通過(guò)總結(jié),我們可以更好地了解自己的價(jià)值和作用。在寫(xiě)總結(jié)時(shí),我們要注意用詞準(zhǔn)確、簡(jiǎn)明扼要,避免冗長(zhǎng)和啰嗦的表達(dá)。下面是一些總結(jié)的寫(xiě)作技巧和要點(diǎn),希望能對(duì)大家有所啟發(fā)。
數(shù)學(xué)余弦定理說(shuō)課稿篇一
奇偶性是人教a版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。
2、學(xué)情分析。
從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。
3、教學(xué)目標(biāo)。
基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):
數(shù)學(xué)余弦定理說(shuō)課稿篇二
《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類(lèi)問(wèn)題:
1、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。
2、已知三邊求三個(gè)內(nèi)角;
3、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專(zhuān)業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專(zhuān)業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專(zhuān)業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的`激發(fā)了愛(ài)國(guó)主義精神。
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。
1、任務(wù)驅(qū)動(dòng)法。
教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法。
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法。
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法。
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
(一)知識(shí)目標(biāo)。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標(biāo)。
1、培養(yǎng)學(xué)生在本專(zhuān)業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)。
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
(一)導(dǎo)入。
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)新課。
3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形。
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4、解決二個(gè)任務(wù)。
5、操作演練,鞏固提高。
6、小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
7、作業(yè):
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
數(shù)學(xué)余弦定理說(shuō)課稿篇三
一、教材分析:(說(shuō)教材)。
二、說(shuō)教學(xué)思路。
本著數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專(zhuān)業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專(zhuān)業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專(zhuān)業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛(ài)國(guó)主義精神。
三、說(shuō)教法。
教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2.引導(dǎo)發(fā)現(xiàn)法、觀察法。
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3.歸納總結(jié)法。
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4.講練結(jié)合法。
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
四、說(shuō)學(xué)法。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
五、教學(xué)目標(biāo)。
(一)知識(shí)目標(biāo)。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
1
(二)能力目標(biāo)。
1、培養(yǎng)學(xué)生在本專(zhuān)業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)。
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
六、教學(xué)重點(diǎn)。
教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;
七、教學(xué)難點(diǎn)。
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
小結(jié)歸納、布置作業(yè)。
(一)、導(dǎo)入。
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)、新課。
3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形。
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個(gè)任務(wù)。
5.操作演練,鞏固提高。
6.小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
7.作業(yè):
九、板書(shū)設(shè)計(jì)。
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
十、課后反思。
在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
數(shù)學(xué)余弦定理說(shuō)課稿篇四
"余弦定理"是人教a版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問(wèn)題的兩個(gè)重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問(wèn)題的其它數(shù)學(xué)問(wèn)題及生產(chǎn)、生活實(shí)際問(wèn)題的重要工具具有廣泛的應(yīng)用價(jià)值,起到承上啟下的作用。
2.教學(xué)重、難點(diǎn)。
難點(diǎn):利用向量的數(shù)量積證余弦定理的思路。
知識(shí)目標(biāo):能推導(dǎo)余弦定理及其推論,能運(yùn)用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類(lèi)三角形。
能力目標(biāo):培養(yǎng)學(xué)生知識(shí)的遷移能力;歸納總結(jié)的能力;運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
情感目標(biāo):從實(shí)際問(wèn)題出發(fā)運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題這個(gè)過(guò)程體驗(yàn)數(shù)學(xué)在實(shí)際生活中的運(yùn)用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。通過(guò)主動(dòng)探索,合作交流,感受探索的樂(lè)趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
數(shù)學(xué)課堂上首先要重視知識(shí)的發(fā)生過(guò)程,既能展現(xiàn)知識(shí)的獲取,又能暴露解決問(wèn)題的思維。在本節(jié)教學(xué)中,我將遵循"提出問(wèn)題、分析問(wèn)題、解決問(wèn)題"的步驟逐步推進(jìn),以課堂教學(xué)的組織者、引導(dǎo)者、合作者的身份,組織學(xué)生探究、歸納、推導(dǎo),引導(dǎo)學(xué)生逐個(gè)突破難點(diǎn),師生共同解決問(wèn)題,使學(xué)生在各種數(shù)學(xué)活動(dòng)中掌握各種數(shù)學(xué)基本技能,初步學(xué)會(huì)從數(shù)學(xué)角度去觀察事物和思考問(wèn)題,產(chǎn)生學(xué)習(xí)數(shù)學(xué)的愿望和興趣。
本節(jié)教學(xué)中通過(guò)創(chuàng)設(shè)情境,充分調(diào)動(dòng)學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn),讓學(xué)生經(jīng)歷"現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題"的過(guò)程,發(fā)現(xiàn)新的知識(shí),把學(xué)生的潛意識(shí)狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng)新意識(shí)。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數(shù)學(xué)知識(shí)得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強(qiáng)了研究探索的綜合素質(zhì)。
幫助學(xué)生從平面幾何、三角函數(shù)、向量知識(shí)等方面進(jìn)行分析討論,選擇簡(jiǎn)潔的處理工具,引發(fā)學(xué)生的積極討論。你能夠有更好的具體的量化方法嗎?問(wèn)題可轉(zhuǎn)化為已知三角形兩邊長(zhǎng)和夾角求第三邊的問(wèn)題,即:在中已知ac=b,ab=c和a,求a.
