教案是教師授課的參考依據(jù),有助于提高教學(xué)的有效性和教學(xué)質(zhì)量。那么如何編寫一份高質(zhì)量的教案呢?首先,我們需明確教學(xué)目標,明確學(xué)生需要掌握的知識、技能和情感態(tài)度目標;其次,合理選擇教學(xué)內(nèi)容,結(jié)合教材的章節(jié)和教學(xué)任務(wù),精選重點和難點進行強調(diào)和突破;再次,精心設(shè)計教學(xué)過程,確定適合學(xué)生的教學(xué)方法和教學(xué)策略,注重激發(fā)學(xué)生的主動參與和積極思考;最后,制定合理的教學(xué)評價方式,以檢驗學(xué)生的學(xué)習(xí)效果和教學(xué)質(zhì)量。因此,編寫一份完善的教案需要我們充分考慮學(xué)生的實際需求和教學(xué)實踐的特點,注重因材施教和因地制宜,靈活運用各種教學(xué)資源和手段,實現(xiàn)教學(xué)目標的有效實施。以下是小編為大家收集的教案范例,供教師們參考和借鑒。
解一元一次方程的教案設(shè)計篇一
去括號,移項,合并同類項,系數(shù)化為1。
4、鞏固練習(xí)。
(1)解方程(2)當(dāng)y為何值時,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)。
(鞏固練習(xí),抽兩個同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點評。)。
5、小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?
解一元一次方程的教案設(shè)計篇二
學(xué)習(xí)目標:
1、進一步經(jīng)歷運用方程解決實際問題的過程。
2、提高學(xué)生找等量關(guān)系列方程的能力。
3、培養(yǎng)學(xué)生的抽象、概括、分析和解決問題的能力。
4、學(xué)會用數(shù)學(xué)的眼光去看待、分析現(xiàn)實生活中的情景。
重點:
1、如何從實際問題中尋找等量關(guān)系建立方程,解決問題后如何驗證它的合理性。
2、解決打折銷售中的有關(guān)利潤、成本價、賣價之間的相關(guān)的現(xiàn)實問題。
難點:
如何從實際問題中尋找等量關(guān)系建立方程。
學(xué)習(xí)指導(dǎo):
一、知識準備。
1、通過社會調(diào)查,親歷打折銷售這一現(xiàn)實情境,了解打折銷售中的成本價、賣價和利潤之間的關(guān)系。進而能根據(jù)現(xiàn)實情境提出數(shù)學(xué)問題。
2、談一談:
請舉例說明打折、利潤、利潤率、提價及削價的含義分別是什么?
3、算一算:
(1)原價100元的商品,打8折后價格為元;
(2)原價100元的商品,提價40%后的價格為元;
(3)進價100元的商品,以150元賣出,利潤是元。
二、學(xué)習(xí)新課。
一)思考:
1、把下面的“折扣”數(shù)改寫成百分數(shù)。九折八八折七五折。
2、你是怎樣理解某種商品打“八折”出售的?
二)問題:
1、說說“打折銷售”中自己有過的親身經(jīng)歷。
2、假設(shè)你是一個商店老板,你的追求是什么?
3、你是怎樣理解商品的利潤?
三)新知探討。
1、你認為商品的標價、折數(shù)與商品的賣價之間有怎樣的關(guān)系?
2、結(jié)合實際,說說你從打折銷售中可以獲得哪些數(shù)學(xué)問題?
(1)某商店出售一種錄音機,原價430元,現(xiàn)在打九折出售,比原價便宜多少錢?
(2)一種畫冊原價每本16元,現(xiàn)在按每本11。2元出售。這種畫冊按原價打了幾折?
