
一、整體把握、抓大放小。
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
高中數學二次函數有哪些教案篇四
一、教材分析:
《34.4二次函數的應用》選自義務教育課程標準試驗教科書《數學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數的概念、圖象及性質的基礎上,讓學生繼續(xù)探索二次函數與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創(chuàng)設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結合問題實際意義就能對二次函數與一元二次方程的關系有很好的體會;從而得出用二次函數的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯系。
本節(jié)教學時間安排1課時。
二、教學目標:
知識技能:
1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.
2.理解拋物線交x軸的點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.
3.能夠利用二次函數的圖象求一元二次方程的近似根。
數學思考:
1.經歷探索二次函數與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
2.經歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
3.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養(yǎng)學生的數形結合思想。
解決問題:
1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創(chuàng)造,感受數學的嚴謹性以及數學結論的確定性。
2.通過利用二次函數的圖象估計一元二次方程的根,進一步掌握二次函數圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。
情感態(tài)度:
1.從學生感興趣的問題入手,讓學生親自體會學習數學的價值,從而提高學生學習數學的好奇心和求知欲。
2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
三、教學重點、難點:
教學重點:
1.體會方程與函數之間的聯系。
2.能夠利用二次函數的圖象求一元二次方程的近似根。
教學難點:
1.探索方程與函數之間關系的過程。
2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系。
四、教學方法:啟發(fā)引導合作交流。
五:教具、學具:課件。
六、教學過程:
[活動1]檢查預習引出課題。
預習作業(yè):
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
2.回顧一次函數與一元一次方程的關系,利用函數的圖象求方程3x-4=0的解.
師生行為:教師展示預習作業(yè)的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價。
教師重點關注:學生回答問題結論準確性,能否把前后知識聯系起來,2題的格式要規(guī)范。
設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數式的變式,這三個方程把二次方程的根的三種情況體現出來,讓學生回顧二次方程的相關知識;2題是一次函數與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
[活動2]創(chuàng)設情境探究新知。
問題。
1.課本p94問題.
3.結合預習題1,完成課本p94觀察中的題目。
師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數形結合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結歸納出正確結論。
教師重點關注:
1.學生能否把實際問題準確地轉化為數學問題;。
2.學生在思考問題時能否注重數形結合思想的應用;。
3.學生在探究問題的過程中,能否經歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
設計意圖:由現實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,促使學生能積極地參與到數學活動中去,體會二次函數與實際問題的關系;學生通過小組合作分析、交流,探求二次函數與一元二次方程的關系,培養(yǎng)學生的合作精神,積累學習經驗。
[活動3]例題學習鞏固提高。
問題。
例利用函數圖象求方程x2-2x-2=0的實數根(精確到0.1).
師生行為:教師提出問題,引導學生根據預習題2獨立完成,師生互相訂正。
教師關注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
設計意圖:通過預習題2的鋪墊,同學們已經從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
[活動4]練習反饋鞏固新知。
高中數學二次函數有哪些教案篇五
老師講課認真聽講,不會的問題及時標記。在課堂上,做一個好學生,認真聽講,對于老師講的問題及時記錄,進行相應的標記,在下課的時候,及時詢問老師,早日解決問題。
一定要課前預習一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預習,預習比復習更加重要,真的很重要,關乎到課堂的思維能力的轉變,多多看看,對自己的理解有幫助。
課上要學會學習,記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學習高中數學,與老師探討學習方法,記筆記,記住講的重點。
多做一些比較普通而又常出的問題,來熟悉自己學的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學,總有一份題目適合自己做,便會更熟悉自己學的知識。
學會總結本節(jié)課的知識點,重點,做一個學會學習的人。及時總結所學的知識點,做一個學好習的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學習到知識,能夠復習到自己以前錯過的題。
與老師經常交流學習方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學習,及時的詢問一下高中數學的學習方法,總有一個適合自己。
高中數學二次函數有哪些教案篇六
1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據目的和功能選擇內容,并且必須有作者的反思(價值判斷)。
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
高中數學二次函數有哪些教案篇七
(1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。
(2)注重學生參與,聯系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣。
重點難點:
能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。
一、試一試。
ab長x(m)123456789。
bc長(m)12。
面積y(m2)48。
2.x的值是否可以任意取?有限定范圍嗎?
