初中數(shù)學(xué)多邊形的內(nèi)角和教案(精選19篇)

格式:DOC 上傳日期:2023-11-24 21:12:09
初中數(shù)學(xué)多邊形的內(nèi)角和教案(精選19篇)
時(shí)間:2023-11-24 21:12:09     小編:翰墨

教案要注重不同學(xué)生的個(gè)體差異,提供個(gè)性化的學(xué)習(xí)支持和指導(dǎo)。教案需要與教學(xué)實(shí)際相結(jié)合,靈活運(yùn)用,以適應(yīng)不同教學(xué)場(chǎng)合和教學(xué)環(huán)境。通過(guò)研究這些教案范例,你可以提高對(duì)學(xué)科知識(shí)和教育教學(xué)理論的理解和應(yīng)用能力。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇一

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決。結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想。

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí)。請(qǐng)同學(xué)們回憶一下這些圖形的概念。找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià)。

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件。(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序。

練習(xí):課本124頁(yè)1、2題。

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。

5.四邊形的對(duì)角線:

(四)四邊形的內(nèi)角和定理。

定理:四邊形的內(nèi)角和等于.

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決。

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

證明:(1)(四邊形的內(nèi)角和等于),

練習(xí):

1.課本124頁(yè)3題。

小結(jié):

知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。

作業(yè):課本130頁(yè)2、3、4題。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇二

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360?。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。

師:你真聰明!做到了學(xué)以致用。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。

(二)引申思考,培養(yǎng)創(chuàng)新。

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

八、教學(xué)反思:

1、教的轉(zhuǎn)變。

本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫(huà)圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫(huà)板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

2、學(xué)的轉(zhuǎn)變。

學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉(zhuǎn)變。

整節(jié)課以“流暢、開(kāi)放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇三

上完這節(jié)課后,自我感覺(jué)良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動(dòng)探討、勇于創(chuàng)新。

首先我先復(fù)習(xí)相關(guān)知識(shí),引出新的問(wèn)題,明確指出雖然采用的分割方法不同,但是目標(biāo)是一致的,都是通過(guò)添加輔助線,把未知的多邊形的內(nèi)角和轉(zhuǎn)化為一些三角形的內(nèi)角和,向?qū)W生滲透了“轉(zhuǎn)化”這種數(shù)學(xué)思想方法。在此教學(xué)中,只須真正實(shí)施民主的開(kāi)放式教學(xué),創(chuàng)設(shè)平等、民主、寬松的教學(xué)氛圍,使師生完全處于平等的地位,學(xué)生才能敞開(kāi)思想,積極參與教學(xué)活動(dòng),才能最大限度地調(diào)動(dòng)學(xué)生的積極性,激發(fā)他們的學(xué)習(xí)興趣,引導(dǎo)他們多角度、多方位、多層次地思考問(wèn)題,使他們有足夠的機(jī)會(huì)顯示靈性,展現(xiàn)個(gè)性。在問(wèn)題探究、合作交流、形成共識(shí)的基礎(chǔ)上,在課堂活動(dòng)中經(jīng)歷、感悟知識(shí)的生成、發(fā)展與變化過(guò)程,也只有這樣,才能將創(chuàng)新教育的目標(biāo)落到實(shí)處,讓學(xué)生在自主參與學(xué)習(xí),解決問(wèn)題、嘗試到一題多證的方法,體驗(yàn)到參與的樂(lè)趣、合作的價(jià)值,并獲得成功的體驗(yàn)。

六、案例點(diǎn)評(píng)。

陳老師在本節(jié)課的教學(xué)設(shè)計(jì)上,內(nèi)容豐富,過(guò)程非常具體,設(shè)計(jì)也較合理。整節(jié)課以推導(dǎo)多邊形的內(nèi)角和為線索,讓學(xué)生經(jīng)歷了提問(wèn)題、畫(huà)圖、判斷、找規(guī)律、猜想出一般性的結(jié)論。另外,能夠體現(xiàn)了用新教材的思想,體現(xiàn)了學(xué)生的主體地位,體現(xiàn)了新的教學(xué)理念,也符合初中生的心理特點(diǎn)和年齡特征,因此在教學(xué)設(shè)計(jì)上是比較好的。