如果設(shè)每件服裝的成本價為x元,根據(jù)題意,
(1)每件服裝的標價為:()。
(2)每件服裝的實際售價為:()。
(3)每件服裝的利潤為:()。
(4)列出方程,并解答:
四)回顧與反思。
解一元一次方程的教案設(shè)計篇三
一、教材分析。
地位:本節(jié)位于青島版七年級上冊第八章第4節(jié)第三課時,在研究了解簡單的一元一次方程的基礎(chǔ)上進行的,其后是第5節(jié)一元一次方程的應(yīng)用。
作用:是一元一次方程解應(yīng)用題的基礎(chǔ),也是解其他方程的基礎(chǔ)。
2、教學(xué)目標。
(1)知識與技能:讓學(xué)生掌握解一元一次方程的基本步驟,會解一元一次方程。
(2)過程與方法:讓學(xué)生經(jīng)歷解一元一次方程的探索過程,總結(jié)出解一元一次方程的一般步驟。
(3)情感、態(tài)度與價值觀:通過自主學(xué)習(xí)、合作交流,培養(yǎng)學(xué)生的自信心與團結(jié)互助精神,讓學(xué)生體會到解方程中分析與轉(zhuǎn)化的思想方法。
3、重難點與關(guān)鍵。
關(guān)鍵:每一步的`依據(jù)及應(yīng)注意的問題。
二、學(xué)情分析。
學(xué)生已經(jīng)歷了兩節(jié)簡單的解一元一次方程,大部分學(xué)生應(yīng)已經(jīng)初步了解了去括號、移項、合并同類項、系數(shù)化為1等方法,對本節(jié)學(xué)習(xí)大有幫助,但在去分母及其余各步驟中都有易錯點,是學(xué)生難以全面掌握的。
三、教學(xué)思想。
新課改理念強調(diào)學(xué)生的主體地位,把課堂還給學(xué)生,學(xué)生是每一環(huán)節(jié)的主體。數(shù)學(xué)是思維的體操。這節(jié)課的目的是讓學(xué)生真正思考,將知識與技能內(nèi)化成自己的東西,同時養(yǎng)成良好的行為、學(xué)習(xí)習(xí)慣。
四、教學(xué)過程教學(xué)環(huán)節(jié)教師活動學(xué)生活動設(shè)計目的一、師生定向。
了解學(xué)情出示上節(jié)。
習(xí)題練習(xí)了解具體學(xué)情確定新舊知識的銜接點三、自主預(yù)習(xí)。
預(yù)習(xí)檢測布置任務(wù)。
巡視督導(dǎo)。
板書例題。
預(yù)習(xí)檢測。
抽查學(xué)生。
指導(dǎo)學(xué)生自改自評。
自學(xué)課本內(nèi)容,思考解方程的每一步變化的名稱及具體做法,思考易錯點。
閉卷答題。
自改、自評預(yù)習(xí)效果。
教師指明做法,幫學(xué)生走進教材,理解文本,把握重點。
通過學(xué)生閱讀思考讓學(xué)生將部分知識內(nèi)化。
檢查預(yù)習(xí)情況,暴曬問題。
讓學(xué)生將技能內(nèi)化,培養(yǎng)學(xué)生獨立學(xué)習(xí)能力。
四、合作探究。
展示交流指導(dǎo)學(xué)生互評。
引導(dǎo)學(xué)生討論總結(jié)步驟及具體做法,易錯點小組合作解決自學(xué)未能解決的問題。
由會的同學(xué)展示。
小組討論總結(jié)每一步的易錯點兵教兵。
在互動中提高學(xué)生的分析能力、判斷能力,培養(yǎng)團結(jié)互助精神五、達標自測。
拓展應(yīng)用引導(dǎo)學(xué)生完成相應(yīng)學(xué)案上的問題。
獨立完成。
自評互評。
小組交流后當(dāng)堂完成檢驗學(xué)生學(xué)習(xí)成果用以確定課后作業(yè)六簡談收獲。
布置作業(yè)引導(dǎo)學(xué)生談?wù)勥@節(jié)課的收獲。
布置作業(yè)。
從知識、方法、情感等方面談?wù)n堂收獲了解學(xué)生收獲情況。
布置課下任務(wù),讓學(xué)生繼續(xù)牢固學(xué)習(xí)成果。
解一元一次方程的教案設(shè)計篇四
我們這堂課主要有五個特色:
1、學(xué)而時習(xí)之。
2、新課當(dāng)舊課上。
3、重視引導(dǎo)學(xué)生再創(chuàng)造,再發(fā)現(xiàn)。
4、突出學(xué)習(xí)和強度,角度和反思。
5、創(chuàng)設(shè)情景,讓學(xué)生主動積極參與。
一、學(xué)而時習(xí)之。
二、新課當(dāng)舊課上。
三、重視引導(dǎo)學(xué)生再創(chuàng)造、再發(fā)現(xiàn)。
b組訓(xùn)練題較a組靈活,適用于學(xué)有余力的學(xué)生。
第(4)題,學(xué)生要考慮兩種情況;目的是通過分類討論的思想,培養(yǎng)學(xué)生思維的嚴密性。
四、突出學(xué)習(xí)的速度、角度、強度和反思。
例如:課前訓(xùn)練一和作業(yè)中對新舊知識的系統(tǒng)復(fù)習(xí),通過多次鞏固達到強化訓(xùn)練的目的。
另外,我們設(shè)計了強化a組題,在學(xué)生完成a組訓(xùn)練題后,可以自由選擇是進入強化a組題還是進入b組訓(xùn)練題中這部分的設(shè)計主要是讓學(xué)生養(yǎng)成客觀的自我評價,和為在a組訓(xùn)練中未能形成基本技能的學(xué)生再次創(chuàng)造一個條件和空間,務(wù)求使學(xué)生掌握基礎(chǔ)知識,再次有機會形成基本技能,充分體現(xiàn)學(xué)習(xí)強度和分層教學(xué)。