對于1.,可讓學生根據表中給出的ab的長,填出相應的bc的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:
(1)從所填表格中,你能發(fā)現什么?
(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當ab的長為5cm,bc的長為10m時,圍成的矩形面積最大;最大面積為50m2。
高中數學二次函數有哪些教案篇八
1.質疑問難是學生自主學習的重要表現,優(yōu)化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數是初中階段繼一次函數、反比例函數之后,學生要學習的最后一類重要的代數函數,它也是描述現實世界變量之間關系的重要的數學模型。
3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現,理應得到老師的熱情鼓勵和贊揚?,F在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數的概念、圖像和性質,用二次函數的觀點審視一元二次方程,用二次函數的相關知識分析和解決簡單的實際問題。
高中數學二次函數有哪些教案篇九
按照描點法分三步畫圖:
(2)描點按照表中所列出的函數對應值,在平面直角坐標系中描出相應的7個點;
(3)邊線用平滑曲線順次連接各點,即得所求y=x2的圖象。
注意兩點:
(1)由于我們只描出了7個點,但自礦業(yè)量取值范圍是實數,故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區(qū)間的一部分。而圖象在x3或x-3的`區(qū)間是無限延伸的。
(2)所畫的圖象是近似的。
3.在原點附近較精確地研究二次函數y=x2的圖象形狀到底如何?――我們c1與1之間每隔0.2的間距取x值表和圖13-14。按課本p118內容講解。
4.引入拋物線的概念。
關于拋物線的頂點應從兩方面分析:一是從圖象上看,y=x2的圖象的頂點是最低點;一是從解析式y=x2看,當x=0時,y=x2取得最小值0,故拋物線y=x2的頂點是(0,0)。
小結。
(1)函數解析式關于自變量是整式;(2)函數自變量的最高次數是2。
高中數學二次函數有哪些教案篇十
1.經歷探索二次函數y=ax2的圖象的作法和性質的過程,獲得利用圖象研究函數性質的經驗。
2.能夠利用描點法作出函數y=ax2的圖象,并能根據圖象認識和理解二次函數y=ax2的性質,初步建立二次函數表達式與圖象之間的聯系。
3.能根據二次函數y=ax2的圖象,探索二次函數的性質(開口方向、對稱軸、頂點坐標)。
教學重點:二次函數y=ax2的圖象的作法和性質。
教學難點:建立二次函數表達式與圖象之間的聯系。
教學方法:自主探索,數形結合。
利用具體的二次函數圖象討論二次函數y=ax2的性質時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯系,以達到學生對二次函數性質的真正理解。
一、認知準備:
1.正比例函數、一次函數、反比例函數的圖象分別是什么?
2.畫函數圖象的方法和步驟是什么?(學生口答)。
你會作二次函數y=ax2的圖象嗎?你想直觀地了解它的性質嗎?本節(jié)課我們一起探索。
二、新授:
(一)動手實踐:作二次函數y=x2和y=-x2的圖象。
(同桌二人,南邊作二次函數y=x2的圖象,北邊作二次函數y=-x2的圖象,兩名學生黑板完成)。
(二)對照黑板圖象議一議:(先由學生獨立思考,再小組交流)。
1.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
3.當x0時,隨著x的增大,y如何變化?當x0時呢?
4.當x取什么值時,y值最???最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三)學生交流:
1.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)。
2.二次函數y=x2和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標系中的兩個函數y=x2和y=-x2圖象,根據圖象回答:
(1)二次函數y=x2和y=-x2的圖象關于哪條直線對稱?
(2)兩個圖象關于哪個點對稱?
(3)由y=x2的圖象如何得到y=-x2的圖象?
(四)動手做一做:
1.作出函數y=2x2和y=-2x2的圖象。
(同桌二人,南邊作二次函數y=-2x2的圖象,北邊作二次函數y=2x2的圖象,兩名學生黑板完成)。
2.對照黑板圖象,數形結合,研討性質:
(1)你能說出二次函數y=2x2具有哪些性質嗎?
(2)你能說出二次函數y=-2x2具有哪些性質嗎?
(3)你能發(fā)現二次函數y=ax2的圖象有什么性質嗎?
