線性代數(shù)教學(xué)總結(jié)(實(shí)用24篇)

格式:DOC 上傳日期:2023-11-26 06:07:14
線性代數(shù)教學(xué)總結(jié)(實(shí)用24篇)
時(shí)間:2023-11-26 06:07:14     小編:雨中梧

總結(jié)有助于發(fā)現(xiàn)自己的優(yōu)勢(shì)和不足,對(duì)于今后的學(xué)習(xí)和工作方向的規(guī)劃有著重要意義。在總結(jié)中,要突出重點(diǎn)和亮點(diǎn),對(duì)整個(gè)過程或項(xiàng)目進(jìn)行精華提煉??偨Y(jié)范文的分享可以激發(fā)我們的寫作熱情,提升寫總結(jié)的能力。

線性代數(shù)教學(xué)總結(jié)篇一

考研數(shù)學(xué)包括:線性代數(shù)、高等數(shù)學(xué)、概率論與數(shù)理統(tǒng)計(jì),高等數(shù)學(xué)占考研數(shù)學(xué)的大部分比例,而線性代數(shù)所占的分值比例是22%.線性代數(shù)知識(shí)點(diǎn)多、定理多、概念多、符號(hào)多、運(yùn)算規(guī)律多,知識(shí)點(diǎn)之間的聯(lián)系非常緊密。復(fù)習(xí)線性代數(shù)的時(shí)候,要對(duì)基本概念、基本定理、結(jié)論及其應(yīng)用、各種運(yùn)算規(guī)律及基本題型的計(jì)算方法都要掌握。下面針對(duì)各章節(jié)進(jìn)行考點(diǎn)的總結(jié),并給出復(fù)習(xí)重難點(diǎn)。

第一章行列式。

行列式的核心內(nèi)容是求行列式,包括具體行列式的計(jì)算和抽象行列式的計(jì)算,其中具體行列式的計(jì)算方法主要有兩種,第一種方法是三角化法,即利用行列式的性質(zhì)把復(fù)雜的行列式化為上三角或者下三角來計(jì)算,第二種方法是降價(jià)法,即利用行列式按行(列)展開定理把高階行列式降為低階行列式來計(jì)算。

第二章矩陣。

首先是矩陣定義,它是一個(gè)數(shù)表。這個(gè)與行列式有明顯的區(qū)別。然后看運(yùn)算,常見的運(yùn)算是求逆,轉(zhuǎn)置,伴隨,冪等運(yùn)算。要注意它們的綜合性。還有一個(gè)重點(diǎn)就是常見矩陣類型。大家特別要注意實(shí)對(duì)稱矩陣,正交矩陣,正定矩陣以及秩為1的矩陣。最后就是矩陣秩。這是一個(gè)核心和重點(diǎn)。矩陣的秩是整個(gè)線性代數(shù)的核心。要清楚,秩的定義,有關(guān)秩的很多結(jié)論。針對(duì)結(jié)論,大家最好能知道他們是怎么來的,自己動(dòng)手算一遍。要注意矩陣分塊的原則,分塊矩陣的初等變換與簡(jiǎn)單矩陣初等變換的區(qū)別和聯(lián)系。

第三章向量。

向量組的線性相關(guān)性證明、線性表出等問題,解決此類問題的關(guān)鍵在于深刻理解向量組的線性相關(guān)性概念,掌握線性相關(guān)性的幾個(gè)相關(guān)定理,另外還要注意推證過程中邏輯的正確性,還要善于使用反證法。向量組的極大無關(guān)組、等價(jià)向量組、向量組及矩陣秩的概念,以及它們之間的相互關(guān)系。要求會(huì)用矩陣的初等變換求向量組的極大線性無關(guān)組以及向量組或者矩陣的秩。

第四章特征值與特征向量。

掌握特征值與特征向量的概念與性質(zhì);數(shù)值型矩陣特征值與特征向量的計(jì)算方法;理解掌握矩陣乘法運(yùn)算與特征向量的.聯(lián)系;抽象矩陣行列式的計(jì)算;特征值重?cái)?shù)與無關(guān)特征向量的關(guān)系。

第五章二次型。

二次型這一章的重點(diǎn)實(shí)質(zhì)還是實(shí)對(duì)稱矩陣的正交相似對(duì)角化問題。要掌握二次型的矩陣表示,用矩陣的方法研究二次型的問題?;涡蜑闃?biāo)準(zhǔn)形:主要是利用正交變換法化二次型為標(biāo)準(zhǔn)型,這是考研數(shù)學(xué)線性代數(shù)的重點(diǎn)大題題型,考生一定要掌握其做題的基本步驟。化二次型為標(biāo)準(zhǔn)型的實(shí)質(zhì)也是實(shí)對(duì)稱矩陣的正交相似對(duì)角化問題。二次型的正定性問題:對(duì)具體的數(shù)值二次型,一般可用順序主子式是否全部大于零來判別,而抽象矩陣的正定性判斷可以通過利用標(biāo)準(zhǔn)形,規(guī)范形,特征值等得到證明,這時(shí)應(yīng)熟悉二次型正定有關(guān)的充分條件和必要條件。

線性代數(shù)教學(xué)總結(jié)篇二

《線性代數(shù)》是工科高校中頗為重要的一門課,也是較抽象難學(xué)的一門課程。本文從理論與實(shí)踐兩方面以作者的體會(huì)與認(rèn)識(shí),提出《線性代數(shù)》教學(xué)抽象概念的講解應(yīng)注意的幾點(diǎn)問題,闡釋了如何進(jìn)行《線性代數(shù)》課程的課堂教學(xué),并且能收到良好的教學(xué)效果。

[關(guān)鍵詞]。

《線性代數(shù)》是高等院校理、工類專業(yè)重要的數(shù)學(xué)基礎(chǔ)課。它不但廣泛應(yīng)用于概率統(tǒng)計(jì)、微分方程、控制理論等數(shù)學(xué)分支,而且其知識(shí)已滲透到自然科學(xué)的其它學(xué)科,如工程技術(shù)、經(jīng)濟(jì)與社會(huì)科學(xué)等領(lǐng)域。不僅如此,這門課程對(duì)提高學(xué)生的數(shù)學(xué)素養(yǎng)、訓(xùn)練與提高學(xué)生的抽象思維能力與邏輯推理能力都有重要作用。但由于“線性代數(shù)”本身的特點(diǎn),對(duì)其內(nèi)容學(xué)生感到比較抽象,要深入理解與掌握代數(shù)的基本概念與基本理論學(xué)生感到相當(dāng)吃力、難以理解。因此,為培養(yǎng)與提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)、解決實(shí)際問題的能力,進(jìn)一步研究這門課程的教學(xué)思想和方法對(duì)提高教學(xué)效果甚為重要。

一、加強(qiáng)基本概念的教與學(xué)。

線性代數(shù)這一抽象的數(shù)學(xué)理論和方法體系是由一系列基本概念構(gòu)成的。行列式、矩陣、逆矩陣、初等矩陣、轉(zhuǎn)置、線性表示、線性相關(guān)、特征值與特征向量等抽象概念根植于客觀的現(xiàn)實(shí)世界,有著深刻的實(shí)際背景,即是比較直接抽象的產(chǎn)物。高等數(shù)學(xué)與初等數(shù)學(xué)在含義與思維模式上的變化必然會(huì)在教學(xué)中有所反映。線性代數(shù)作為中學(xué)代數(shù)的繼續(xù)與提高,與其有著很大不同,這不僅表現(xiàn)在內(nèi)容上,更重要的是表現(xiàn)在研究的觀點(diǎn)和方法上。在研究過程中一再體現(xiàn)由具體事物抽象出一般的概念,再以一般概念回到具體事物去的辨證觀點(diǎn)和嚴(yán)格的邏輯推理。新生剛進(jìn)入大學(xué),其思維方式很難從初等數(shù)學(xué)的那種直觀、簡(jiǎn)潔的方法上升到線性代數(shù)抽象復(fù)雜的方式,故思維方式在短期內(nèi)很難達(dá)到線性代數(shù)的要求。大部分同學(xué)習(xí)慣于傳統(tǒng)的公式,用公式套題,不習(xí)慣于理解定理的實(shí)質(zhì),用一些已知的定理、性質(zhì)及結(jié)論來推理、解題等。