學(xué)生對(duì)向量知識(shí)可能遺忘,注意復(fù)習(xí);在利用數(shù)量積時(shí),角度可能出現(xiàn)錯(cuò)誤,出現(xiàn)不同的表示形式,讓學(xué)生從錯(cuò)誤中發(fā)現(xiàn)問(wèn)題,鞏固向量知識(shí),明確向量工具的作用。同時(shí),讓學(xué)生明確數(shù)學(xué)中的轉(zhuǎn)化思想:化未知為已知。將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,引導(dǎo)學(xué)生分析問(wèn)題。在中已知a=5,b=7,c=8,求b.
學(xué)生思考或者討論,若有同學(xué)答則順勢(shì)引出推論,若不能作答則由老師引導(dǎo)推出推論,然后返回解決該問(wèn)題。
讓學(xué)生觀察推論的特征,討論該推論有什么用。
數(shù)學(xué)余弦定理說(shuō)課稿篇五
《余弦定理》是全日制中等國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類(lèi)問(wèn)題:
1)、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。
2)、已知三邊求三個(gè)內(nèi)角;
3)、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專(zhuān)業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專(zhuān)業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專(zhuān)業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛(ài)國(guó)主義精神。
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。
1.任務(wù)驅(qū)動(dòng)法。
教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2.引導(dǎo)發(fā)現(xiàn)法、觀察法。
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3.歸納總結(jié)法。
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4.講練結(jié)合法。
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
(一)知識(shí)目標(biāo)。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
1
(二)能力目標(biāo)。
1、培養(yǎng)學(xué)生在本專(zhuān)業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)。
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學(xué)重點(diǎn)是余弦定理及應(yīng)用余弦定理解斜三角形;
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
小結(jié)歸納、布置作業(yè)。
(一)、導(dǎo)入。
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)、新課。
3.證明猜想,導(dǎo)出余弦定理及余弦定理的變形。
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4.解決二個(gè)任務(wù)。
5.操作演練,鞏固提高。
6.小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
7.作業(yè):
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
數(shù)學(xué)余弦定理說(shuō)課稿篇六
大家好!
今天我說(shuō)課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說(shuō)課。下面我分別從教材分析。目標(biāo)的確定。方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)這四個(gè)方面來(lái)闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。
本節(jié)內(nèi)容是江蘇出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。
基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:
基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。
在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:
1、創(chuàng)設(shè)情境,引入課題。
利用多媒體引出如下問(wèn)題:
a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。
【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
2、探索研究、構(gòu)建新知。
(1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。
通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類(lèi)比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類(lèi)比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類(lèi)解斜三角形的問(wèn)題:
(1)已知三邊,求三個(gè)角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。
3、例題講解、鞏固練習(xí)。