但是隨堂練習(xí)太少而不精,并且沒(méi)有梯度,能否可以設(shè)計(jì)一些具有一定難度的練習(xí),使不同的學(xué)生得到不同層次的發(fā)展,為學(xué)有余力的學(xué)生提供更大的學(xué)習(xí)和發(fā)展空間。另外,關(guān)于多邊形的內(nèi)角和的推導(dǎo)不必要一一講解,只要引導(dǎo)學(xué)生解決了探索方法1和探索方法2就可以了,對(duì)于探索方法3,可以讓學(xué)生課后思考。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇四

完成《多邊形的內(nèi)角和》教學(xué)之后,學(xué)生很自然地就會(huì)想到對(duì)于多邊形的情況如何。為了體現(xiàn)課堂以學(xué)生為主,培養(yǎng)學(xué)生自主探究的能力,在課前的教學(xué)設(shè)計(jì)中盡量圍繞學(xué)生展開(kāi)。如:采取了小組合作學(xué)習(xí)、組與組之間交流等形式。雖然想法上有此意圖,但在具體的實(shí)施過(guò)程中還是暴露出了很多問(wèn)題,有事先沒(méi)預(yù)計(jì)到的,也有想體現(xiàn)但沒(méi)體現(xiàn)完整的。經(jīng)過(guò)課后反思及老教師們的指點(diǎn),主要表現(xiàn)在:

(1)較多的著眼于課堂形式的多樣化及學(xué)生能力(如:合作、探究、交流等)的培養(yǎng),而忽視了教學(xué)中最重要的知識(shí)點(diǎn)的落實(shí)。學(xué)生練的機(jī)會(huì)不多,僅有編制習(xí)題解答這一部分,且對(duì)學(xué)生來(lái)說(shuō)要求較高,教師在編題前可先讓學(xué)生解題,給學(xué)生搭好階梯,使其不至于感到突然。

(2)小組討論可以說(shuō)是新教材框架中的一個(gè)重要部分,教師事先一定要有詳細(xì)的計(jì)劃。這也是本堂課暴露缺陷較多的環(huán)節(jié)。比如:組員的設(shè)置(七、八人一組加上發(fā)下的表格較少使得討論未能有效的開(kāi)展),以4、5人為一組較為合適,且要分工明確,如誰(shuí)記錄,誰(shuí)發(fā)言等等,避免某些小組成員流離于合作之外。教師還應(yīng)精心策劃:討論如何有效地開(kāi)展;時(shí)間多長(zhǎng);采取何種討論方法;教師在討論過(guò)程中又該擔(dān)當(dāng)何種角色等。

(3)在小組交流過(guò)程中學(xué)生的發(fā)言過(guò)分地注重于探索的結(jié)果,而忽視了學(xué)生探索過(guò)程的展示。同時(shí)教師有些總結(jié)性的話,限制了學(xué)生的思維,不能最大限度的'發(fā)揮學(xué)生自主探究的能力。

(4)教師在教學(xué)過(guò)程中對(duì)學(xué)生的評(píng)價(jià)較為單一,肯定不夠及時(shí),表?yè)P(yáng)不夠熱情,比如當(dāng)最后一個(gè)平常表現(xiàn)較為一般的學(xué)生有此創(chuàng)意時(shí),教師就應(yīng)大加贊揚(yáng),從而也能激發(fā)課堂氣氛。

將本文的word文檔下載到電腦,方便收藏和打印。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇五

二、教學(xué)目標(biāo)。

2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。

4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

三、教學(xué)重、難點(diǎn)。

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180o,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360o。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360o。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180o的和是540o。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180o的和減去一個(gè)周角360o。結(jié)果得540o。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180o的和減去一個(gè)平角180o,結(jié)果得540o。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180o加上360o,結(jié)果得540o。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180o的和,五邊形內(nèi)角和是3個(gè)180o的和,六邊形內(nèi)角和是4個(gè)180o的和,十邊形內(nèi)角和是8個(gè)180o的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440o,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇六