在概念的教學(xué)中,教師要研究概念的認(rèn)識(shí)過程的特點(diǎn)和規(guī)律性,根據(jù)學(xué)生的認(rèn)識(shí)能力發(fā)展的規(guī)律來選擇適當(dāng)?shù)慕虒W(xué)方式。因此,在概念教學(xué)中應(yīng)注意以下幾點(diǎn)。

1.合理借助概念的直觀性。

盡管抽象性是《線性代數(shù)》這門課的突出特點(diǎn),直觀性教學(xué)同樣可應(yīng)用到這門課的教學(xué)上,且在教學(xué)中占有重要地位。歐拉認(rèn)為:“數(shù)學(xué)這門科學(xué),需要觀察,也需要實(shí)驗(yàn),模型和圖形的廣泛應(yīng)用就是這樣的例子?!敝庇^有助于概念的引入和形成。如介紹向量的概念,盡管抽象,但它具有幾何直觀背景,在二維空間、三維空間中,向量都是有向線段,由此教學(xué)中可從向量的幾何定義出發(fā)講解抽象到現(xiàn)有形式的過程,降低學(xué)生抽象思考的難度。

2.充分利用概念的實(shí)際背景和學(xué)生的經(jīng)驗(yàn)。

教師在教學(xué)中應(yīng)充分利用學(xué)生已有的數(shù)學(xué)現(xiàn)實(shí)和生活經(jīng)驗(yàn),引導(dǎo)和啟發(fā)學(xué)生進(jìn)行概念發(fā)現(xiàn)和創(chuàng)造。如在講解n階行列式,首先從學(xué)生已掌握的二元、三元一次方程組的求解入手,然后求出方程組的解由二階、三階行列式表示,分析二階、三階行列式的特點(diǎn)。

二階行列式,不難看出:它含有兩項(xiàng),若不考慮符號(hào),每項(xiàng)均是來自不同行不同列的兩個(gè)元素的乘積,那么會(huì)提出這樣的問題:右邊各項(xiàng)之前所帶的正負(fù)號(hào)有什么規(guī)律?同樣的,三階行列式若不考慮符號(hào),它含有3!=6項(xiàng),每項(xiàng)也是來自不同行不同列的三個(gè)元素的乘積,并且包含了所有由不同行不同列的三個(gè)元素的組合。為解決n階行列式,又引出排列的概念、性質(zhì),介紹奇偶排列后,又回到我們提出的問題上,可以發(fā)現(xiàn),行標(biāo)按自然排列,列標(biāo)排列為奇排列時(shí),該項(xiàng)為負(fù);列標(biāo)排列為偶排列時(shí),該項(xiàng)為正(問題得到解決)。經(jīng)過這一過程,學(xué)生對(duì)n階行列式已有接觸和了解,此時(shí)可給出n階行列式定義,這樣一來,學(xué)生就容易理解和掌握n階行列式的性質(zhì)了。

3.注意概念體系的建立。

r.斯根普指出:“個(gè)別的概念一定要融入與其它概念合成的概念結(jié)構(gòu)中才有效用?!睌?shù)學(xué)中的概念往往不是孤立的,理解概念間的聯(lián)系既能促進(jìn)新概念的引入,也有助于接近已學(xué)過概念的本質(zhì)及整個(gè)概念體系的建立。如矩陣的秩與向量組的秩的聯(lián)系:矩陣的秩等于它的行向量組的秩,也等于它的列向量組的秩;矩陣行(列)滿秩,與向量組的線性相關(guān)和線性無關(guān)也有一定的聯(lián)系。

二、學(xué)生要掌握科學(xué)的學(xué)習(xí)方法。

學(xué)習(xí)重在理解,學(xué)生必須在理解、領(lǐng)悟其深刻含義的基礎(chǔ)上記憶定義、定理及一些結(jié)論,才能收到理想的效果。線性代數(shù)的最大特點(diǎn)就是:知識(shí)體系是一環(huán)扣一環(huán),環(huán)環(huán)相連的`。前面的知識(shí)是后面學(xué)習(xí)的基礎(chǔ),如用初等變換求矩陣的秩熟練與否,直接影響求向量組的秩及極大無關(guān)組,進(jìn)一步影響到求由向量組生成的向量空間的基與維數(shù);又如求解線性方程組的通解熟練與否,會(huì)影響到后面特征向量的求解,以及利用正交變換將二次型化為標(biāo)準(zhǔn)型等。因此,學(xué)習(xí)線性代數(shù),一定要堅(jiān)持溫故而知新的學(xué)習(xí)方法,及時(shí)復(fù)習(xí)鞏固,為此,教師課前的知識(shí)回顧以及學(xué)生提前預(yù)習(xí)是十分必要的。

三、加強(qiáng)對(duì)學(xué)生解題的基本訓(xùn)練。

一定量的典型練習(xí)題能有助于學(xué)生深化對(duì)所學(xué)知識(shí)的理解,培養(yǎng)學(xué)生一題多解的能力,解題后反思,及時(shí)總結(jié)解題思路和方法。如證明抽象矩陣的可逆,就有很多方法,一是用定義。二是用秩的有關(guān)命題。三是借助于特征值理論。四是證明矩陣的行列式不為零等。

四、培養(yǎng)與激發(fā)學(xué)生的學(xué)習(xí)興趣。

興趣是最好的老師。教師一方面在傳授知識(shí),另一方面要鼓勵(lì)學(xué)生有針對(duì)性的設(shè)計(jì)他們的目標(biāo),這樣,他們才肯自覺鉆研,樂于鉆研。同時(shí),課堂教學(xué)中可選擇近年來研究生入學(xué)考題及一些與實(shí)際聯(lián)系較緊的題目講解或練習(xí),以激發(fā)學(xué)生的學(xué)習(xí)欲望,并給他們帶來成功的滿足。此外,還可以適當(dāng)介紹一些有趣的應(yīng)用典范或教學(xué)史來激發(fā)學(xué)生的學(xué)習(xí)熱情,提高他們的學(xué)習(xí)興趣。

五、發(fā)揮多媒體優(yōu)勢(shì),增強(qiáng)教學(xué)效果。

多媒體教學(xué)成為當(dāng)前高校教學(xué)模式的重要手段。教師只有把傳統(tǒng)教學(xué)手段、教師自己的特色和多媒體輔助教學(xué)三者有機(jī)結(jié)合起來,才能真正發(fā)揮多媒體課堂教學(xué)的效果??傊處熢诮虒W(xué)中所做的一切,其目的應(yīng)在于既教會(huì)他們有用的知識(shí),又教會(huì)學(xué)生有益的思考方式及良好的思維習(xí)慣。

參考文獻(xiàn):

[1]張向陽.線性代數(shù)教學(xué)中的幾點(diǎn)體會(huì).山西財(cái)經(jīng)大學(xué)學(xué)報(bào)(高等教育版),2006.

[2]于朝霞.線性代數(shù)與空間解析幾何.北京:中國(guó)科學(xué)技術(shù)出版社,2003.