本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書(shū),課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書(shū),從而鞏固余弦定理的運(yùn)用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。
例2對(duì)于例題1(2),求的大小。
【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。
例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),
【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的'推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。
課堂練習(xí):
練習(xí)1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。
練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。
a、能組成直角三角形。
b、能組成銳角三角形。
c、能組成鈍角三角形。
d、不能組成三角形。
【設(shè)計(jì)意圖】與例題3相呼應(yīng)。
練習(xí)3在中,已知,試求的大小。
【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。
4、課堂小結(jié),布置作業(yè)。
先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):
(3)余弦定理的可以解決的兩類(lèi)解斜三角形的問(wèn)題。
通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。
布置作業(yè)。
必做題:習(xí)題1、2、1、2、3、5、6;
選做題:習(xí)題1、2、12、13。
【設(shè)計(jì)意圖】。
作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。
本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。
數(shù)學(xué)余弦定理說(shuō)課稿篇七
《余弦定理》是全日制中等教育國(guó)家規(guī)劃教材(人教版)數(shù)學(xué)第一冊(cè)中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個(gè)測(cè)量學(xué)的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類(lèi)問(wèn)題:
1、已知兩邊及其夾角,求第三邊和其他兩個(gè)角。
2、已知三邊求三個(gè)內(nèi)角;
3、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的指導(dǎo)思想,讓數(shù)學(xué)服務(wù)于專(zhuān)業(yè)的需要。以及最大限度的提高學(xué)生的學(xué)習(xí)興趣,在本節(jié)課,我不是將余弦定理簡(jiǎn)單呈現(xiàn)給學(xué)生,而是創(chuàng)造設(shè)情境,設(shè)計(jì)了與機(jī)械相關(guān)聯(lián)并具有愛(ài)國(guó)主題的二個(gè)任務(wù),通過(guò)任務(wù)驅(qū)動(dòng)法教學(xué),極大提高了學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈求知欲望,在完成數(shù)學(xué)教學(xué)任務(wù)的同時(shí),強(qiáng)化了數(shù)學(xué)與專(zhuān)業(yè)的有機(jī)結(jié)合,培養(yǎng)了學(xué)生將數(shù)學(xué)知識(shí)運(yùn)用于自身專(zhuān)業(yè)中的能力。同時(shí)通過(guò)任務(wù)驅(qū)動(dòng),培養(yǎng)了學(xué)生自主探究式學(xué)習(xí)的能力;提升解決實(shí)際實(shí)際問(wèn)題的能力。因?yàn)樗O(shè)計(jì)的兩個(gè)任務(wù)具有愛(ài)國(guó)主義題材,學(xué)生在完成知識(shí)學(xué)習(xí)的同時(shí),也極大的激發(fā)了愛(ài)國(guó)主義精神。
在確定教學(xué)方法前,首先要求教師吃透教材,選擇恰當(dāng)?shù)慕虒W(xué)方法和教學(xué)手段把知識(shí)傳授給學(xué)生。本節(jié)課主要采用任務(wù)驅(qū)動(dòng)法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學(xué)。
1、任務(wù)驅(qū)動(dòng)法。
教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,提高學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲,啟發(fā)學(xué)生對(duì)問(wèn)題進(jìn)行思考。在研究過(guò)程中,激發(fā)學(xué)生探索新知識(shí)的強(qiáng)烈欲望。提升解決實(shí)際總是的能力,并極大的激發(fā)了愛(ài)國(guó)主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法。
通過(guò)對(duì)勾股定理的觀察和三角形直角的相關(guān)變形,學(xué)生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法。
學(xué)生通過(guò)前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法。
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學(xué)生自主學(xué)習(xí)。練習(xí)讓學(xué)生從多角度對(duì)所學(xué)定理進(jìn)行認(rèn)知,及時(shí)鞏固所學(xué)的知識(shí),鍛煉了解決實(shí)際問(wèn)題的能力,發(fā)揮出學(xué)生的主觀能動(dòng)性,成為學(xué)習(xí)的主體。