知識(shí)與技能:掌握多邊形內(nèi)角和定理,進(jìn)一步了解轉(zhuǎn)化的數(shù)學(xué)思想。

重點(diǎn):多邊形內(nèi)角和定理的探索和應(yīng)用。

教學(xué)難點(diǎn):邊形定義的理解;多邊形內(nèi)角和公式的推導(dǎo);轉(zhuǎn)化的數(shù)學(xué)思維方法的滲透.。

教學(xué)過(guò)程。

第一環(huán)節(jié)創(chuàng)設(shè)現(xiàn)實(shí)情境,提出問(wèn)題,引入新(3分鐘,學(xué)生思考問(wèn)題,入)。

1.多媒體展示蜂窩,教師結(jié)合圖片讓學(xué)生發(fā)現(xiàn)生活中無(wú)處不在的多邊形.。

2.工人師傅鋸桌面:一個(gè)四邊形的桌面,用鋸子鋸掉一個(gè)角,還剩幾個(gè)角?

第二環(huán)節(jié)概念形成(5分鐘,學(xué)生理解定義)。

第三環(huán)節(jié)實(shí)驗(yàn)探究(12分鐘,學(xué)生動(dòng)手操作,探究?jī)?nèi)角和)。

(以四人小組為單位展開(kāi)探究活動(dòng))。

活動(dòng)一:利用四邊形探索四邊形內(nèi)角和。

要求:先獨(dú)立思考再小組合作交流完成.)。

(師巡視,了解學(xué)生探索進(jìn)程并適當(dāng)點(diǎn)撥.)。

(生思考后交流,把不同的方案在紙上完成.)。

……(組間交流,教師展示幾種方法)。

進(jìn)而引導(dǎo)學(xué)生得出:我們是把四邊形的問(wèn)題轉(zhuǎn)化成三角形,再由三角形內(nèi)角和為180°,求出四邊形內(nèi)角和為360°,從而使問(wèn)題得到解決!進(jìn)一步提出新的探索活動(dòng)。

活動(dòng)二:探索五邊形內(nèi)角和。

(要求:獨(dú)立思考,自主完成.)。

第四環(huán)節(jié)思維升華(5分鐘,教師引導(dǎo)學(xué)生進(jìn)行推算)。

教學(xué)過(guò)程:

探索n邊形內(nèi)角和,并試著說(shuō)明理由。

(結(jié)合出示的圖表從代數(shù)角度猜測(cè)公式,并從幾何意義加以解讀)。

n邊形的內(nèi)角和=(n—2)180°。

正n邊形的一個(gè)內(nèi)角==。

第五環(huán)節(jié)能力拓展(12分鐘,學(xué)生搶答)。

搶答題:

1.正八邊形的內(nèi)角和為_(kāi)______.

3.一個(gè)多邊形每個(gè)內(nèi)角的度數(shù)是150°,則這個(gè)多邊形的邊數(shù)是_______.

應(yīng)用發(fā)散:

第六環(huán)節(jié)時(shí)小結(jié):(3分鐘,學(xué)生填表)。

第七環(huán)節(jié)布置作業(yè):習(xí)題4、10。

b組(中等生)1。

c組(后三分之一生)1。

教學(xué)反思:

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇七

本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。

二、教學(xué)目標(biāo)。

2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。

4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

三、教學(xué)重、難點(diǎn)。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇八

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。

教學(xué)目標(biāo):

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

5.四邊形的對(duì)角線:

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇九

活動(dòng)。

目標(biāo)。

1、繼續(xù)學(xué)習(xí)對(duì)應(yīng)數(shù)量與數(shù)字1~10。

2、能將點(diǎn)子和數(shù)字進(jìn)行配對(duì)。

活動(dòng)。

準(zhǔn)備。

活動(dòng)過(guò)程。

一、出示小動(dòng)物圖片,引起幼兒興趣。

師:今天老師請(qǐng)來(lái)了幾個(gè)小動(dòng)物。(出示十張小動(dòng)物的圖片,并在他們身上編號(hào)1~10),來(lái)打個(gè)招呼!