線性代數(shù)教學(xué)總結(jié)篇三

由淺而深線性代數(shù)中一些新概念如秩,特征值特征向量,應(yīng)當(dāng)先理解好它們的定義,在理解基礎(chǔ)之上,才能深刻理解它們與其他概念的聯(lián)系、它們的作用,一步步達(dá)到運(yùn)用自如境地。

二、注重對(duì)基本概念的理解與把握,正確熟練運(yùn)用基本方法及基本運(yùn)算。

1、線性代數(shù)的概念很多,重要的有:

代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,正交變換與正交矩陣,秩(矩陣、向量組、二次型),等價(jià)(矩陣、向量組),線性組合與線性表出,線性相關(guān)與線性無關(guān),極大線性無關(guān)組,基礎(chǔ)解系與通解,解的結(jié)構(gòu)與解空間,特征值與特征向量,相似與相似對(duì)角化,二次型的標(biāo)準(zhǔn)形與規(guī)范形,正定,合同變換與合同矩陣。

2、線性代數(shù)中運(yùn)算法則多,應(yīng)整理清楚不要混淆,基本運(yùn)算與基本方法要過關(guān),重要的有:

行列式(數(shù)字型、字母型)的計(jì)算,求逆矩陣,求矩陣的秩,求方陣的冪,求向量組的秩極大線性無關(guān)組,線性相關(guān)的判定或求參數(shù),求基礎(chǔ)解系,求非齊次線性方程組的通解,求特征值與特征向量(定義法,特征多項(xiàng)式基礎(chǔ)解系法),判斷與求相似對(duì)角矩陣,用正交變換化實(shí)對(duì)稱矩陣為對(duì)角矩陣(亦即用正交變換化二次型為標(biāo)準(zhǔn)形)。

三、注重知識(shí)點(diǎn)的銜接與轉(zhuǎn)換,知識(shí)要成網(wǎng),努力提高綜合分析能力。

線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,學(xué)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。

四、注重邏輯性與敘述表述。

線性代數(shù)對(duì)于抽象性與邏輯性有較高的要求,通過證明題可以了解學(xué)生對(duì)數(shù)學(xué)主要原理、定理的理解與掌握程度,考查學(xué)生的抽象思維能力、邏輯推理能力。大家學(xué)習(xí)整理時(shí),應(yīng)當(dāng)搞清公式、定理成立的條件,不能張冠李戴,同時(shí)還應(yīng)注意語言的敘述表達(dá)應(yīng)準(zhǔn)確、簡(jiǎn)明。

線性代數(shù)教學(xué)總結(jié)篇四

2013年考研線性代數(shù)重點(diǎn)內(nèi)容和典型題型總結(jié),線性代數(shù)在考研數(shù)學(xué)中占有重要地位,必須予以高度重視.線性代數(shù)試題的特點(diǎn)比較突出,以計(jì)算題為主,證明題為輔,因此,專家們提醒廣大的2012年的考生們必須注重計(jì)算能力.線性代數(shù)在數(shù)學(xué)一、二、三中均占22%,所以考生要想取得高分,學(xué)好線代也是必要的。下面,考研教育網(wǎng)就將線代中重點(diǎn)內(nèi)容和典型題型做了總結(jié),希望對(duì)2012年考研的同學(xué)們學(xué)習(xí)有幫助。

行列式在整張?jiān)嚲碇兴急壤皇呛艽?,一般以填空題、選擇題為主,它是必考內(nèi)容,不只是考察行列式的概念、性質(zhì)、運(yùn)算,與行列式有關(guān)的考題也不少,例如方陣的行列式、逆矩陣、向量組的線性相關(guān)性、矩陣的秩、線性方程組、特征值、正定二次型與正定矩陣等問題中都會(huì)涉及到行列式.如果試卷中沒有獨(dú)立的行列式的試題,必然會(huì)在其他章、節(jié)的試題中得以體現(xiàn).行列式的重點(diǎn)內(nèi)容是掌握計(jì)算行列式的方法,計(jì)算行列式的主要方法是降階法,用按行、按列展開公式將行列式降階.但在展開之前往往先用行列式的性質(zhì)對(duì)行列式進(jìn)行恒等變形,化簡(jiǎn)之后再展開.另外,一些特殊的行列式(行和或列和相等的行列式、三對(duì)角行列式、爪型行列式等等)的計(jì)算方法也應(yīng)掌握.常見題型有:數(shù)字型行列式的計(jì)算、抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算.關(guān)于每個(gè)重要題型的具體方法以及例題見《2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)120種常考題型精解》。

矩陣是線性代數(shù)的核心,是后續(xù)各章的基礎(chǔ).矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的始終.這部分考點(diǎn)較多,重點(diǎn)考點(diǎn)有逆矩陣、伴隨矩陣及矩陣方程.涉及伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題.這幾年還經(jīng)常出現(xiàn)有關(guān)初等變換與初等矩陣的命題.常見題型有以下幾種:計(jì)算方陣的冪、與伴隨矩陣相關(guān)聯(lián)的命題、有關(guān)初等變換的命題、有關(guān)逆矩陣的`計(jì)算與證明、解矩陣方程。

向量組的線性相關(guān)性是線性代數(shù)的重點(diǎn),也是考研的重點(diǎn)。2012年的考生一定要吃透向量組線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,還應(yīng)與線性表出、向量組的秩及線性方程組等相聯(lián)系,從各個(gè)側(cè)面加強(qiáng)對(duì)線性相關(guān)性的理解.常見題型有:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。

往年考題中,方程組出現(xiàn)的頻率較高,幾乎每年都有考題,也是線性代數(shù)部分考查的重點(diǎn)內(nèi)容.本章的重點(diǎn)內(nèi)容有:齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明、齊次(非齊次)線性方程組的求解(含對(duì)參數(shù)取值的討論).主要題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎(chǔ)解系、非齊次線性方程組的通解結(jié)構(gòu)、兩個(gè)方程組的公共解、同解問題。

特征值、特征向量是線性代數(shù)的重點(diǎn)內(nèi)容,是考研的重點(diǎn)之一,題多分值大,共有三部分重點(diǎn)內(nèi)容:特征值和特征向量的概念及計(jì)算、方陣的相似對(duì)角化、實(shí)對(duì)稱矩陣的正交相似對(duì)角化.重點(diǎn)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對(duì)角化、由特征值或特征向量反求a、有關(guān)實(shí)對(duì)稱矩陣的問題。

由于二次型與它的實(shí)對(duì)稱矩陣式一一對(duì)應(yīng)的,所以二次型的很多問題都可以轉(zhuǎn)化為它的實(shí)對(duì)稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個(gè)基礎(chǔ).重點(diǎn)內(nèi)容包括:掌握二次型及其矩陣表示,了解二次型的秩和標(biāo)準(zhǔn)形等概念;了解二次型的規(guī)范形和慣性定理;掌握用正交變換并會(huì)用配方法化二次型為標(biāo)準(zhǔn)形;理解正定二次型和正定矩陣的概念及其判別方法.重點(diǎn)題型有:二次型表成矩陣形式、化二次型為標(biāo)準(zhǔn)形、二次型正定性的判別。

線性代數(shù)教學(xué)總結(jié)篇五

基本概念、基本性質(zhì)和基本方法一直是考研數(shù)學(xué)的重點(diǎn),線性代數(shù)更是如此。從多年的閱卷情況和經(jīng)驗(yàn)看,有些考生對(duì)基本概念掌握不夠牢固,理解不夠透徹,在答題中對(duì)基本性質(zhì)的應(yīng)用不知如何下手,因此,造成許多不應(yīng)該的失分現(xiàn)象。所以,考生在復(fù)習(xí)中一定要重視基本概念、基本性質(zhì)和基本方法的理解與掌握,多做一些基本題來鞏固基本知識(shí)。