五、創(chuàng)設(shè)情境,讓學(xué)生主動積極參與。
解一元一次方程的教案設(shè)計篇五
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
和難點。
課堂設(shè)計。
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
解之,得x=3.
答:某數(shù)為3.
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們運用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系。因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程。
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)。
上述分析過程可列表如下:
x-15%x=42500,
所以x=50000.
答:原來有50000千克面粉。
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系。(這是關(guān)鍵一步);
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案。這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義。
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥。解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤。并嚴格規(guī)范書寫格式)。
解:設(shè)第一小組有x個學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數(shù)為3×5+9=24.
答:第一小組有5名同學(xué),共摘蘋果24個。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習(xí)。
2.我國城鄉(xiāng)居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元。求1978年末的儲蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課了哪些內(nèi)容?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
解一元一次方程的教案設(shè)計篇六
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.
教學(xué)重點和難點。
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.
答:某數(shù)為3.
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.
解之,得x=3.
答:某數(shù)為3.
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運用一元一次方程解應(yīng)用題的目的之一.
我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關(guān)系.因此對于任何一個應(yīng)用題中提供的條件,應(yīng)首先從中找出一個相等關(guān)系,然后再將這個相等關(guān)系表示成方程.
本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關(guān)系和把這個相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.
答:原來有50000千克面粉.
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)。
教師應(yīng)指出:
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);。
(4)求出所列方程的解;。
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應(yīng)是,檢驗所求出的解既能使方程成立,又能使應(yīng)用題有意義.
解一元一次方程的教案設(shè)計篇七
一、教學(xué)目標。
知識與技能。
1、會根據(jù)實際問題中的數(shù)量關(guān)系列方程解決問題。
過程與方法。
培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,以及分析問題解、決問題的能力。
情感態(tài)度與價值觀。
1、通過問題的`解決,培養(yǎng)學(xué)生解決問題的能力。