師:我們一起來(lái)數(shù)一數(shù)有幾個(gè)小動(dòng)物呢?(老師與幼兒一起數(shù))看看他們身上寫(xiě)著什么?(認(rèn)讀1~10)。

二、游戲:小矮人找朋友。

1、導(dǎo)語(yǔ):小朋友你們喜歡小動(dòng)物嗎?今天小動(dòng)物要和點(diǎn)子娃娃做游戲,(出示點(diǎn)子娃娃),聽(tīng)聽(tīng),小動(dòng)物們要說(shuō)話了(老師以小矮人的口吻說(shuō)話):“小點(diǎn)子,你們真可愛(ài),可是我們不知道哪個(gè)點(diǎn)子娃娃是我的好朋友。”小朋友我們來(lái)幫幫他們好嗎?(幼兒回答)。小朋友們觀察一下小動(dòng)物和點(diǎn)子娃娃它們之間有什么相同的地方?(幼兒自由回答)。好現(xiàn)在咱們就來(lái)幫助小動(dòng)物找朋友。

2、幼兒幫助動(dòng)物人找朋友,找完后,找個(gè)別幼兒說(shuō)一說(shuō)自己的想法。

師:數(shù)一數(shù)你找了幾對(duì)朋友。(幼兒回答)。

師:說(shuō)說(shuō)為什么他們兩個(gè)是朋友?你是怎么知道的?(幼兒回答)。

三、小結(jié):今天,幫助小動(dòng)物找到了朋友,你們真能干,小矮人都非常感謝你們,并讓我代他們謝謝你們。

四、作業(yè)。

師:請(qǐng)小朋友打開(kāi)書(shū)的第13頁(yè),我們一起來(lái)數(shù)一數(shù)。(引導(dǎo)幼兒完成作業(yè))。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十

1、使學(xué)生在理解的基礎(chǔ)上掌握三角形的面積計(jì)算公式,能夠正確地計(jì)算三角形的面積。

2、使學(xué)生通過(guò)操作和對(duì)圖形的觀察、比較,發(fā)展學(xué)生的空間觀念,使學(xué)生知道轉(zhuǎn)化的思考方法在研究三角形面積時(shí)的運(yùn)用。

3、培養(yǎng)學(xué)生的分析、綜合、抽象、概括和運(yùn)用轉(zhuǎn)化方法解決實(shí)際問(wèn)題的能力。

1、用厚紙做完全相同的兩個(gè)直角三角形、兩個(gè)銳角三角形、兩個(gè)鈍角三角形。

教師:前面我們學(xué)習(xí)了平行四邊形面積的計(jì)算,今天我們來(lái)學(xué)習(xí)三角形面積的計(jì)算。

板書(shū):三角形面積的計(jì)算。

1、用數(shù)方格的`方法計(jì)算三角形的面積。

教師:前面我們?cè)趯W(xué)習(xí)長(zhǎng)方形面積和平行四邊形面積時(shí),都曾經(jīng)用過(guò)數(shù)方格的方法,下面我們?cè)儆脭?shù)方格的方法來(lái)求三角形的面積。

2、通過(guò)操作總結(jié)三角形面積的計(jì)算公式。

讓學(xué)生拿出兩個(gè)完全一樣的銳角三角形,提問(wèn):

用兩個(gè)完全一樣的銳角三角形能不能拼成一個(gè)平行四邊形?讓每個(gè)學(xué)生都動(dòng)手拼一拼,或者同桌的兩個(gè)學(xué)生一同拼擺。

教師邊說(shuō)邊演示拼的過(guò)程。先將兩個(gè)銳角三角形重合放置,再按住三角形的右邊頂點(diǎn),使三角形時(shí)針運(yùn)動(dòng)相反的方向轉(zhuǎn)動(dòng)180,到兩個(gè)三角形的底邊成一條直線為止,再把右邊三角形向上沿著第一個(gè)三角形的右邊平移,直到拼成一個(gè)平行四邊形為止,并把拼成的平行四邊形圖畫(huà)在黑板上。然后再帶著學(xué)生規(guī)范地照上面的步驟做一遍,做時(shí)仍需邊做邊強(qiáng)調(diào):先要把兩個(gè)銳角三角形重合,再旋轉(zhuǎn),旋轉(zhuǎn)時(shí)哪個(gè)點(diǎn)不動(dòng)?旋轉(zhuǎn)了多少度?平移時(shí)是沿著哪條直線移動(dòng)的?學(xué)生學(xué)會(huì)把兩個(gè)完全一樣的銳角三角形拼成一個(gè)平行四邊形后,教師再說(shuō)明:平移是圖上各點(diǎn)沿直線移動(dòng),旋轉(zhuǎn)是一個(gè)點(diǎn)不動(dòng),其它的點(diǎn)都圍繞著不動(dòng)點(diǎn)轉(zhuǎn)。提問(wèn):

每個(gè)銳角三角形的面積和拼出的平行四邊形的面積有什么關(guān)系?