二、加強(qiáng)綜合能力的訓(xùn)練,培養(yǎng)分析問題和解決問題的能力。

從近十年特別是近兩年的研究生入學(xué)考試試題看,加強(qiáng)了對(duì)考生分析問題和解決問題能力的考核。在線性代數(shù)的兩個(gè)大題中,基本上都是多個(gè)知識(shí)點(diǎn)的綜合。從而達(dá)到對(duì)考生的運(yùn)算能力、抽象概括能力、邏輯思維能力和綜合運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力的考核。因此,在打好基礎(chǔ)的同時(shí),通過做一些綜合性較強(qiáng)的習(xí)題(或做近年的研究生考題),邊做邊總結(jié),以加深對(duì)概念、性質(zhì)內(nèi)涵的理解和應(yīng)用方法的掌握。

三、注重分析一些重要概念和方法之間的聯(lián)系和區(qū)別。

線性代數(shù)的內(nèi)容不多,但基本概念和性質(zhì)較多。他們之間的聯(lián)系也比較多,特別要根據(jù)每年線性代數(shù)考試的兩個(gè)大題內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如:向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系;向量的線性相關(guān)(無關(guān))與齊次線性方程組有非零解(僅有零解)的討論之間的聯(lián)系;實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn)型之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對(duì)大家做線性代數(shù)的兩個(gè)大題在解題思路和方法上會(huì)有很大的幫助。

線性代數(shù)教學(xué)總結(jié)篇六

人的記憶效果隨著時(shí)間的推移而迅速下降,這是正常的現(xiàn)象。一是可以通過反復(fù)加強(qiáng)記憶,第二種辦法就是加強(qiáng)要點(diǎn)和重點(diǎn)的作用,提綱挈領(lǐng),從而掌握全局。因此,大家在第一輪全面復(fù)習(xí)的時(shí)候同時(shí)就要兼顧復(fù)習(xí)要點(diǎn),讓要點(diǎn)成為復(fù)習(xí)中的“刀刃”,起到提綱挈領(lǐng)、統(tǒng)領(lǐng)全局的作用。那么,考研數(shù)學(xué)復(fù)習(xí)中的“刀刃”都有哪些呢?考研輔導(dǎo)專家認(rèn)為,高等數(shù)學(xué)是考研數(shù)學(xué)的重中之重,所以大家在備考高等數(shù)學(xué)時(shí)要特別注意。

地毯式的反復(fù)練習(xí)。

大家在復(fù)習(xí)過程中,要對(duì)重要定理、重要的公式或者重要的結(jié)論應(yīng)該經(jīng)常翻一翻,已經(jīng)有印象的,反復(fù)練習(xí)可以加深印象,使自己保持一個(gè)良好的狀態(tài)。參加碩士研究生入學(xué)考試這種選拔性的考試跟體育競(jìng)技有些類似,想要保持一個(gè)良好的狀態(tài),必須把要考的內(nèi)容在腦海里面反復(fù)強(qiáng)調(diào)。很多同學(xué)說把代數(shù)復(fù)習(xí)完以后,高等數(shù)學(xué)忘了,復(fù)習(xí)這個(gè)忘了那個(gè),這個(gè)很正常,不要因?yàn)檫@個(gè)原因,就認(rèn)為考不好數(shù)學(xué),每個(gè)正常的人都會(huì)有這樣的`感覺。考研輔導(dǎo)專家提醒考生,要解決這個(gè)困難,只有通過反復(fù)復(fù)習(xí),學(xué)習(xí)英語亦是如此,通過反復(fù)使自己能夠隨時(shí)調(diào)用數(shù)學(xué)知識(shí)。記憶的關(guān)鍵就在于重復(fù),如果大家能夠把學(xué)習(xí)變成一種習(xí)慣,那勢(shì)必會(huì)讓你的復(fù)習(xí)錦上添花,也不會(huì)對(duì)學(xué)習(xí)產(chǎn)生抵觸情緒,這樣一來,效率和效果自然會(huì)高上無數(shù)倍。

線性代數(shù)教學(xué)總結(jié)篇七

20考研線性代數(shù)重點(diǎn)內(nèi)容和典型題型總結(jié),線性代數(shù)在考研數(shù)學(xué)中占有重要地位,必須予以高度重視.線性代數(shù)試題的特點(diǎn)比較突出,以計(jì)算題為主,證明題為輔,因此,專家們提醒廣大的的考生們必須注重計(jì)算能力.線性代數(shù)在數(shù)學(xué)一、二、三中均占22%,所以考生要想取得高分,學(xué)好線代也是必要的。下面,考研教育網(wǎng)就將線代中重點(diǎn)內(nèi)容和典型題型做了總結(jié),希望對(duì)20考研的同學(xué)們學(xué)習(xí)有幫助。

行列式在整張?jiān)嚲碇兴急壤皇呛艽?,一般以填空題、選擇題為主,它是必考內(nèi)容,不只是考察行列式的概念、性質(zhì)、運(yùn)算,與行列式有關(guān)的考題也不少,例如方陣的行列式、逆矩陣、向量組的線性相關(guān)性、矩陣的秩、線性方程組、特征值、正定二次型與正定矩陣等問題中都會(huì)涉及到行列式.如果試卷中沒有獨(dú)立的行列式的試題,必然會(huì)在其他章、節(jié)的試題中得以體現(xiàn).行列式的重點(diǎn)內(nèi)容是掌握計(jì)算行列式的方法,計(jì)算行列式的主要方法是降階法,用按行、按列展開公式將行列式降階.但在展開之前往往先用行列式的性質(zhì)對(duì)行列式進(jìn)行恒等變形,化簡(jiǎn)之后再展開.另外,一些特殊的行列式(行和或列和相等的行列式、三對(duì)角行列式、爪型行列式等等)的計(jì)算方法也應(yīng)掌握.常見題型有:數(shù)字型行列式的計(jì)算、抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算.關(guān)于每個(gè)重要題型的具體方法以及例題見《年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)120種??碱}型精解》。

矩陣是線性代數(shù)的核心,是后續(xù)各章的基礎(chǔ).矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的始終.這部分考點(diǎn)較多,重點(diǎn)考點(diǎn)有逆矩陣、伴隨矩陣及矩陣方程.涉及伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題.這幾年還經(jīng)常出現(xiàn)有關(guān)初等變換與初等矩陣的命題.常見題型有以下幾種:計(jì)算方陣的冪、與伴隨矩陣相關(guān)聯(lián)的命題、有關(guān)初等變換的命題、有關(guān)逆矩陣的`計(jì)算與證明、解矩陣方程。

向量組的線性相關(guān)性是線性代數(shù)的重點(diǎn),也是考研的重點(diǎn)。2012年的考生一定要吃透向量組線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,還應(yīng)與線性表出、向量組的秩及線性方程組等相聯(lián)系,從各個(gè)側(cè)面加強(qiáng)對(duì)線性相關(guān)性的理解.常見題型有:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。

往年考題中,方程組出現(xiàn)的頻率較高,幾乎每年都有考題,也是線性代數(shù)部分考查的重點(diǎn)內(nèi)容.本章的重點(diǎn)內(nèi)容有:齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明、齊次(非齊次)線性方程組的求解(含對(duì)參數(shù)取值的討論).主要題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎(chǔ)解系、非齊次線性方程組的通解結(jié)構(gòu)、兩個(gè)方程組的公共解、同解問題。

特征值、特征向量是線性代數(shù)的重點(diǎn)內(nèi)容,是考研的重點(diǎn)之一,題多分值大,共有三部分重點(diǎn)內(nèi)容:特征值和特征向量的概念及計(jì)算、方陣的相似對(duì)角化、實(shí)對(duì)稱矩陣的正交相似對(duì)角化.重點(diǎn)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對(duì)角化、由特征值或特征向量反求a、有關(guān)實(shí)對(duì)稱矩陣的問題。