2、通過開放性問題的設(shè)計,培養(yǎng)學(xué)生的創(chuàng)新能力和挑戰(zhàn)自我的意識,增強學(xué)生的學(xué)習(xí)興趣。
二、重點難點。
重點。
根據(jù)題意,分析各類問題中的等量關(guān)系,熟練的列方程解應(yīng)用題。
難點弄清題意,用列方程解決實際問題。
三、學(xué)情分析。
學(xué)生在上一節(jié)課已經(jīng)學(xué)習(xí)了一元一次方程的解法,對于學(xué)生來說解方程已不是問題了,本節(jié)課是以上一節(jié)課為基礎(chǔ),用方程來解決實際問題,只要學(xué)生讀懂題意,建立數(shù)學(xué)模型,用一元一次方程會解決就行了。
四、教學(xué)過程設(shè)計。
教學(xué)。
環(huán)節(jié)問題設(shè)計師生活動備注情境創(chuàng)設(shè)。
討論交流:按怎樣的解題步驟解方程才最簡便?由此你能得到怎樣的啟發(fā)。
創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣。
學(xué)生動手解方程。
自主探究。
問題一:
一項工作甲獨做5天完成,乙獨做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,兩人合作3天完成的工作量是,此時剩余的工作量是。
問題二:
問題三:
整理一批圖書,由一個人做要40小時完成.現(xiàn)在計劃由一部分人先做4小時,再增加兩人和他們一起做8小時,完成這項工作.假設(shè)這些人的工作效率相同。
解一元一次方程的教案設(shè)計篇八
3.3解一元一次方程(二)―――去括號與去分母(第1課時)教學(xué)目標:(1)知識目標:在具體情境中體會去括號的必要性,能運用運算律去括號。(2)能力目標:探索總結(jié)去括號法則,并能利用法則解決簡單的問題。重點:去括號法則及其運用。難點:括號前面是“―”號,去括號時,應(yīng)如何處理。教學(xué)過程:(一)創(chuàng)設(shè)情景,導(dǎo)入新課問題某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2000度,全年用電15萬度。這個工廠去年上半年每月平均用電多少度?(三)典例教學(xué)例1.解方程3x-7(x-1)=3-2(x+3)例2.一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時.已知水流的`速度是3千米/小時,求船在靜水中的平均速度.例3.某車間22名生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母2000個,一個螺釘要配兩個螺母.為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?(四)課堂練習(xí)1.(1)4x+3(2x-3)=12-(x+4)(2)2.同步p79自我嘗試(五)課堂小結(jié)去括號法則(六)作業(yè)p102習(xí)題3.3第2題,同步學(xué)習(xí)p80開放性作業(yè)教后思:
解一元一次方程的教案設(shè)計篇九
基礎(chǔ)知識:掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。
基本技能:能夠分析實際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。
基本思想。
方法:通過將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,培養(yǎng)學(xué)生的建模思想;。
基本活動經(jīng)驗體會解決實際問題的一般步驟及盈虧中的關(guān)系。
教學(xué)重點。
教學(xué)難點。
找出已知量與未知量之間的關(guān)系及相等關(guān)系。
教具資料準備。
教師準備:課件。
學(xué)生準備:書、本。
教學(xué)過程。
一、創(chuàng)設(shè)情景引入新課。
觀察圖片引課(見大屏幕)。
二、探究。
探究銷售中的盈虧問題:。
1、商品原價200元,九折出售,賣價是元.
2、商品進價是30元,售價是50元,則利潤。
是元.
2、某商品原來每件零售價是a元,現(xiàn)在每件降價10%,降價后每件零售價是元.
3、某種品牌的`彩電降價20%以后,每臺售價為a元,則該品牌彩電每臺原價應(yīng)為元.
4、某商品按定價的八折出售,售價是14.8元,則原定售價是.
(學(xué)生總結(jié)公式)。
熟悉各個量之間的聯(lián)系有助于熟悉利潤、利潤率售價進價之間聯(lián)系。
三、探究一。
分析:售價=進價+利潤。
售價=(1+利潤率)進價。
虧?
(2)某文具店有兩個進價不同的計算器都賣64元,
其中一個盈利60%,另一個虧本20%.這次交易中的盈虧情況?
(3)某商場把進價為1980元的商品按標價的八折出售,仍。
獲利10%,則該商品的標價為元.
注:標價n/10=進(1+率)。
(4)2、我國政府為解決老百姓看病難的問題,決定下調(diào)藥品的。
價格,某種藥品在漲價30%后,降價70%至a元,
則這種藥品在20漲價前價格為元.
四、小結(jié)。
通過本節(jié)課的學(xué)習(xí)你有哪些收獲?你還有哪些疑惑?