學(xué)生回答后,教師強(qiáng)調(diào):每個(gè)銳角三角形是拼成的平行四邊形面積的一半。

教師結(jié)合黑板上分別由兩個(gè)完全相同的三角形拼成的平行四邊形的圖指出:通過(guò)上面的實(shí)驗(yàn),兩個(gè)完全一樣的三角形,不論是直角三角形,銳角三角形,還是鈍角三角形,都可以拼成一個(gè)平行四邊形。提問(wèn):

這個(gè)平行四邊形的底和三角形的底有什么關(guān)系?

這個(gè)平行四邊形的高和三角形的高有什么關(guān)系?

這個(gè)平行四邊形的面積和其中一個(gè)三角形的面積有什么關(guān)系?

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十一

教學(xué)目標(biāo)。

知識(shí)與技能。

掌握多邊形內(nèi)角和公式及外角和定理,并能應(yīng)用.

過(guò)程與方法。

2.經(jīng)歷探索多邊形內(nèi)角和公式的過(guò)程,嘗試從不同角度尋求解決問(wèn)題的方法.訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神.

情感態(tài)度價(jià)值觀。

通過(guò)猜想、推理等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.

重點(diǎn)。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十二

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形?兩條對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的`數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;。

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;。

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;。

4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

四邊形的概念。

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

5.四邊形的對(duì)角線:

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理.

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十三

難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法。

五、教具、學(xué)具。

教具:多媒體課件。

學(xué)具:三角板、量角器。

六、教學(xué)媒體:大屏幕、實(shí)物投影。

七、教學(xué)過(guò)程:

(一)創(chuàng)設(shè)情境,設(shè)疑激思。

師:大家都知道三角形的內(nèi)角和是180?,那么四邊形的內(nèi)角和,你知道嗎?

在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360?。

方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360?。

接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

(2)學(xué)生能否采用不同的方法。

方法1:把五邊形分成三個(gè)三角形,3個(gè)180?的和是540?。

方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180?的和減去一個(gè)周角360?。結(jié)果得540?。

方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180?的和減去一個(gè)平角180?,結(jié)果得540?。

方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180?加上360?,結(jié)果得540?。

師:你真聰明!做到了學(xué)以致用。

交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720?,十邊形內(nèi)角和是1440?。

(二)引申思考,培養(yǎng)創(chuàng)新。

師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180?的和,五邊形內(nèi)角和是3個(gè)180?的'和,六邊形內(nèi)角和是4個(gè)180?的和,十邊形內(nèi)角和是8個(gè)180?的和。

發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

(三)實(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)。

(2)一個(gè)多邊形的內(nèi)角和是1440?,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。

(四)概括存儲(chǔ)。

學(xué)生自己歸納總結(jié):

2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題。

3、用數(shù)形結(jié)合的思想解決問(wèn)題。

(五)作業(yè):練習(xí)冊(cè)第93頁(yè)1、2、3。

八、教學(xué)反思:

1、教的轉(zhuǎn)變。

本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫(huà)圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫(huà)板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

2、學(xué)的轉(zhuǎn)變。

學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

3、課堂氛圍的轉(zhuǎn)變。

整節(jié)課以“流暢、開(kāi)放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十四

1、通過(guò)復(fù)習(xí),使學(xué)生理清各種平面圖形面積計(jì)算公式之間的關(guān)系。

2、使學(xué)生能夠應(yīng)用面積計(jì)算公式,熟練計(jì)算平行四邊形、三角形、梯形和組合圖形的面積。

3、能靈活運(yùn)用所學(xué)知識(shí)解決有關(guān)的實(shí)際問(wèn)題。

熟練計(jì)算平行四邊形、三角形、梯形及組合圖形的面積。

平行四邊形、三角形、梯形的磁片。

一、創(chuàng)設(shè)情境,揭示課題。

1、想一想,本單元我們學(xué)習(xí)了哪些知識(shí)?