由于二次型與它的實(shí)對(duì)稱矩陣式一一對(duì)應(yīng)的,所以二次型的很多問題都可以轉(zhuǎn)化為它的實(shí)對(duì)稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個(gè)基礎(chǔ).重點(diǎn)內(nèi)容包括:掌握二次型及其矩陣表示,了解二次型的秩和標(biāo)準(zhǔn)形等概念;了解二次型的規(guī)范形和慣性定理;掌握用正交變換并會(huì)用配方法化二次型為標(biāo)準(zhǔn)形;理解正定二次型和正定矩陣的概念及其判別方法.重點(diǎn)題型有:二次型表成矩陣形式、化二次型為標(biāo)準(zhǔn)形、二次型正定性的判別。

線性代數(shù)教學(xué)總結(jié)篇八

《線性代數(shù)》是工科高校中頗為重要的一門課,也是較抽象難學(xué)的一門課程。本文從理論與實(shí)踐兩方面以作者的體會(huì)與認(rèn)識(shí),提出《線性代數(shù)》教學(xué)抽象概念的講解應(yīng)注意的幾點(diǎn)問題,闡釋了如何進(jìn)行《線性代數(shù)》課程的課堂教學(xué),并且能收到良好的教學(xué)效果。

[關(guān)鍵詞]。

《線性代數(shù)》是高等院校理、工類專業(yè)重要的數(shù)學(xué)基礎(chǔ)課。它不但廣泛應(yīng)用于概率統(tǒng)計(jì)、微分方程、控制理論等數(shù)學(xué)分支,而且其知識(shí)已滲透到自然科學(xué)的其它學(xué)科,如工程技術(shù)、經(jīng)濟(jì)與社會(huì)科學(xué)等領(lǐng)域。不僅如此,這門課程對(duì)提高學(xué)生的數(shù)學(xué)素養(yǎng)、訓(xùn)練與提高學(xué)生的抽象思維能力與邏輯推理能力都有重要作用。但由于“線性代數(shù)”本身的特點(diǎn),對(duì)其內(nèi)容學(xué)生感到比較抽象,要深入理解與掌握代數(shù)的基本概念與基本理論學(xué)生感到相當(dāng)吃力、難以理解。因此,為培養(yǎng)與提高學(xué)生應(yīng)用數(shù)學(xué)知識(shí)、解決實(shí)際問題的能力,進(jìn)一步研究這門課程的教學(xué)思想和方法對(duì)提高教學(xué)效果甚為重要。

一、加強(qiáng)基本概念的教與學(xué)。

線性代數(shù)這一抽象的數(shù)學(xué)理論和方法體系是由一系列基本概念構(gòu)成的。行列式、矩陣、逆矩陣、初等矩陣、轉(zhuǎn)置、線性表示、線性相關(guān)、特征值與特征向量等抽象概念根植于客觀的現(xiàn)實(shí)世界,有著深刻的實(shí)際背景,即是比較直接抽象的產(chǎn)物。高等數(shù)學(xué)與初等數(shù)學(xué)在含義與思維模式上的變化必然會(huì)在教學(xué)中有所反映。線性代數(shù)作為中學(xué)代數(shù)的繼續(xù)與提高,與其有著很大不同,這不僅表現(xiàn)在內(nèi)容上,更重要的是表現(xiàn)在研究的觀點(diǎn)和方法上。在研究過程中一再體現(xiàn)由具體事物抽象出一般的概念,再以一般概念回到具體事物去的辨證觀點(diǎn)和嚴(yán)格的邏輯推理。新生剛進(jìn)入大學(xué),其思維方式很難從初等數(shù)學(xué)的那種直觀、簡(jiǎn)潔的方法上升到線性代數(shù)抽象復(fù)雜的方式,故思維方式在短期內(nèi)很難達(dá)到線性代數(shù)的要求。大部分同學(xué)習(xí)慣于傳統(tǒng)的公式,用公式套題,不習(xí)慣于理解定理的實(shí)質(zhì),用一些已知的定理、性質(zhì)及結(jié)論來推理、解題等。

在概念的教學(xué)中,教師要研究概念的認(rèn)識(shí)過程的特點(diǎn)和規(guī)律性,根據(jù)學(xué)生的認(rèn)識(shí)能力發(fā)展的規(guī)律來選擇適當(dāng)?shù)慕虒W(xué)方式。因此,在概念教學(xué)中應(yīng)注意以下幾點(diǎn)。

1.合理借助概念的直觀性。

盡管抽象性是《線性代數(shù)》這門課的突出特點(diǎn),直觀性教學(xué)同樣可應(yīng)用到這門課的教學(xué)上,且在教學(xué)中占有重要地位。歐拉認(rèn)為:“數(shù)學(xué)這門科學(xué),需要觀察,也需要實(shí)驗(yàn),模型和圖形的廣泛應(yīng)用就是這樣的例子?!敝庇^有助于概念的引入和形成。如介紹向量的概念,盡管抽象,但它具有幾何直觀背景,在二維空間、三維空間中,向量都是有向線段,由此教學(xué)中可從向量的幾何定義出發(fā)講解抽象到現(xiàn)有形式的過程,降低學(xué)生抽象思考的難度。

2.充分利用概念的實(shí)際背景和學(xué)生的經(jīng)驗(yàn)。

教師在教學(xué)中應(yīng)充分利用學(xué)生已有的數(shù)學(xué)現(xiàn)實(shí)和生活經(jīng)驗(yàn),引導(dǎo)和啟發(fā)學(xué)生進(jìn)行概念發(fā)現(xiàn)和創(chuàng)造。如在講解n階行列式,首先從學(xué)生已掌握的二元、三元一次方程組的求解入手,然后求出方程組的解由二階、三階行列式表示,分析二階、三階行列式的特點(diǎn)。

二階行列式,不難看出:它含有兩項(xiàng),若不考慮符號(hào),每項(xiàng)均是來自不同行不同列的兩個(gè)元素的乘積,那么會(huì)提出這樣的問題:右邊各項(xiàng)之前所帶的正負(fù)號(hào)有什么規(guī)律?同樣的,三階行列式若不考慮符號(hào),它含有3!=6項(xiàng),每項(xiàng)也是來自不同行不同列的三個(gè)元素的乘積,并且包含了所有由不同行不同列的三個(gè)元素的組合。為解決n階行列式,又引出排列的概念、性質(zhì),介紹奇偶排列后,又回到我們提出的問題上,可以發(fā)現(xiàn),行標(biāo)按自然排列,列標(biāo)排列為奇排列時(shí),該項(xiàng)為負(fù);列標(biāo)排列為偶排列時(shí),該項(xiàng)為正(問題得到解決)。經(jīng)過這一過程,學(xué)生對(duì)n階行列式已有接觸和了解,此時(shí)可給出n階行列式定義,這樣一來,學(xué)生就容易理解和掌握n階行列式的性質(zhì)了。

3.注意概念體系的建立。

r.斯根普指出:“個(gè)別的概念一定要融入與其它概念合成的概念結(jié)構(gòu)中才有效用?!睌?shù)學(xué)中的概念往往不是孤立的,理解概念間的聯(lián)系既能促進(jìn)新概念的引入,也有助于接近已學(xué)過概念的本質(zhì)及整個(gè)概念體系的建立。如矩陣的秩與向量組的秩的聯(lián)系:矩陣的秩等于它的行向量組的秩,也等于它的列向量組的秩;矩陣行(列)滿秩,與向量組的線性相關(guān)和線性無關(guān)也有一定的聯(lián)系。