虧損還是盈利對比售價與進價的關(guān)系才能加以判斷。
小組研究解決提出質(zhì)疑。
優(yōu)生展示講解質(zhì)疑。
五、作業(yè)布置:
板書設(shè)計。
相關(guān)的關(guān)系式:例題。
課后反思售價、進價、利潤、利潤率、標價、折扣數(shù)這幾個量之間的關(guān)系一定清楚,之后才能靈活運用,通過變式練習(xí)加強記憶提高能力。
解一元一次方程的教案設(shè)計篇十
一、教學(xué)目標:
1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、通過觀察,歸納的概念。
3、積累活動經(jīng)驗。
二、重點和難點。
歸納的概念。
感受方程作為刻畫現(xiàn)實世界有效模型的意義。
三、教學(xué)過程。
1、課前訓(xùn)練一。
(1)如果||=9,則=;如果2=9,則=。
(2)在數(shù)軸上距離原點4個單位長度的數(shù)為。
(3)下列關(guān)于相反數(shù)的說法不正確的是()。
a、兩個相反數(shù)只有符號不同,并且它們到原點的距離相等。
b、互為相反數(shù)的兩個數(shù)的絕對值相等。
c、0的相反數(shù)是0。
d、互為相反數(shù)的兩個數(shù)的和為0(字母表示為、互為相反數(shù)則)。
e、有理數(shù)的相反數(shù)一定比0小。
(4)乘積為1的兩個數(shù)互為倒數(shù),如:
(5)如果,則()。
a、,互為倒數(shù)b、,互為相反數(shù)c、,都是0d、,至少有一個為0。
(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經(jīng)過幾周后樹苗長高到1米?設(shè)大約經(jīng)過周后樹苗長高到1米,依題意得方程()。
a、b、c、d、00。
2、由課本p149卡通圖畫引入新課。
3、分組討論p149兩個練習(xí)。
4、p150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設(shè)這個足球場的寬為米,那么長為(+25)米,依題意可列得方程為:()。
課本的寬為3厘米,長比寬多4厘米,則課本的面積為平方厘米。
解:設(shè)每個練習(xí)本要元,則每個筆記本要元,依題意可列得方程:
6、歸納方程、的概念。
7、隨堂練習(xí)po151。
8、達標測試。
(1)下列式子中,屬于方程的是()。
a、b、c、d、
(2)下列方程中,屬于的是()。
a、b、c、d、
解:設(shè)甲隊勝了場,則平了場,依題意可列得方程:
解得=。
答:甲隊勝了場,平了場。
(4)根據(jù)條件“一個數(shù)比它的一半大2”可列得方程為。
(5)根據(jù)條件“某數(shù)的與2的差等于最大的一位數(shù)”可列得方程為。
p151習(xí)題5.1。
解一元一次方程的教案設(shè)計篇十一
教學(xué)設(shè)計思想:
本節(jié)知識是探究如何用一元一次方程解決實際問題。在前面我們結(jié)合實際問題,討論了如何分析數(shù)量關(guān)系、利用相等關(guān)系列方程以及如何解方程,在此基礎(chǔ)上我們才可以進一步探究用一元一次方程解決實際問題。在課堂中教師出示例題,啟發(fā)學(xué)生思考,師生共同探討,學(xué)生找等量關(guān)系,列出方程,教師出示鞏固性練習(xí),學(xué)生解答,達到鞏固所學(xué)知識的目的。
教學(xué)目標:
1.知識與技能。
利用相等關(guān)系建立數(shù)學(xué)模型列方程;。
2.過程與方法。
會用方程解決簡單的實際問題,認識到建立方程模型的重要性;。
在建立方程解決實際問題時,我們體會到設(shè)未知數(shù)的意義。
3.情感、態(tài)度與價值觀。
體會數(shù)學(xué)建模與實際的相互密切聯(lián)系,加強數(shù)學(xué)建模思想。
教學(xué)重點:解決相關(guān)問題時,利用相等關(guān)系列方程。
教學(xué)難點:解決相關(guān)問題時,利用相等關(guān)系列方程。
重難點突破:關(guān)鍵是弄清問題背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系。
教學(xué)方法:采用直觀分析法、引導(dǎo)發(fā)現(xiàn)法及嘗試指導(dǎo)法充分發(fā)揮學(xué)生的主體作用,使學(xué)生在輕松愉快的氣氛中掌握知識。
課時安排:1課時。
教具準備:投影儀。
教學(xué)過程:
一、創(chuàng)設(shè)情境。
師:通過前幾節(jié)課的學(xué)習(xí),同學(xué)們回憶一下,列方程解應(yīng)用題的第一步是什么?