(學生分小組活動,交流各自的發(fā)現)。
3.師生歸納總結二次函數y=ax2的圖象及性質:
(2)性質。
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下[。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0),y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
4.應用:(1)說出二次函數y=1/3x2和y=-5x2有哪些性質。
(2)說出二次函數y=4x2和y=-1/4x2有哪些相同點和不同點?
三、小結:
通過本節(jié)課學習,你有哪些收獲?(學生小結)。
1.會畫二次函數y=ax2的圖象,知道它的圖象是一條拋物線。
2.知道二次函數y=ax2的性質:
a:開口方向:a0,拋物線開口向上,a〈0,拋物線開口向下。
b:頂點坐標是(0,0)。
c:對稱軸是y軸。
d:最值:a0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0。
e:增減性:a0時,在對稱軸的左側(x0=,y隨x的增大而減小,在對稱軸的右側(x0),y隨x的增大而增大,a〈0時,在對稱軸的左側(x0),y隨x的增大而增大,在對稱軸的右側(x0),y隨x的增大而減小。
高中數學二次函數有哪些教案篇十一
教學任務分析:
(1)理解冪函數的概念,會畫五種常見冪函數的圖像;
(2)結合冪函數的圖像,理解冪函數圖像的變化情況和性質;
(3)通過觀察、總結冪函數的性質,培養(yǎng)學生概括抽象和識圖能力。
教學重點:
常見冪函數的的概念、圖像和性質。
教學難點:
冪函數的單調性及比較兩個冪值的大小。
教具準備:
多媒體課件、投影儀、打印好的作業(yè)。
教學情景設計。
問題。
問題2:如果正方形的邊長為x,那么正方形面積y=?
問題3:如果正方體的棱長為x,那么正方體體積y=。
問題4:如果正方形場地的面積為x,那么正方形的邊長?y=?
問題5:如果某人x秒內騎車行進1千米,那么他騎車的平均速度y=(千米/秒)引導學生探索發(fā)現:
引導學生歸納結論。
(1)?指數為常數。
1、即(是)。
2、(不是)。
3、(不是)。
定義域。
值域。
高中數學二次函數有哪些教案篇十二
教材分析:
冪函數作為一類重要的函數模型,是學生在系統地學習了指數函數、對數函數之后研究的又一類基本的初等函數。?冪函數模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數?.組織學生畫出他們的圖象,根據圖象觀察、總結這幾個常見冪函數的性質。對于冪函數,只需重點掌握?這五個函數的圖象和性質。學習中學生容易將冪函數和指數函數混淆,因此在引出冪函數的概念之后,可以組織學生對兩類不同函數的表達式進行辨析。學生已經有了學習冪函數和對象函數的學習經歷,這為學習冪函數做好了方法上的準備。因此,學習過程中,引入冪函數的概念之后,嘗試放手讓學生自己進行合作探究學習。
課時分配1課時。
教學目標。
重點:從五個具體的冪函數中認識的概念和性質。
難點:從冪函數的圖象中概括其性質,據冪函數的單調性比較兩個同指數的指數式的大小。
知識點:冪函數的定義、五個冪函數圖象特征。
能力點:通過具體實例了解冪函數的圖象和性質,并能進行簡單的應用。
自主探究點:通過作圖歸納總結冪函數的相關性質。
考試點:了解冪函數的概念,
結合函數的圖象了解它們的變化情況。
易錯易混點:學生容易將冪函數和指數函數混淆。
拓展點:通過指數函數的圖象性質研究冪函數指數的變化。
教具準備:多媒體輔助教學。
課堂模式:導學案。
一、引入新課。
(一)回顧引入。
【師生互動】師:數學的內在美常常讓我感動,下面我們共同來欣賞運算的完美性,
思考:由8、2、3、這四個數,運用數學符號可組成哪些等式?
生:探討,交流。
師生共同分析:
師:我們知道對于等式。
1.如果一定,隨著的變化而變化,我們建立了指數函數。
2.如果一定,隨著的變化而變化,我們建立了對數函數。
設想:如果一定,隨著的變化而變化,是不是也可以確定一個函數呢?
【設計說明】使學生回憶所學兩個基本初等函數,為所要學習的冪函數作鋪墊。
(二)觀察下列對象:
問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數=元,
問題(2):如果正方形的邊長為,那么正方形的面是=。
問題3):如果正方體的邊長為,那么正方體的體積是=。
問題(4):如果正方形場地面積為,那么正方形的邊長=。
問題(5):如果某人s內騎車行進了1km,那么他騎車的平均速度=。
【師生互動】師:(1)它們的對應法則分別是什么?