二、學(xué)生要掌握科學(xué)的學(xué)習(xí)方法。

學(xué)習(xí)重在理解,學(xué)生必須在理解、領(lǐng)悟其深刻含義的基礎(chǔ)上記憶定義、定理及一些結(jié)論,才能收到理想的效果。線性代數(shù)的最大特點(diǎn)就是:知識(shí)體系是一環(huán)扣一環(huán),環(huán)環(huán)相連的`。前面的知識(shí)是后面學(xué)習(xí)的基礎(chǔ),如用初等變換求矩陣的秩熟練與否,直接影響求向量組的秩及極大無關(guān)組,進(jìn)一步影響到求由向量組生成的向量空間的基與維數(shù);又如求解線性方程組的通解熟練與否,會(huì)影響到后面特征向量的求解,以及利用正交變換將二次型化為標(biāo)準(zhǔn)型等。因此,學(xué)習(xí)線性代數(shù),一定要堅(jiān)持溫故而知新的學(xué)習(xí)方法,及時(shí)復(fù)習(xí)鞏固,為此,教師課前的知識(shí)回顧以及學(xué)生提前預(yù)習(xí)是十分必要的。

三、加強(qiáng)對(duì)學(xué)生解題的基本訓(xùn)練。

一定量的典型練習(xí)題能有助于學(xué)生深化對(duì)所學(xué)知識(shí)的理解,培養(yǎng)學(xué)生一題多解的能力,解題后反思,及時(shí)總結(jié)解題思路和方法。如證明抽象矩陣的可逆,就有很多方法,一是用定義。二是用秩的有關(guān)命題。三是借助于特征值理論。四是證明矩陣的行列式不為零等。

四、培養(yǎng)與激發(fā)學(xué)生的學(xué)習(xí)興趣。

興趣是最好的老師。教師一方面在傳授知識(shí),另一方面要鼓勵(lì)學(xué)生有針對(duì)性的設(shè)計(jì)他們的目標(biāo),這樣,他們才肯自覺鉆研,樂于鉆研。同時(shí),課堂教學(xué)中可選擇近年來研究生入學(xué)考題及一些與實(shí)際聯(lián)系較緊的題目講解或練習(xí),以激發(fā)學(xué)生的學(xué)習(xí)欲望,并給他們帶來成功的滿足。此外,還可以適當(dāng)介紹一些有趣的應(yīng)用典范或教學(xué)史來激發(fā)學(xué)生的學(xué)習(xí)熱情,提高他們的學(xué)習(xí)興趣。

五、發(fā)揮多媒體優(yōu)勢(shì),增強(qiáng)教學(xué)效果。

多媒體教學(xué)成為當(dāng)前高校教學(xué)模式的重要手段。教師只有把傳統(tǒng)教學(xué)手段、教師自己的特色和多媒體輔助教學(xué)三者有機(jī)結(jié)合起來,才能真正發(fā)揮多媒體課堂教學(xué)的效果。總之,教師在教學(xué)中所做的一切,其目的應(yīng)在于既教會(huì)他們有用的知識(shí),又教會(huì)學(xué)生有益的思考方式及良好的思維習(xí)慣。

參考文獻(xiàn):

[1]張向陽.線性代數(shù)教學(xué)中的幾點(diǎn)體會(huì).山西財(cái)經(jīng)大學(xué)學(xué)報(bào)(高等教育版),.

[2]于朝霞.線性代數(shù)與空間解析幾何.北京:中國(guó)科學(xué)技術(shù)出版社,.

線性代數(shù)教學(xué)總結(jié)篇九

線性代數(shù)是代數(shù)學(xué)的一個(gè)分支,今天數(shù)學(xué)界一致認(rèn)它作為一門獨(dú)立學(xué)科誕生于上世紀(jì)30年代,因?yàn)槲{了系統(tǒng)的線性代數(shù)內(nèi)容的著作是在這一時(shí)期產(chǎn)生的,如van的名著代數(shù)學(xué)第二卷就把線性代數(shù)作為其中的短短一章。

回顧線性代數(shù)的歷史基礎(chǔ)上,分析了關(guān)于線性代數(shù)的幾個(gè)核心問題:第一介紹了幾種關(guān)于線性代數(shù)基本結(jié)構(gòu)問題的看法;第二介紹了關(guān)于線性代數(shù)的兩個(gè)基本問題,即“線性”和“線性問題”;第三介紹了線性代數(shù)的研究對(duì)象;第四分析了線性代數(shù)的結(jié)構(gòu)體系。

上世紀(jì)80年代以來,隨著計(jì)算機(jī)應(yīng)用的普及,線性代數(shù)理論被廣泛應(yīng)用到科學(xué)、技術(shù)和經(jīng)濟(jì)領(lǐng)域,因此線性代數(shù)也成為高等院校理工科各專業(yè)的一門基礎(chǔ)課程,文章簡(jiǎn)述線性代數(shù)的相關(guān)核心核心問題。

線性代數(shù)是代數(shù)學(xué)的一個(gè)分支,今天數(shù)學(xué)界一致認(rèn)它作為一門獨(dú)立學(xué)科誕生于上世紀(jì)30年代,因?yàn)槲{了系統(tǒng)的線性代數(shù)內(nèi)容的著作是在這一時(shí)期產(chǎn)生的,如van的名著代數(shù)學(xué)第二卷就把線性代數(shù)作為其中的短短一章。但是線性代數(shù)的一些初級(jí)內(nèi)容如行列式、矩陣和線性方程組的研究可以追溯到二百多年前;19世紀(jì)四五十年代grassmann創(chuàng)立了用符號(hào)表述幾何概念的方法,給出了線性無關(guān)和基等概念,這標(biāo)準(zhǔn)著線性代數(shù)內(nèi)容近代化開始;19世紀(jì)末向量空間的抽象定義形成,并在20世紀(jì)初被廣泛用于泛函分析研究,從而使線性代數(shù)成為以空間理論為終結(jié)的獨(dú)立學(xué)科,因此可以說線性代數(shù)是綜合了若干項(xiàng)獨(dú)立發(fā)展的數(shù)學(xué)成果而形成的。從上世紀(jì)六七十年代起線性代數(shù)進(jìn)入了大學(xué)數(shù)學(xué)專業(yè)課程,在我國(guó)這門課程稱為高等代數(shù),它以線性代數(shù)為主體并納入了一章多項(xiàng)式理論。

無論是高等代數(shù)或線性代數(shù),這個(gè)課程有兩個(gè)特點(diǎn):一個(gè)特點(diǎn)是各部分內(nèi)容相對(duì)獨(dú)立,整個(gè)課程呈現(xiàn)出一種塊狀結(jié)構(gòu),原因是線性代數(shù)學(xué)科的形成過程本身就沒有一條明確的主線。我們幾乎可以找到從線性方程組,行列式,向量,矩陣,多項(xiàng)式,線性空間,線性變換中的任何一個(gè)分塊開始展開的教材,其展開過程主要取決于作者串聯(lián)這些分塊的形式邏輯的脈絡(luò)。另一個(gè)特點(diǎn)是內(nèi)容抽象,要真正掌握線性代數(shù)的原理與方法必須具備較強(qiáng)的抽象思維能力,即對(duì)形式概念的理解能力和形式邏輯的演繹能力,而這兩種能力要求幾乎超越了大多數(shù)學(xué)生在中學(xué)階段的能力儲(chǔ)備,而必須在學(xué)習(xí)這門課程的過程中重塑。主要是這兩個(gè)原因,線性代數(shù)被認(rèn)為是一門非常難掌握的課程,而克服這一困難的關(guān)鍵就是針對(duì)線性代數(shù)課程的這兩個(gè)特點(diǎn)進(jìn)行有效的課程改革。

線性代數(shù)基本結(jié)構(gòu)問題,學(xué)者們歷來有許多不同的看法,較為常見的是以下幾種:

第一種是以矩陣為中心。

這一看法認(rèn)為整個(gè)線性代數(shù)以矩陣?yán)碚摓楹诵?,將矩陣?yán)碚撘暈楦鱾€(gè)內(nèi)容聯(lián)系的紐帶。在求線性方程組、判定方程組的解以及研究線性空間問題時(shí),矩陣?yán)碚撌侵匾ぞ?。例如正交矩陣和?duì)稱矩陣主要應(yīng)用于歐氏空間和二次型方程問題中??梢姡灰獙?duì)矩陣知識(shí)有了全面系統(tǒng)的理解后,就能將各種問題都化解為矩陣?yán)碚撝械囊徊糠郑隇榫仃噯栴}。

第二種是以線性方程組為中心。

這一關(guān)觀點(diǎn)認(rèn)為線性方程組是線性代數(shù)研究的基本問題。具體操作過程中,將線性方程組的理論和方法應(yīng)用到各個(gè)章節(jié),由此引出矩陣、行列式、向量等理論,最后列出方程組、求解,然后進(jìn)一步應(yīng)用,串聯(lián)起各部分內(nèi)容。這一理論較為系統(tǒng)、科學(xué),常常被初學(xué)者采納。

第三是一種線性代數(shù)體系,以線性變換和線性空間為核心。

在學(xué)習(xí)線性代數(shù)之前,學(xué)生要先掌握關(guān)系、集合、環(huán)、群、域等概念,形成對(duì)高等數(shù)學(xué)的研究對(duì)象、知識(shí)結(jié)構(gòu)、表達(dá)方式的初步認(rèn)識(shí)。線性代數(shù)體系依次安排了線性空間、內(nèi)積空間、線性變化、矩陣概念和性質(zhì)等章節(jié)。掌握線性變換基礎(chǔ)后,再教學(xué)線性方程組求解知識(shí),在此基礎(chǔ)上,進(jìn)一步引出特征向量、特征值和二次型理論。整個(gè)體系以線性代數(shù)為核心,內(nèi)容介紹、理論講解及方法系統(tǒng)化為一個(gè)整體。

第四是以向量理論為核心。

對(duì)二維、三維直角坐標(biāo)系的研究是線性代數(shù)的起源。學(xué)生在中學(xué)時(shí)就已經(jīng)了解了關(guān)于平面向量的一些基本知識(shí),因此,將向量作為整個(gè)線性代數(shù)知識(shí)的核心,有利于使各部分內(nèi)容的聯(lián)系更加密切、理論體系更加完整完善,學(xué)生的空間概念也能得以加強(qiáng)。矩陣、行列式、線性方程組一般為研究維向量空間所必須的表示工具、向量的`線性相關(guān)性的判別工具)和未知向量的計(jì)算工具,從宏觀講它們獨(dú)立于體系之外,從微觀講它們也是維向量空間的一些具體內(nèi)容。而二次型僅僅是對(duì)稱雙線性函數(shù)的一個(gè)簡(jiǎn)單應(yīng)用。

四、線性和線性問題。

“線性”這個(gè)數(shù)學(xué)名詞在中學(xué)數(shù)學(xué)課程中,學(xué)生從未接觸過。而這一課程是大學(xué)數(shù)學(xué)的基礎(chǔ)課程,學(xué)生剛進(jìn)入大學(xué),對(duì)這一詞匯的具體內(nèi)容知之甚少。所以在學(xué)習(xí)之前,學(xué)生必須對(duì)什么是“線性”有所了解,在“線性代數(shù)”這一課程中有對(duì)于“線性”概念的明確介紹。這是學(xué)習(xí)線性代數(shù)要解決的第一個(gè)基本問題,即什么是“線性”。

了解了什么是“線性”、什么是“線性問題”后,離完成線性代數(shù)的教學(xué)目的還有很長(zhǎng)一段距離。如今的高校教育,一味灌輸給學(xué)生行列式、向量、矩陣、線性變換等空洞的數(shù)學(xué)定理,指導(dǎo)學(xué)生用這些理論來思考線性代數(shù)的基本結(jié)構(gòu)、具體應(yīng)用等問題。教師在教學(xué)線性代數(shù)問題時(shí)更是一味強(qiáng)調(diào)理論的選擇與應(yīng)用,卻忽視了學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力的培養(yǎng)。

稍微觀察一下我們可以發(fā)現(xiàn),中學(xué)的初等代數(shù)就是線性代數(shù)的前身,只是在其基礎(chǔ)上的進(jìn)一步抽象化。初等代數(shù)研究的多是具體的問題,運(yùn)用加減乘除的運(yùn)算方法即可解決問題;線性代數(shù)中則引入了許多新的概念,如向量、向量空間、集合、空間、矩陣等等,問題展現(xiàn)的形式發(fā)生了變化,要想解決問題,我們的思維方式也應(yīng)該發(fā)生變化。涉及到新概念的數(shù)學(xué)問題往往都很抽象,如向量指的是既有數(shù)值又有具體方向的量;向量空間是許多量組成的集合,這一集合中的元素全都符合特定的運(yùn)算規(guī)則;集合是具有某種屬性的事物的總和;矩陣?yán)碚搫t是一種更加抽象化的理論,因此我們的研究方法和思維方式都要隨之進(jìn)行改變。如初等代數(shù)中的基本運(yùn)算法則性代數(shù)中經(jīng)常會(huì)失效,線性代數(shù)的研究對(duì)象是向量運(yùn)算、矩陣運(yùn)算和線性變換,解決問題時(shí),需要采用一種特殊的運(yùn)算方法。

綜上所述,線性代數(shù)的學(xué)習(xí)中應(yīng)重點(diǎn)培養(yǎng)兩個(gè)方面的能力:

一個(gè)是知識(shí)掌握的能力的培養(yǎng)。介紹知識(shí)時(shí)應(yīng)堅(jiān)持從易到難、循序漸進(jìn)。先掌握好中學(xué)的運(yùn)算法則,再慢慢學(xué)習(xí)向量、矩陣知識(shí),之后學(xué)習(xí)線性變換,最后綜合學(xué)習(xí)線性運(yùn)算。學(xué)生經(jīng)過中學(xué)階段的學(xué)習(xí),完全掌握了加法和乘法這兩種基礎(chǔ)運(yùn)算法則,簡(jiǎn)單了解了向量運(yùn)算。矩陣知識(shí)相對(duì)于前者更加抽象,因此應(yīng)放在之后學(xué)習(xí)。線性變換則是線性代數(shù)教學(xué)中的重點(diǎn)和難點(diǎn)所在,也是最容易被忽視的地方。由于線性變換可結(jié)合映射知識(shí)學(xué)習(xí),而映射知識(shí)在中學(xué)數(shù)學(xué)和微積分教學(xué)中都有詳細(xì)的介紹,在此基礎(chǔ)上學(xué)生更容易理解線性變換及運(yùn)算的相關(guān)知識(shí),更容易解決矩陣特征值問題、線性方程組問題及二次型問題等。

另外一個(gè)是思維能力的培養(yǎng)。在學(xué)習(xí)中,注意引導(dǎo)學(xué)生帶著問題學(xué)習(xí),并在學(xué)習(xí)中進(jìn)一步發(fā)現(xiàn)問題、解決問題,這是最有效的思維方式和學(xué)習(xí)方法。前文提到了學(xué)習(xí)線性代數(shù)必須先了解的兩個(gè)基本問題:什么是“線性”、什么是“線性問題”。這兩個(gè)基本問題應(yīng)該始終貫穿性代數(shù)的學(xué)習(xí)過程中。無論在什么階段的學(xué)習(xí),都要注重理論知識(shí)和實(shí)際問題的有效結(jié)合。學(xué)生在掌握了一定的理論知識(shí)后,可嘗試去解決相關(guān)的實(shí)際問題。在這一過程中,學(xué)生會(huì)加深對(duì)理論知識(shí)的理解,并進(jìn)一步發(fā)現(xiàn)自身知識(shí)儲(chǔ)備的不足之處。若單單追求知識(shí)的應(yīng)用,而不加深自己的理論素養(yǎng),最終也無法具備良好的思維能力。所以,在學(xué)習(xí)線性代數(shù)時(shí),要培養(yǎng)好兩方面的能力,使之相輔相成、相互促進(jìn)。