生:分析題意,設(shè)未知數(shù)。
師:很好。我們以前學(xué)的應(yīng)用題大多是求一個未知量,因而設(shè)一個未知數(shù)我們今天要學(xué)的內(nèi)容需要求兩個未知量,這又如何解決呢?通過今天的學(xué)習(xí),這些問題將得到很好的答案。
[教法說法]:此節(jié)內(nèi)容與前邊內(nèi)容聯(lián)系不大,所以開門見山直接提出問題,同時也引起學(xué)生的注意和好奇,使學(xué)生帶著問題進入今天的學(xué)習(xí),激發(fā)了學(xué)生的求知欲。
解一元一次方程的教案設(shè)計篇十二
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
教學(xué)重點和難點。
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)。
解:設(shè)第一小組有x個學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個.。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習(xí)。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
解一元一次方程的教案設(shè)計篇十三
2.掌握等式的性質(zhì),理解掌握移項法則。
3.會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
5.初步學(xué)會用方程的思想思考問題和解決問題的一些基本方法,學(xué)會用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實情境中的.實際問題。
難點重點:
解方程、用方程解決實際問題。
難點:用方程解決實際問題。
教學(xué)流程。
二、典例回顧。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判斷下列x值是否為方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解決問題的基本步驟。
解:設(shè)先安排x人工作4小時。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括號,得4x+8x+16=40。
移項及合并,得12x=24。
系數(shù)化為1,得x=2。
答:應(yīng)先安排2名工人工作4小時.
注意:工作量=人均效率人數(shù)時間。
本題的關(guān)鍵是要人均效率與人數(shù)和時間之間的數(shù)量關(guān)系.
三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.
四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。
五、達標訓(xùn)練:3.7。
五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?
解一元一次方程的教案設(shè)計篇十四
本節(jié)課的教學(xué)設(shè)計中堅持以學(xué)生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個與生活密切相關(guān)的實際問題,抽象出相等的數(shù)量關(guān)系,建立數(shù)學(xué)模型。啟發(fā)學(xué)生逐層深入,多方位、多角度地思考問題,加強知識的綜合運用,尊重個體差異,幫助學(xué)生在自主探索與合作交流的過程中獲得數(shù)學(xué)活動經(jīng)驗,提高靈活解決實際問題的能力。
教學(xué)內(nèi)容分析。
本節(jié)課是人民教育出版社的義務(wù)教育課程標準實驗教科書《數(shù)學(xué)》七年級上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實際問題,是初中階段應(yīng)用數(shù)學(xué)知識解決實際問題的開端,同時也是今后學(xué)習(xí)列其它方程或方程組解決實際問題的基礎(chǔ)。
教學(xué)對象分析。
學(xué)生在小學(xué)學(xué)習(xí)時就已接觸過有關(guān)實際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關(guān)系,并會解決一些簡單問題,同時,在本章前階段的學(xué)習(xí)中學(xué)習(xí)了一元一次方程的解法及列一元一次方程解實際問題建模的思想,但由于學(xué)生的認知起點和學(xué)習(xí)能力存在差異,部分學(xué)生對于抽象數(shù)學(xué)模型可能感到困難,因此,教學(xué)時要注意學(xué)生的學(xué)習(xí)傾向,挖掘積極因素,力求不同的學(xué)生獲得不同的發(fā)展。
知識與技能目標。