(2)以上問題中的函數有什么共同特征?
讓學生獨立思考后交流,引導學生概括出結論。
生:(1)乘以1(2)求平方(3)求立方。
(4)求算術平方根(5)求-1次方。
師:上述的問題涉及到的函數,都是形如:,其中是自變量,是常數。
師生:共同辨析這種新函數與指數函數的異同。
二、探究新知。
組織探究。
1.冪函數的定義。
一般地,形如(r)的函數稱為冪函數,其中是自變量,是常數。
如等都是冪函數,冪函數與指數函數,對數函數一樣,都是基本初等函數。
【師生互動】師:1.冪函數的定義來自于實踐,它同指數函數、對數函數一樣,也是基本初等函數,同樣也是一種“形式定義”的函數,引導學生注意辨析。
2.研究函數的圖像。
(1)(2)(3)。
(4)(5)。
生:利用所學知識和方法嘗試作出五個具體冪函數的圖象,觀察所作圖象,體會冪函數的變化規(guī)律。
師:引導學生應用函數的性質畫圖象,如:定義域、奇偶性。
師生共同分析:強調畫圖象易犯的錯誤。
【設計意圖】(1)通過具體作圖,可使學生加深對圖象的直觀印象,記憶比較牢固;同時也提高了學生數形結合的思維能力;(2)符合學生的認知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學生學習的能動性,以學生為主體,展開課堂教學。
【師生互動】師:引導學生觀察圖象,歸納概括冪函數的的性質及圖象變化規(guī)律。
生:觀察圖象,分組討論,探究冪函數的性質和圖象的變化規(guī)律,并展示各自的結論進行交流評析,并填表。
定義域值域奇偶性單調性定點。
師生共同分析冪函數性質:
(1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1);。
高中數學二次函數有哪些教案篇十三
二次函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,在初中的學習中已經給出了二次函數的圖象及性質,學生已經基本掌握了二次函數的圖象及一些性質,只是研究函數的方法都是按照函數解析式---定義域----圖象----性質的方法進行的,基于這種情況,我認為本節(jié)課的作用是讓學生借助于熟悉的函數來進一步學習研究函數的更一般的方法,即:利用解析式分析性質來推斷函數圖象。它可以進一步深化學生對函數概念與性質的理解與認識,使學生得到較系統的函數知識和研究函數的方法,站在新的高度研究函數的性質與圖象。因此,本節(jié)課的內容十分重要。
2、教學的重點和難點。
教學重點:使學生掌握二次函數的概念、性質和圖象;從函數的性質推斷圖象的方法。
教學難點:掌握從函數的性質推斷圖象的方法。
按照新課標指出三維目標,根據任教班級學生的實際情況,本節(jié)課我確定的教學目標是:
1、知識與技能:掌握二次函數的性質與圖象,能夠借助于具體的二次函數,理解和掌握從函數的性質推斷圖象的方研究法。
2、過程與方法:通過老師的引導、點撥,讓學生在分組合作、積極探索的氛圍中,掌握從函數解析式、性質出發(fā)去認識函數圖象的高度理解和研究函數的方法。
3、情感、態(tài)度、價值觀:讓學生感受數學思想方法之美、體會數學思想方法之重要;培養(yǎng)學生主動學習、合作交流的意識等。
遵循“教師的主導作用和學生的主體地位相統一的教學規(guī)律”,從教師的角色突出體現教師是設計者、組織者、引導者、合作者,經過教師對教材的分析理解,在教師的組織引導和師生互動過程中以問題為載體實施整個教學過程;在學生這方面,通過自主探索、合作交流、歸納方法等一系列活動為主線,感受知識的形成過程,拓展和完善自己的認知結構,進而體現出教學過程中教師與學生的雙主體作用。
根據新課標的理念,我把整個的教學過程分為六個階段,即:創(chuàng)設情景、提出問題。
師生互動、探究新知。
獨立探究,鞏固方法。
強化訓練,加深理解。
小結歸納,拓展深化。
布置作業(yè),提高升華。
的圖象。目的是充分暴露學生在作圖時不能很好的結合函數的性質而出現的錯誤或偏差問題,突出本節(jié)課的重要性。在學生總結交流的基礎上教師指出學生的錯誤并以設問的方式提出本節(jié)課的目標:如何利用函數性質的研究來推斷出較為準確的函數圖象,進而引導學生進入師生互動、探究新知階段。