揭示課題:今天這節(jié)課我們對(duì)第五單元的知識(shí)進(jìn)行整理和復(fù)習(xí)。

2、在小組內(nèi)說(shuō)一說(shuō),你學(xué)會(huì)了什么?

二、知識(shí)梳理,形成網(wǎng)絡(luò)。

老師根據(jù)學(xué)生所說(shuō),演示轉(zhuǎn)化過(guò)程,形成如教材96頁(yè)的板書(shū)。

(2)從整理圖中能看出各種圖形之間的關(guān)系嗎?

學(xué)生回答后老師簡(jiǎn)要小結(jié)。

2、練一練:

老師出示下題讓學(xué)生獨(dú)立完成后集體核對(duì)。

選擇條件分別計(jì)算下列各圖形的面積。

3、師:剛才復(fù)習(xí)的是基本圖形的面積,而由幾個(gè)基本圖形組合而成的圖形叫什么?

出示第96頁(yè)的第2題,讓學(xué)生自己獨(dú)立完成。

集體核對(duì)時(shí)讓學(xué)生說(shuō)一說(shuō)自己的幾種方法。

學(xué)生可能會(huì)想到下面幾種方法。

比較哪種方法比較簡(jiǎn)便?

三、應(yīng)用拓展。

1、練習(xí)十九第1題。

(1)讓學(xué)生審題,說(shuō)一說(shuō)解題步驟。

(2)獨(dú)立完成。

(3)小組交流,說(shuō)一說(shuō)你的發(fā)現(xiàn)。

(4)全班交流。

師小結(jié):幾個(gè)圖形都在兩條平行線之間,說(shuō)明它們的`高是相等的,在高相等的條件下,面積不等,說(shuō)明它們的高都不等。

2、練習(xí)十九第4題。

(1)先讓學(xué)生獨(dú)立完成第1小題,集體核對(duì)。

想一想該如何擺放小樹(shù)?讓學(xué)生在草稿本上畫(huà)一畫(huà)示意圖。

集體訂正,展示。

四、小結(jié):說(shuō)一說(shuō)今天這節(jié)課最大的收獲是什么?

五、課堂作業(yè):練習(xí)十九第2、3題。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十五

板書(shū)設(shè)計(jì):

第二節(jié)物體分類的教學(xué)。

三、教學(xué)方法。

(一)、教幼兒把相同名稱和物體放在一起。

(二)、教幼兒按物體的外部特征分類。

表格:教幼兒按物體的外部特征分類的教學(xué)要求(投影)。

顏色。

教具要求。

教學(xué)要求。

形狀。

教具要求。

教學(xué)要求。

大小、長(zhǎng)短、粗細(xì)、厚薄、寬窄。

教具要求。

教學(xué)要求。

將本文的word文檔下載到電腦,方便收藏和打印。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十六

(2)類比三角形的定義得出多邊形的定義,學(xué)習(xí)多邊形的邊、頂點(diǎn)、內(nèi)角概念。

(3)例舉世博園里各國(guó)會(huì)館建筑中的多邊形實(shí)例,引出凸多邊形與凹多邊形的概念。

2、說(shuō)明

(1)通過(guò)現(xiàn)實(shí)情境的展示,調(diào)動(dòng)學(xué)生的情緒,激發(fā)進(jìn)一步學(xué)習(xí)的興趣。

(2)培養(yǎng)學(xué)生的動(dòng)手能力。

(3)對(duì)于邊角這些能在圖形中識(shí)別而又不要求學(xué)生掌握的描述性定義,采取學(xué)生類比三角形的表示方法來(lái)歸納,滲透類比的數(shù)學(xué)思想。

(4)借助于自制的直觀教具來(lái)說(shuō)明多邊形定義中“在平面內(nèi)”這一條件,以及世博會(huì)中各參展國(guó)家的會(huì)館建筑圖片中的各式各樣形狀的平面圖形來(lái)突出“線段”、“首位順次連接”等這些概念中的關(guān)鍵詞,易于學(xué)生理解,也達(dá)到了化解難點(diǎn)的目的。同時(shí),也利用兩張圖片,自然引出凹凸多邊形的'概念及如何區(qū)分的方法,也進(jìn)一步規(guī)范認(rèn)識(shí):今后如教材中沒(méi)有特殊說(shuō)明的話,所指多邊形都是凸多邊形。