學(xué)生學(xué)法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓(xùn)練思維品質(zhì)。
(一)知識(shí)目標(biāo)。
2、使學(xué)生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標(biāo)。
1、培養(yǎng)學(xué)生在本專(zhuān)業(yè)范圍內(nèi)熟練運(yùn)用余弦定理解決實(shí)際問(wèn)題的能力。
2、通過(guò)啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)和證明余弦定理的過(guò)程,培養(yǎng)學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過(guò)對(duì)余弦定理的.推導(dǎo),培養(yǎng)學(xué)生的知識(shí)遷移能力和建模意識(shí),及合作學(xué)習(xí)的意識(shí)。
(三)德育目標(biāo)。
1、培養(yǎng)學(xué)生的愛(ài)國(guó)主義精神、及團(tuán)結(jié)、協(xié)作精神。
2、通過(guò)三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學(xué)中注重突出重點(diǎn)、突破難點(diǎn),從五個(gè)層次進(jìn)行教學(xué)。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動(dòng);
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
(一)導(dǎo)入。
1、教師創(chuàng)設(shè)情境設(shè)置二個(gè)任務(wù),做為貫穿本課的主線和數(shù)學(xué)與專(zhuān)業(yè)有機(jī)結(jié)合的鈕帶,通過(guò)完成這二個(gè)任務(wù),達(dá)到掌握余弦定理并學(xué)會(huì)應(yīng)用的目標(biāo)。
2、通過(guò)與直角三角形勾股定理引出余弦定理(快樂(lè)起點(diǎn))經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)探索研究,合理猜想來(lái)發(fā)現(xiàn)余弦定理。
(二)新課。
3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形。
經(jīng)過(guò)嚴(yán)密邏輯推理證明得出余弦定理,這一過(guò)程中,鍛煉了學(xué)生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4、解決二個(gè)任務(wù)。
5、操作演練,鞏固提高。
6、小結(jié):
通過(guò)學(xué)生口答方式小結(jié),讓學(xué)生強(qiáng)化記憶,分清重點(diǎn),深化對(duì)余弦定理的理解。
7、作業(yè):
板書(shū)是課堂教學(xué)重要部分,為再現(xiàn)知識(shí)體系,突出重點(diǎn),將余弦定理知識(shí)體系展示在板書(shū)中,利于學(xué)生加深印象,理清思路。
在教學(xué)設(shè)計(jì)上,采用任務(wù)驅(qū)動(dòng),教師精心設(shè)計(jì)與機(jī)械專(zhuān)業(yè)相關(guān)聯(lián)的二個(gè)任務(wù),作為貫穿整節(jié)課的主線,通過(guò)具體任務(wù)的完成,即提高學(xué)生學(xué)習(xí)的興趣,又激發(fā)求知欲;知識(shí)點(diǎn)學(xué)習(xí)則循序漸進(jìn),符合學(xué)生的認(rèn)知特點(diǎn)。經(jīng)教師啟發(fā)、誘導(dǎo),學(xué)生通過(guò)觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時(shí),培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
(一)一、教材分析1.地位及作用“余弦定理”是人教a版數(shù)學(xué)必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問(wèn)題的兩個(gè)重要定理之一,也是初中“勾股定......
數(shù)學(xué)余弦定理說(shuō)課稿篇八
引例:
例2:
例3:
4:
小結(jié):
教學(xué)評(píng)價(jià)分析。
診斷性評(píng)價(jià):
1.按常規(guī),學(xué)生很可能想到先探究?jī)山呛偷恼夜?,怎樣想到先研究?jī)山遣畹挠嘞夜绞且粋€(gè)難點(diǎn)(但非重點(diǎn)),教學(xué)時(shí)可以直接提出研究?jī)山遣畹挠嘞夜?。但后面補(bǔ)充老教材的證明方法,讓學(xué)生明白和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,努力讓學(xué)習(xí)過(guò)程自然。
2.盡管教材在前面的習(xí)題中,已經(jīng)為用向量法證明兩角差的余弦公式做了鋪墊,多數(shù)學(xué)生仍難以想到.教師需要引導(dǎo)學(xué)生,聯(lián)想到向量的數(shù)量積公式和單位圓上點(diǎn)的坐標(biāo)特點(diǎn),努力使數(shù)學(xué)思維顯得自然、合理。
3.用向量的數(shù)量積公式證明兩角差的余弦公式時(shí),學(xué)生容易犯思維不嚴(yán)謹(jǐn)?shù)腻e(cuò)誤,教學(xué)時(shí)需要引導(dǎo)學(xué)生搞清楚兩角差與相應(yīng)向量的夾角的聯(lián)系與區(qū)別。
預(yù)期效果:。
1、讓學(xué)生在掌握兩角差的余弦公式探究方法的基礎(chǔ)上,能夠自我總結(jié)形成公式探究的一般方法。
2、激發(fā)學(xué)生的探究欲望,能夠獨(dú)立或合作提出推導(dǎo)其它三角恒等式的方案,形成對(duì)三角恒等變換的本質(zhì)認(rèn)識(shí),加深對(duì)靈活運(yùn)用公式的理解。
3、培養(yǎng)學(xué)生的“問(wèn)題意識(shí)”,在探索的過(guò)程中學(xué)會(huì)將“知識(shí)問(wèn)題化”,大膽、合理地提出猜測(cè),通過(guò)證明、完善,最終達(dá)到將“問(wèn)題知識(shí)化”的目的.