進一步掌握生活中實際問題的方程解法,能找出實際問題中已知數(shù)、未知數(shù)和全部的等量關(guān)系,列一元一次方程加以解決。
過程與方法目標。
主動參與數(shù)學(xué)活動,通過問題的`對比體會數(shù)學(xué)建模思想,形成良好的思維習(xí)慣。
情感、態(tài)度和價值觀目標。
經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,品嘗成功的喜悅,激發(fā)應(yīng)用數(shù)學(xué)的熱情。
教學(xué)重點:1.體驗用多種方法解決實際問題的過程。
教學(xué)難點:體會實際問題的生活情節(jié),將數(shù)量關(guān)系抽象概括成為方程模型。
教學(xué)關(guān)鍵:調(diào)動全體學(xué)生的積極性,讓學(xué)生參與實踐,在實踐中提問、交流、合作、探索,正確地列出方程,解決問題。
利用多媒體課件引入問題,讓學(xué)生在實際背景下發(fā)現(xiàn)和理解數(shù)學(xué)問題。
問題1:銷售中的盈虧:
分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進這兩件衣服時花了多少錢,如果進價大于售價就虧損,反之就盈利。
小組討論:
問題2:用那種燈省錢。
分析:問題中有基本的等量關(guān)系。
費用=燈的售價+電費。
解一元一次方程的教案設(shè)計篇十五
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
一、從學(xué)生原有的認知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴格規(guī)范書寫格式)。
解:設(shè)第一小組有x個學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個.。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習(xí)。
2.我國城鄉(xiāng)居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
5.把1400獎金分給22名得獎?wù)?,一等獎每?00元,二等獎每人50元.求得到一等獎與二等獎的人數(shù)。
解一元一次方程的教案設(shè)計篇十六
(1)本節(jié)課是七年級第七章《用一元一次方程解決實際問題》的第3課時,主要學(xué)習(xí)用一元一次方程解決路程問題。通過上兩節(jié)課的學(xué)習(xí),學(xué)生已經(jīng)初步掌握了用一元一次方程解決實際問題的方法,本節(jié)課在此基礎(chǔ)上,結(jié)合路程問題,進一步學(xué)習(xí)如何從實際問題中分析數(shù)量關(guān)系,用一元一次方程解決實際問題。對學(xué)習(xí)函數(shù)、不等式與其他方程解實際問題都具有重要的意義和作用。
2、教學(xué)目標(認知、能力、情感)。
(1)知識目標。
能借助“列表”的方法審題、找等量關(guān)系,進而用一元一次方程解決路程問題。
(2)能力目標。
進一步培養(yǎng)學(xué)生分析問題,解決實際問題的能力。
(3)情感目標。
通過實際問題的解決,讓學(xué)生認識數(shù)學(xué)的價值和學(xué)習(xí)數(shù)學(xué)的必要性;通過問題情境的設(shè)置,讓學(xué)生熱愛生活、熱愛體育。
3、教學(xué)重點:
引導(dǎo)學(xué)生經(jīng)歷借助“列表法”找等量關(guān)系,用一元一次方程模型解決路程問題的過程。
知識、方法重要,其獲取過程更重要,在教學(xué)中不能只重結(jié)果而忽視過程中學(xué)生經(jīng)歷的觀察、分析、交流等活動,不然學(xué)生就不具備主動建構(gòu)知識的能力和持續(xù)發(fā)展的動力,只會成為解題工具,所以我把方法獲取過程作為本課的重點。
4、教學(xué)難點。
掌握用列表的方法審清題意,抽象具體問題中的數(shù)學(xué)背景,建立數(shù)量間的等量關(guān)系。
用一元一次方程解決實際問題的關(guān)鍵是找到等量關(guān)系。體會“列表法”在把握路程問題等量關(guān)系的優(yōu)越性,進而掌握這種方法是學(xué)生感到困難的,所以把它是本節(jié)課的難點。
5、教法學(xué)法。
優(yōu)選教法。
指導(dǎo)學(xué)法。
學(xué)生不是被動的接受信息,而是在“結(jié)合具體情景、設(shè)計解決策略、與他人合作交流、自我反思”的過程中學(xué)習(xí)。
二、教學(xué)環(huán)節(jié)。
我把本節(jié)課設(shè)計為5個環(huán)節(jié):
1、情境引入相遇問題,初步感知列表方法。
通過救人情境的創(chuàng)設(shè),既對學(xué)生已有知識的檢測,又激發(fā)學(xué)生解決問題的興趣,在不知不覺中引入路程問題――相遇問題。