在這個階段,我引用課本所給的例題1請同學們以學習小組為單位嘗試完成并作出總結發(fā)言。目的是:讓學生充分參與,在合作探究中讓學生最大限度地突破目標或暴露出在嘗試研究過程中出現的分析障礙,即不能很好的把握函數的性質對圖象的影響,不能把抽象的性質與直觀的圖象融會貫通,這樣便于教師在與學生互動的過程中準確把握難點,各個擊破,最終形成知識的遷移。在學生探討后,教師選小組代表做總結發(fā)言,其他小組作出補充,教師引導從逐步完善函數性質的分析。其中,學生對于對稱軸的確定、單調區(qū)間及單調性的分析闡述等可能存在困難。這時教師可以利用對解析式的分析結合多媒體演示引導學生得到分析的思路和解決的方法,在師生互動的過程中把函數的性質完善。之后進入環(huán)節(jié)3:再次讓學生利用二次函數的性質推斷出二次函數的圖象,強化用二次函數的性質推斷圖象的關鍵。進而突破教學難點。讓學生真正實現知識的遷移,完成整個探究過程,形成較為完整的新的認知體系。當然,在這個過程中可能會有學生提出圖象為什么是曲線而不是直線等問題,為了消除學生的疑惑,進入第4個環(huán)節(jié):教師要簡單說明這是研究函數要考慮的一個重要的性質,是函數的凹凸性,后面我們將要給大家介紹,同學們可以閱讀課本第110頁的探索與研究。這樣也給學生留下一個思考與探索的空間,培養(yǎng)學生課外閱讀、自主研究的能力,增強學生學習數學的積極性。
在以上環(huán)節(jié)完成后,進入第5個環(huán)節(jié):讓學生對利用解析式分析性質然后推斷函數圖象的研究過程進行梳理并加以提煉、抽象、概括,得出研究函數的具體操作過程,使問題得以升華,拓寬學生的思維,將新知識內化到自己的認知結構中去。最終尋求到解決問題的方法。
教學的最終目標應該落實到每一個學生個體的內化與發(fā)展,由此讓引導學生進入獨立探究,鞏固方法的階段。例2在題目的設置上變換二次函數的開口方向,目的是一方面使學生加深對知識的理解,完善知識結構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。學生在例1的基礎上將會目標明確地進行函數性質的研究,然后推斷出比較準確的函數圖象,使新知得到有效鞏固。
通過前面三個階段的學習,學生應該基本掌握了本節(jié)課的相關知識。但對二次函數中系數a、b、c的對二次函數的影響還有待提高,為此我把課本中的例3進行改編,引導學生進入強化訓練,加深理解階段。一方面可以解決學生對奇偶性的質疑,另一方面也可以把學生對二次函數的認識提到新的高度。
第五個階段:小結歸納,拓展深化。為了讓學生能夠站在更高的角度認識二次函數和掌握函數的一般研究方法,教師引導學生從兩個方面總結。在你對函數圖象與性質的關系有怎樣的理解方面教師要引導、拓展,明確今天所學習的方法實際上是研究函數性質圖象的一般方法,對于一些陌生的或較為復雜的函數只要借助于適當的方法得到相關的性質就可以推斷出函數的圖象,從而把學生的認知水平定格在一個新的高度去理解和認識函數問題。
最后一個階段是布置作業(yè),提高升華,作業(yè)的設置是分層落實。鞏固題讓學生復習解題思路,準確應用,以便舉一反三。探究題通過對教材例題的改編,供學有余力的學生自主探索,提高他們分析問題、解決問題的能力。
以上六個階段環(huán)環(huán)相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動手操作,動眼觀察,動腦思考,親身經歷了知識的形成和發(fā)展過程,并得以遷移內化。而最終的探究作業(yè)又將激發(fā)學生興趣,帶領學生進入對二次函數更進一步的思考和研究之中,從而達到知識在課堂以外的延伸??傊?,這節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設計的。
【本文地址:http://www.aiweibaby.com/zuowen/14460912.html】