數(shù)學(xué)余弦定理說(shuō)課稿篇九
今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級(jí)數(shù)學(xué)下冊(cè)第十八章第一節(jié)的第一課時(shí)。
一、教學(xué)背景分析。
1、教材分析。
本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。
2、學(xué)情分析。
通過(guò)前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過(guò)拼圖來(lái)證明勾股定理,學(xué)生對(duì)這種解決問(wèn)題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂(lè)趣。
3、教學(xué)目標(biāo):
根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):
過(guò)程與方法目標(biāo):通過(guò)創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問(wèn)題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。
情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學(xué)重點(diǎn)、難點(diǎn)。
二、教材處理。
根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,以創(chuàng)設(shè)問(wèn)題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開(kāi)展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。
三、教學(xué)策略。
1、教法。
“教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。
2、學(xué)法。
“授人以魚(yú),不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學(xué)模式。
根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。
四、教學(xué)過(guò)程。
(一)創(chuàng)設(shè)情境,引入新課。
利用多媒體課件,給學(xué)生出示20xx年國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)面,通過(guò)觀察會(huì)徽?qǐng)D案,提出問(wèn)題:你見(jiàn)過(guò)這個(gè)圖案嗎?你聽(tīng)說(shuō)過(guò)勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。
(二)引導(dǎo)學(xué)生,探究新知。
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問(wèn)題:現(xiàn)在也請(qǐng)你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問(wèn)題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長(zhǎng)為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過(guò)活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問(wèn)題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.通過(guò)活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問(wèn)題的多種方法,鼓勵(lì)創(chuàng)新,小組競(jìng)賽,引入競(jìng)爭(zhēng),教師參與討論,與學(xué)生交流,獲取信息,從而有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過(guò)程中,感受到自我創(chuàng)造的快樂(lè),從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問(wèn)題的能力。
4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。
(三)反饋訓(xùn)練,鞏固新知。
學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課目標(biāo)的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:a組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;b組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。c組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問(wèn)題的方法,增強(qiáng)了數(shù)學(xué)來(lái)源于實(shí)踐,反過(guò)來(lái)又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。
(四)歸納小結(jié),深化新知。
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么?通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。
(五)布置作業(yè),拓展新知。
讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。
(六)板書(shū)設(shè)計(jì),明確新知。
本節(jié)課的板書(shū)設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。
數(shù)學(xué)余弦定理說(shuō)課稿篇十
《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問(wèn)題。