(5)把學(xué)生的注意力自然引入本課研究方向,為探索多邊形的內(nèi)角和作鋪墊。

1、合作與探究

(1)定義:聯(lián)結(jié)多邊形的兩個(gè)不相鄰頂點(diǎn)的線段叫做多邊形的對(duì)角線。

(2)觀察圖形并回答

四邊形、五邊形、六邊形分別從一個(gè)頂點(diǎn)出發(fā)可以畫(huà)多少條對(duì)角線?類比歸納得到從邊形的一個(gè)頂點(diǎn)出可以畫(huà)多少條對(duì)角線?類比歸納得到:從邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,這些對(duì)角線把這些多邊形分別分成了個(gè)三角形。請(qǐng)計(jì)算四邊形、五邊形、六邊形、邊形的內(nèi)角和。

多邊形的內(nèi)角和定理:邊形的內(nèi)角和等于 (3的整數(shù))。

(3)探究

我們知道,可以通過(guò)把多邊形分成幾個(gè)三角形,從而推出多邊形的內(nèi)角和公式,那還有其他的劃分方法嗎?請(qǐng)以四邊形為例小組合作交流。

2、說(shuō)明

(1)通過(guò)學(xué)習(xí)了解什么叫做多邊形的對(duì)角線后自然過(guò)渡到如何求多邊形的內(nèi)角和。

(2)小組交流合作可以激發(fā)每個(gè)學(xué)生參與,落實(shí)面向全體學(xué)生,學(xué)生可以主動(dòng)地、富有個(gè)性地學(xué)習(xí),形成知識(shí)輻射。

(3)鼓勵(lì)學(xué)生敢于在課堂發(fā)表自己的不同見(jiàn)解,培養(yǎng)探索精神。

(4)通過(guò)幾何畫(huà)板,動(dòng)態(tài)展示多種分割方法,發(fā)散學(xué)生的思維。

(5)從簡(jiǎn)單的四邊形入手,讓學(xué)生親自操作尋求結(jié)論,易于引起學(xué)習(xí)興趣,鼓勵(lì)學(xué)生找到多種方法,讓學(xué)生體會(huì)多種分割形式,有利于深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——四邊形轉(zhuǎn)化為三角形,也讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索和解決問(wèn)題方法的多樣性。通過(guò)交流,讓學(xué)生用自己的語(yǔ)言清楚地表達(dá)解決問(wèn)題的過(guò)程,可以提高語(yǔ)言表達(dá)能力。利用幾何畫(huà)板的動(dòng)態(tài)演示,達(dá)到教學(xué)的更優(yōu)化效果。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十七

學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在學(xué)習(xí)了基本作圖之后,懂得了作圖的方法。又在學(xué)習(xí)本章第一節(jié)后,掌握了線段的比、成比例線段的概念,比例的基本性質(zhì),會(huì)比和比例尺的計(jì)算,堅(jiān)實(shí)了基礎(chǔ)。

學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生的作圖學(xué)習(xí),強(qiáng)化了學(xué)生動(dòng)手的能力;比的計(jì)算、比例尺的計(jì)算,感受了數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,增強(qiáng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的信心。通過(guò)變換的魚(yú)來(lái)推導(dǎo)成比例線段、比例性質(zhì)推導(dǎo)、變換發(fā)展了的邏輯推理能力。本章第一節(jié)例題的講解,培養(yǎng)了學(xué)生靈活運(yùn)用的能力。

二、教學(xué)任務(wù)分析。

學(xué)習(xí)《黃金分割》不僅實(shí)現(xiàn)線段比例的要求,更是體現(xiàn)數(shù)學(xué)的文化價(jià)值,0.618的意義,體現(xiàn)數(shù)學(xué)與建筑、藝術(shù)等學(xué)科必然聯(lián)系的紐帶。教學(xué)中,通過(guò)國(guó)旗上的圖案五角星引入黃金分割,使學(xué)生真正體會(huì)到其中的文化價(jià)值,同時(shí),在建筑、藝術(shù)上實(shí)例欣賞,應(yīng)用中進(jìn)一步強(qiáng)化線段的比、成比例線段、黃金分割等相關(guān)內(nèi)容。為此,本節(jié)課的教學(xué)目標(biāo)是:

2、通過(guò)找一條線段的黃金分割點(diǎn),培養(yǎng)學(xué)生理解與動(dòng)手能力。

3、理解黃金分割的意義,并能動(dòng)手找到和制作黃金分割點(diǎn)和圖形,讓學(xué)生認(rèn)識(shí)教學(xué)與人類生活的密切聯(lián)系對(duì)人類歷史發(fā)展的作用。

教學(xué)重點(diǎn):了解黃金分割的意義并能運(yùn)用。

教學(xué)難點(diǎn):找出黃金分割點(diǎn)和黃金矩形。

三、教學(xué)過(guò)程分析。

本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié):第一個(gè)環(huán)節(jié):情境引入;第二個(gè)環(huán)節(jié):圖片欣賞;第三個(gè)環(huán)節(jié):操作感知;第四個(gè)環(huán)節(jié):聯(lián)系實(shí)際,豐富想象;第五個(gè)環(huán)節(jié):鞏固練習(xí);第六個(gè)環(huán)節(jié):課堂小結(jié);第七個(gè)環(huán)節(jié):布置作業(yè)。

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十八

學(xué)情分析:

學(xué)生已經(jīng)學(xué)過(guò)三角形的內(nèi)角和定理的知識(shí)基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達(dá)能力還稍稍有點(diǎn)欠缺。針對(duì)這種情況,我會(huì)引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強(qiáng)對(duì)數(shù)學(xué)知識(shí)的應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語(yǔ)言表達(dá)能力。

教學(xué)目標(biāo):

1.知識(shí)與技能:運(yùn)用三角形內(nèi)角和定理來(lái)推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計(jì)算公式。

2.過(guò)程與方法:經(jīng)理探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流的意識(shí)。

3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)化歸的思想和實(shí)際應(yīng)用的價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。

教學(xué)重點(diǎn):

初中數(shù)學(xué)多邊形的內(nèi)角和教案篇十九

(1)知識(shí)結(jié)構(gòu):

(2)重點(diǎn)和難點(diǎn)分析:

重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用,數(shù)學(xué)教案-多邊形的內(nèi)角和。

難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說(shuō),三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

2.教法建議。

(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過(guò)這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見(jiàn)圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

(2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過(guò)類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

(3)因?yàn)樵谌切沃袥](méi)有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問(wèn)題時(shí)常用的輔助線,通過(guò)它可以把四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

(4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問(wèn)題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問(wèn)題,初中數(shù)學(xué)教案《數(shù)學(xué)教案-多邊形的內(nèi)角和》。

教學(xué)目標(biāo):

1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

2.通過(guò)引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

3.通過(guò)推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

4.講解四邊形的`有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.

教學(xué)重點(diǎn):

教學(xué)難點(diǎn):

教學(xué)過(guò)程:

(一)復(fù)習(xí)。

在小學(xué)里,我們學(xué)過(guò)長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說(shuō)出四種幾何圖形的概念,教師作評(píng)價(jià).

(二)提出問(wèn)題,引入新課。

利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說(shuō)完就打開(kāi)多媒體課件.(先看畫(huà)面一)。

問(wèn)題:你能類比三角形的概念,說(shuō)出四邊形的概念嗎?

(三)理解概念。

1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.

在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說(shuō)明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.

2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.

3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書(shū)寫(xiě),可以按順時(shí)針或逆時(shí)針的順序.

練習(xí):課本124頁(yè)1、2題.

4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.

注意:在研究四邊形時(shí),常常通過(guò)作它的對(duì)角線,把關(guān)于四邊形的問(wèn)題化成關(guān)于三角形的問(wèn)題來(lái)解決.

(五)應(yīng)用、反思。

例1已知:如圖,直線,垂足為b,直線,垂足為c.

求證:(1);(2)。

練習(xí):

1.課本124頁(yè)3題.

小結(jié):

能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.

作業(yè):課本130頁(yè)2、3、4題.

【本文地址:http://aiweibaby.com/zuowen/14763655.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