引入問題后,學(xué)生獨立思考如何確定問題中的等量關(guān)系,然后課堂交流理清題意、找到等量關(guān)系的方法(畫圖或列表)。在此基礎(chǔ)上,引導(dǎo)學(xué)生探究如何用列表的方法理清題目中的數(shù)量,讓學(xué)生初步感受“列表”表示數(shù)量關(guān)系的優(yōu)越性。
本環(huán)節(jié)讓學(xué)生在獨立思考、交流探討中感受“列表法”,讓學(xué)生參與的`知識獲取過程,真正體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。
2、感悟故事中的追及問題,拓展提高對列表的認識。
以同學(xué)們熟悉的故事為背景,配以形象生動的動畫,引入路程問題――追擊問題。然后讓學(xué)生應(yīng)用列表法表示追擊問題的數(shù)量關(guān)系,思考解決問題的多種方法(根據(jù)不同等量關(guān)系,設(shè)不同未知數(shù),列出不同的方程),進一步體會“列表”表示數(shù)量關(guān)系的威力。
教學(xué)過程不能簡單地重復(fù),學(xué)習(xí)過程也不能使機械地模仿,而應(yīng)在螺旋上升的過程中不斷提高。由相遇問題到追擊問題,由一種方法到兩種方法,就是這一理念的直接體現(xiàn)。學(xué)生在應(yīng)用“列表”法的過程中,提高對“列表”法表示數(shù)量關(guān)系優(yōu)越性的認識。
3、回歸現(xiàn)實,梳理新知。
本環(huán)節(jié)讓學(xué)生應(yīng)用所學(xué)知識解決現(xiàn)實生活中的問題。
本題以“奧運”為背景,不僅反映了數(shù)學(xué)來源于實際生活,同時也體現(xiàn)了知識的實用價值,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。這一環(huán)節(jié)既對路程問題進行了鞏固練習(xí)又滲透了愛國主義教育。
4、合作互動,深化提高。
編寫一道應(yīng)用題,使它的題意適合一元一次方程60x=40x+100,要求題意清楚、聯(lián)系生活、符合實際、有一定的創(chuàng)意。
本環(huán)節(jié)讓學(xué)生以小組為單位編寫題目。
前面的環(huán)節(jié)是由實際問題到數(shù)學(xué)模型,現(xiàn)在是由數(shù)學(xué)模型到實際問題,不僅有利于學(xué)生獲取知識,而且也有利于學(xué)生展示聰明才智、形成獨特個性和發(fā)展創(chuàng)新。以小組為單位編寫題目不僅可以發(fā)揮學(xué)生的集體智慧,而且還可以培養(yǎng)他們的合作和團隊意識。
5、暢談收獲,內(nèi)化提高。
這節(jié)課體驗到了什么?
讓學(xué)生本節(jié)學(xué)習(xí)收獲和感受,全體同學(xué)交流。
對學(xué)生數(shù)學(xué)學(xué)習(xí)的既要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在數(shù)學(xué)活動中所表現(xiàn)出來的情感與態(tài)度,課后設(shè)計的暢談收獲,把課堂還給了學(xué)生,他們收獲,交流疑問,當(dāng)堂消化本節(jié)內(nèi)容,讓每一個學(xué)生都體驗到成功的喜悅,學(xué)生的主體地位得以充分體現(xiàn)。
設(shè)計亮點。
(1)本節(jié)課在情境的創(chuàng)設(shè)上,突出了現(xiàn)實性、趣味性和挑戰(zhàn)性,學(xué)生喜聞樂見,使他們能快速進入問題的解決。
(2)讓學(xué)生經(jīng)歷實踐―c認識――再實踐――再認識的過程,在這個過程中,學(xué)生分析問題和解決問題的能力螺旋上升,符合學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律。
解一元一次方程的教案設(shè)計篇十七
2、理解方程的解的概念,會判斷一個數(shù)值是否是已知方程的解。
環(huán)節(jié)一自主學(xué)習(xí)——對于疑惑的問題盡量小組互助解決。
課前至少閱讀課本兩遍,完成例題與習(xí)題,熟知本節(jié)課學(xué)習(xí)目標與重點難點。
環(huán)節(jié)二生生互動——課堂5分鐘練習(xí)并與小組成員相互交流心得。
a。b。c。d。
2、方程的概念:含有的等式叫做方程。
a。b。c。d。
4、一元一次方程的概念:只含有個未知數(shù),并且未知數(shù)的次數(shù)都是,這樣的整式方程叫做一元一次方程。
5、根據(jù)下面所給的條件,能列出方程的是()。
a與的'差的b甲數(shù)的2倍與乙數(shù)的的和。
c一個數(shù)的是6d與的差的。
6、由第5題可知,問題中必須含有才能列出方程,這正是列方程的關(guān)鍵!
a。b。c。d。
8、解方程與方程的解的概念:解方程就是求出使方程中等號的值,而這個值就是。
環(huán)節(jié)三師生互動——你惑我釋,合作交流,知識提升。
【本文地址:http://www.aiweibaby.com/zuowen/14952894.html】