余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識(shí)、上一課時(shí)的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識(shí)基礎(chǔ),同時(shí)又對(duì)本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問(wèn)題中有著重要的地位,是解決各種解三角形問(wèn)題的常用方法,余弦定理也經(jīng)常運(yùn)用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個(gè)十分重要的內(nèi)容。
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導(dǎo)、證明過(guò)程。
3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問(wèn)題。
1、通過(guò)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,培養(yǎng)學(xué)生知識(shí)的遷移能力。
2、通過(guò)直角三角形到一般三角形的過(guò)渡,培養(yǎng)學(xué)生歸納總結(jié)能力。
3、通過(guò)余弦定理推導(dǎo)證明的過(guò)程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
1、在交流合作的過(guò)程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn)解決問(wèn)題的成功喜悅。
2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。
難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過(guò)程以及多解情況的判斷。
普通教學(xué)工具、多媒體工具(以上均為命題教學(xué)的準(zhǔn)備)。
數(shù)學(xué)余弦定理說(shuō)課稿篇十一
兩角差的余弦公式是推導(dǎo)其它十個(gè)公式的基礎(chǔ),所以我想著重講這一小節(jié),本節(jié)課的重點(diǎn)和難點(diǎn)是兩角差的余弦公式的推導(dǎo),所以在備課階段,我研究了教材和教師用書(shū),并且還在網(wǎng)上下載了許多這節(jié)課的教學(xué)設(shè)計(jì)。同時(shí)我根據(jù)我們班學(xué)生對(duì)知識(shí)理解的快慢,把兩角差余弦公式的幾何證明方法舍去了,想只講它的向量的方法,有兩方面的考慮,第一是剛結(jié)束平面向量的學(xué)習(xí),對(duì)數(shù)量積還有印象,第二是從另一個(gè)方面讓學(xué)生去體會(huì)向量作為一種工具的應(yīng)用,從而使學(xué)生能對(duì)數(shù)學(xué)有那么一點(diǎn)點(diǎn)興趣。
在我準(zhǔn)備好之后,我又問(wèn)了其他的數(shù)學(xué)老師,她們也同意只講向量的證明方法,另一個(gè)方法對(duì)學(xué)生連提都不提,另外我還問(wèn)了一下如何引入這一節(jié)的內(nèi)容,并提了我的引入方法——將教材上的例題進(jìn)行適當(dāng)?shù)母木?,降低了難度,但是老師告訴我就直接點(diǎn)明主題就行了,加入引入的話會(huì)把學(xué)生繞暈的。我自己也想了想上次課講數(shù)量積的時(shí)候?qū)ξ目粕霉Φ睦右?,結(jié)果可以想象,開(kāi)頭學(xué)生就覺(jué)得好難,等到講數(shù)量積定義的時(shí)候?qū)W生完全聽(tīng)不進(jìn)去了,那節(jié)課算是失敗的。這一次我想了想采取了保守的策略——直接進(jìn)入主題。
剛開(kāi)始的時(shí)候效果還是不錯(cuò)的,通過(guò)讓學(xué)生猜測(cè)15度《兩角差的余弦公式》的`教學(xué)反思——潘紅亞的余弦值引起了學(xué)生的興趣,很自然的進(jìn)入了公式的推導(dǎo),但是我沒(méi)有想到會(huì)在寫(xiě)角的終邊與單位圓交點(diǎn)坐標(biāo)時(shí)遇到了困難,學(xué)生一點(diǎn)想不起來(lái)三角函數(shù)是如何定義的,再加上當(dāng)時(shí)快下課了,我沒(méi)有進(jìn)一步引導(dǎo),而只是按照我自己的進(jìn)度講完推導(dǎo)過(guò)程,最后學(xué)生迷茫的表情讓我很有挫敗感,我就帶著學(xué)生一塊記憶公式,并告訴他們只要會(huì)用公式做題就可以了,聽(tīng)不懂就算了。
這節(jié)課過(guò)后,我自己靜下心來(lái)想了想,我犯了數(shù)學(xué)課的大忌,一味地講公式,套解法是最快得分的捷徑,但它也是扼殺思考的最有效的管道。數(shù)學(xué)的根基在于理解而非公式或解法。通過(guò)最近的講課,我發(fā)現(xiàn)張碩老師對(duì)我們講的有關(guān)數(shù)學(xué)教學(xué)的理論我都沒(méi)用上,所以我想等到講必修五的時(shí)候,我需要的是花大量的時(shí)間備課,適當(dāng)應(yīng)用一些新的教學(xué)理論,改變一下數(shù)學(xué)課堂,實(shí)習(xí)就是將自己學(xué)到的理論應(yīng)用于實(shí)踐。
數(shù)學(xué)余弦定理說(shuō)課稿篇十二
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
數(shù)學(xué)余弦定理說(shuō)課稿篇十三
本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦定理的基礎(chǔ)上而設(shè)置的教學(xué)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問(wèn)題出發(fā),提出解題需要,引發(fā)認(rèn)知沖突,激起學(xué)生的求知欲望,調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性;在定理證明的教學(xué)中,引導(dǎo)學(xué)生從向量知識(shí)、坐標(biāo)法、平面幾何等方面進(jìn)行分析討論。在給出余弦定理的三個(gè)等式和三個(gè)推論之后,又對(duì)知識(shí)進(jìn)行了歸納比較,發(fā)現(xiàn)特征,便于學(xué)生識(shí)記,同時(shí)也指出了勾股定理是余弦定理的特殊情形,提高了學(xué)生的思維層次。
命題的應(yīng)用是命題教學(xué)的一個(gè)重要環(huán)節(jié),學(xué)習(xí)命題的重要目的是應(yīng)用命題去解決問(wèn)題。所以,例題的精選、講解是至關(guān)重要的。設(shè)計(jì)中的例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問(wèn)題,鞏固余弦定理知識(shí)。例3是已知兩邊一對(duì)角,求解三角形問(wèn)題,可用正弦定理求之,也可用余弦定理求解,通過(guò)比較分析,突出了正、余弦定理的聯(lián)系,深化了對(duì)兩個(gè)定理的理解,培養(yǎng)了解決問(wèn)題的能力。本課在繼承了傳統(tǒng)數(shù)學(xué)教學(xué)模式優(yōu)點(diǎn),結(jié)合新課程的要求進(jìn)行改進(jìn)和發(fā)展,以發(fā)展學(xué)生的數(shù)學(xué)思維能力為主線,發(fā)揮教師的設(shè)計(jì)者,組織者作用,在使學(xué)生掌握知識(shí)的同時(shí),幫助學(xué)生摸索自己的學(xué)習(xí)方法。
本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既兼顧前后知識(shí)的聯(lián)系,又使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問(wèn)題。本課教學(xué)設(shè)計(jì)力求在型(模型、類(lèi)型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過(guò)三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問(wèn)題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問(wèn)題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問(wèn)題,在提出問(wèn)題、思考分析問(wèn)題、解決問(wèn)題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。
本課學(xué)生動(dòng)手較多,會(huì)有很多新問(wèn)題產(chǎn)生,因此顯得課堂時(shí)間不足。今后教學(xué)要在這方面注意把握。
數(shù)學(xué)余弦定理說(shuō)課稿篇十四
本節(jié)課是高中數(shù)學(xué)教材北師大版必修5第二章《解三角形》余弦定理的第一課時(shí)內(nèi)容,《課程標(biāo)準(zhǔn)》和教材把解三角形這部分內(nèi)容安排在必修5,位置相對(duì)靠后,在此前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,使得這部分知識(shí)的處理有了比較多的工具,某些內(nèi)容處理的更加簡(jiǎn)潔。學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),可是比較突出的是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力弱,往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,盡管對(duì)一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的思維方法了解不夠,針對(duì)這些情況,教學(xué)中要重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。
余弦定理是關(guān)于任意三角形邊角之間的另一定理,是解決有關(guān)三角形問(wèn)題與實(shí)際問(wèn)題(如測(cè)量等)的重要定理,它將三角形的邊角有機(jī)的結(jié)合起來(lái),實(shí)現(xiàn)了邊與角的互化,從而使三角和幾何有機(jī)的結(jié)合起來(lái),為求與三角形有關(guān)的問(wèn)題提供了理論依據(jù)。
教科書(shū)直接從三角形三邊的向量出發(fā),將向量等式轉(zhuǎn)化為數(shù)量關(guān)系,得到余弦定理,言簡(jiǎn)意賅,簡(jiǎn)潔明快,但給人感覺(jué)似乎跳躍較大,不夠自然,因此在創(chuàng)設(shè)問(wèn)題情境中加了一個(gè)鋪墊,即讓學(xué)生想用向量方法證明勾股定理,再由特殊到一般,將直角三角形推廣為任意三角形,余弦定理水到渠成,并與勾股定理統(tǒng)一起來(lái),這一嘗試是想回答:一個(gè)結(jié)論源自何處,是怎樣想到的。正弦定理和余弦定理源于向量的加減法運(yùn)算,其實(shí)向量的加減法的三角法則和平行四四邊形法則從形上揭示了三角形的邊角關(guān)系,而正弦定理與余弦定理是從數(shù)量關(guān)系上揭示了三角形的邊角關(guān)系,向量的數(shù)量積則打通了三角形邊角的數(shù)形聯(lián)系,因此用向量方法證明正、余弦定理比較簡(jiǎn)潔,在證明余弦定理時(shí),讓學(xué)生自主探究,尋找新的證法,拓展思維,打通余弦定理與正弦定理、向量、解析幾何、平面幾何的聯(lián)系,在比較各種證法后體會(huì)到向量證法的優(yōu)美簡(jiǎn)潔,使知識(shí)交融、方法熟練、能力提升。
數(shù)學(xué)教學(xué)的主要目標(biāo)是激發(fā)學(xué)生的潛能,教會(huì)學(xué)生思考,讓學(xué)生變得聰明,學(xué)會(huì)數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,具有創(chuàng)新品質(zhì),具備數(shù)學(xué)文化素養(yǎng)是題中之義,想一想,成人工作以后,有多少人會(huì)再用到余弦定理,但圍繞余弦定理學(xué)生學(xué)到的發(fā)現(xiàn)方法、思維方式、探究創(chuàng)造與數(shù)學(xué)精神則會(huì)受用不盡。數(shù)學(xué)教學(xué)活動(dòng)首先應(yīng)圍繞培養(yǎng)學(xué)生興趣、激發(fā)原動(dòng)力,讓學(xué)生想學(xué)數(shù)學(xué)這門(mén)課,同時(shí)指導(dǎo)學(xué)生掌握數(shù)學(xué)學(xué)習(xí)的一般方法,具備終身學(xué)習(xí)的基礎(chǔ)。教師要不斷提出好的數(shù)學(xué)問(wèn)題,還要教會(huì)學(xué)生提出問(wèn)題,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題的意識(shí)和方法,并逐步將發(fā)現(xiàn)問(wèn)題的意識(shí)變成直覺(jué)和習(xí)慣,在本節(jié)課中,通過(guò)余弦定理的發(fā)現(xiàn)過(guò)程,培養(yǎng)學(xué)生觀察、類(lèi)比、發(fā)現(xiàn)、推理的能力,學(xué)生在教師引導(dǎo)下,自主思考、探究、小組合作相互交流啟發(fā)、思維碰撞,尋找不同的證明方法,既培養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,同時(shí)掌握了學(xué)習(xí)概念、定理的基本方法,增強(qiáng)了學(xué)生的問(wèn)題意識(shí)。其次,掌握正確的學(xué)習(xí)方法,沒(méi)有正確的'學(xué)習(xí)方法,興趣不可能持久,概念、定理、公式、法則的學(xué)習(xí)方法是學(xué)習(xí)數(shù)學(xué)的主要方法,學(xué)習(xí)的過(guò)程就是知其然,知其所以然、舉一反三的過(guò)程,學(xué)習(xí)余弦定理的過(guò)程正是指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的良好學(xué)習(xí)方法的范例,引導(dǎo)學(xué)生發(fā)現(xiàn)余弦定理的來(lái)龍去脈,掌握余弦定理證明方法,理解余弦定理與其他知識(shí)的密切聯(lián)系,應(yīng)用余弦定理解決其他問(wèn)題。在余弦定理教學(xué)中,尋求一題多解,探究證明余弦定理的多種方法,指導(dǎo)一題多變,改變余弦定理的形式,如已知兩邊夾角求第三邊的公式、已知三邊求角的余弦值的公式,啟發(fā)學(xué)生一題多想,引導(dǎo)學(xué)生思考余弦定理與正弦定理的聯(lián)系,與勾股定理的聯(lián)系、與向量的聯(lián)系、與三角知識(shí)的聯(lián)系以及與其他知識(shí)方法的聯(lián)系,通過(guò)不斷改變方法、改變形式、改變思維方式,夯實(shí)了數(shù)學(xué)基礎(chǔ),打通了知識(shí)聯(lián)系,掌握了數(shù)學(xué)的基本方法,豐富了數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn),激發(fā)了數(shù)學(xué)創(chuàng)造思維和潛能。
教學(xué)中也會(huì)有很多遺憾,有許多的漏洞,在創(chuàng)設(shè)情境,引導(dǎo)學(xué)生發(fā)現(xiàn)推導(dǎo)方法、鼓勵(lì)學(xué)生質(zhì)疑提問(wèn)、猜想等方面有很多遺憾,比如:如何引入向量,解釋的不夠。最后,希望各位同仁批評(píng)指正。
數(shù)學(xué)余弦定理說(shuō)課稿篇十五
一、教材分析:。
(一)、本節(jié)課在教材中的地位作用。
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo):。
根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。
知識(shí)技能:
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。
過(guò)程與方法:
2、通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用。
3、通過(guò)勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
關(guān)鍵:輔助線的添法探索。
二、教學(xué)過(guò)程:
(一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。
(二)、創(chuàng)設(shè)問(wèn)題情境。
一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的'知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)。
因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養(yǎng)成學(xué)生看書(shū)的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)、組織變式訓(xùn)練。
數(shù)學(xué)余弦定理說(shuō)課稿篇十六
1.本節(jié)課的教學(xué)過(guò)程大體上可以分為四個(gè)階段,一是復(fù)習(xí)舊知識(shí)(余弦定理的內(nèi)容是什么?定理有什么特點(diǎn)?),二是推導(dǎo)余弦定理的推論,三是余弦定理及其推論的簡(jiǎn)單運(yùn)用和應(yīng)用,四是總結(jié)歸納解斜三角形的一般思路、一般方法。
2.學(xué)生課堂表現(xiàn)非常積極,思維比較活躍,興趣比較高,形成了一個(gè)比較好的上課氛圍。就是本人給予學(xué)生的鼓勵(lì)和肯定不足,今后的教學(xué)中多給學(xué)生鼓勵(lì)和支持。
3.教學(xué)目標(biāo)明確,能有效的對(duì)學(xué)生具有啟發(fā)性、思考性、發(fā)展性的培養(yǎng);多媒體的使用比較得當(dāng),既形象直觀又提高了效率;板書(shū)設(shè)計(jì)比較規(guī)范,但自己的字體不好,今后多多訓(xùn)練。
4.我對(duì)本節(jié)課的課堂認(rèn)知從教學(xué)效果看,應(yīng)該說(shuō)達(dá)到了預(yù)期的教學(xué)目標(biāo)。學(xué)生在已有知識(shí)的基礎(chǔ)上,自主得出了余弦定理的推論與應(yīng)用;能較好地運(yùn)用新知識(shí)分析問(wèn)題和解決問(wèn)題;通過(guò)練習(xí)的訓(xùn)練加強(qiáng)對(duì)知識(shí)的理解。
5.仍感到困惑的地方:
(1)自主學(xué)習(xí)時(shí)間與課堂容量;
(2)在課堂教學(xué)中如何關(guān)注學(xué)生的差異。
【本文地址:http://www.aiweibaby.com/zuowen/15164785.html】