結(jié)語:

20世紀(jì)后50年計(jì)算技術(shù)的高速發(fā)展,推動(dòng)了大規(guī)模工程和經(jīng)濟(jì)系統(tǒng)問題的解決,使人們看到,線性代數(shù)和相關(guān)的矩陣模型是如微積分那樣的數(shù)學(xué)工具,無所不在的線性代數(shù)問題,等待著各層次的工程技術(shù)人員快速精確地去解決相關(guān)線性代數(shù)問題。因此絕大對(duì)工科學(xué)生而言,數(shù)學(xué)課應(yīng)該使他們有宏觀的使用數(shù)學(xué)的思想,要使工程師了解工程中可能遇到的各種數(shù)學(xué)問題的類別,并且知道應(yīng)該用什么樣的數(shù)學(xué)理論和軟件工具來解決,這是一種高水平的抽象。而了解線性代數(shù)的核心問題,無疑對(duì)線性代數(shù)課程的學(xué)習(xí)有重要的價(jià)值。

線性代數(shù)教學(xué)總結(jié)篇十

》考研復(fù)習(xí)的強(qiáng)化階段已經(jīng)結(jié)束,在這段時(shí)間,大家應(yīng)該把所學(xué)的知識(shí)系統(tǒng)化綜合化。數(shù)學(xué)題目千變?nèi)f化,有各種延伸和變形,考生如果想在考研數(shù)學(xué)中取得好成績(jī),就一定要認(rèn)真仔細(xì)的復(fù)習(xí),重視三基(基本概念、基本方法、基本性質(zhì)),多思考多總結(jié),做到融會(huì)貫通。教材把線性代數(shù)的內(nèi)容分為了六章:行列式、矩陣、線性方程組、向量、特征值和特征向量、二次型??忌谧鲱}過程中,應(yīng)該能發(fā)現(xiàn),線性代數(shù)部分考察的知識(shí)點(diǎn)和題型都相對(duì)固定,以下我們針對(duì)考研數(shù)學(xué),對(duì)線性代數(shù)部分的??碱}型進(jìn)行總結(jié):

一、行列式??嫉念}型有:1.數(shù)值型行列式的計(jì)算,2.抽象型行列式的計(jì)算。

二、矩陣??嫉腵題型有:1.對(duì)矩陣的運(yùn)算的考查,2.對(duì)逆矩陣的考查,3.初等變換,4.矩陣方程,5.矩陣的秩,6.矩陣的分塊。

三、線性方程組與向量常考的題型有:1.向量組的線性表出,2.向量組的線性相關(guān)性,3.向量組的秩與極大線性無關(guān)組,4.向量空間的基與過渡矩陣,5.線性方程組解的判定,6.齊次線性方程組的基礎(chǔ)解系,7.線性方程組的求解,8.同解與公共解。

四、特征值與特征向量??嫉念}型有:1.特征值與特征向量的定義與性質(zhì),2.矩陣的相似對(duì)角化,3.實(shí)對(duì)稱矩陣的相關(guān)問題,4.綜合應(yīng)用。

五、二次型常考的題型有:1.二次型及其矩陣,2.化二次型為標(biāo)準(zhǔn)型,3.二次型的慣性系數(shù)與合同規(guī)范型,4.正定二次型。

kaoyan/

線性代數(shù)教學(xué)總結(jié)篇十一

佘可欣,中山大學(xué)國(guó)際金融學(xué)院2016級(jí)本科生,在《線性代數(shù)》的課程學(xué)習(xí)中獲得了第一名的好成績(jī)。

作為理科生,數(shù)學(xué)是極為重要,大學(xué)的專業(yè)也和數(shù)學(xué)密切相關(guān),可偏偏數(shù)學(xué)卻是我致命的弱項(xiàng),在學(xué)好數(shù)學(xué)的路上付出了很多,也有所收獲,但也僅僅只是皮毛。在這里分享我的經(jīng)驗(yàn),希望大家有所收獲。

一開始學(xué)習(xí)線代時(shí),便感覺到線代不同于高等數(shù)學(xué)的地方,在于它幾乎從一開始就是一個(gè)全新的概念。其研究的范圍通常都不是我們能想象到的二維空間,而是上升到n維空間,并且在線性代數(shù)的學(xué)習(xí)過程中,我們幾乎都是跟一些新的概念,新的定理打交道,因此理解和記憶起來有相當(dāng)大的困難,常常是花很久的時(shí)間還是理解不了。因此需要課前預(yù)習(xí),上課緊跟老師講解,下課練習(xí)課后習(xí)題以助更好的'理解掌握。

線性代數(shù)主要研究三種對(duì)象:矩陣、方程組和向量。這三種對(duì)象的理論是密切相關(guān)的,大部分問題在這三種理論中都有等價(jià)說法。因此,學(xué)習(xí)線性代數(shù)時(shí)應(yīng)能夠熟練地從一種理論的敘述轉(zhuǎn)移到另一種中去。如果說與實(shí)際計(jì)算結(jié)合最多的是矩陣的觀點(diǎn),那么向量的觀點(diǎn)則著眼于從整體性和結(jié)構(gòu)性考慮問題,因而可以更深刻、更透徹地揭示線性代數(shù)中各種問題的內(nèi)在聯(lián)系和本質(zhì)屬性。由此可見,掌握矩陣、方程組和向量的內(nèi)在聯(lián)系十分重要。

線代的概念多,比如對(duì)于矩陣,有對(duì)角矩陣、伴隨矩陣、逆矩陣、相似矩陣等。運(yùn)算法則多,比如求逆矩陣,求矩陣的秩,求向量組的秩,求基礎(chǔ)解系,求非齊次線性方程組的通解等。內(nèi)容相互縱橫交錯(cuò),在學(xué)到后面的知識(shí)點(diǎn)時(shí)常常出現(xiàn)需要和前面的知識(shí)點(diǎn)的應(yīng)用,但經(jīng)常記不起來,就需要不斷地復(fù)習(xí)前面的知識(shí)點(diǎn)。要能夠做到當(dāng)題干給出一個(gè)信息時(shí)必須能夠想到該信息等價(jià)的其他信息,比如告訴你一個(gè)矩陣是非奇異矩陣,它包含的信息有:首先明確它是一個(gè)n階方陣,它的秩是n,它便是滿秩矩陣,它所對(duì)應(yīng)的n階行列式不等于零,那么n個(gè)n維向量便線性無關(guān),還有這個(gè)方陣是可逆方陣,并且可以想到它的轉(zhuǎn)置矩陣也是可逆的。

正是因?yàn)榫€性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,線性代數(shù)題的綜合性與靈活性較大。因此課本的課后習(xí)題要多加練習(xí)。萬變不離其宗,把握套路,老師也不會(huì)太為難我們,基本是在課后題上變形。

數(shù)學(xué)之路或艱辛,或順利,四時(shí)之景或不同,而樂亦無窮也。數(shù)學(xué)之樂,得之心而寓之學(xué)也。祝大家都能找到適合自己的學(xué)習(xí)方法,在數(shù)學(xué)的探索中體味樂趣!

線性代數(shù)教學(xué)總結(jié)篇十二

[論文摘要]隨著計(jì)算杌的普及與應(yīng)用,多媒體教學(xué)已經(jīng)逐步走進(jìn)課堂,而且在現(xiàn)代教學(xué)中起著越來越重要的作用。本文分析了線性代數(shù)多媒體教學(xué)的優(yōu)勢(shì)與不足,并根據(jù)多年從事線性代數(shù)教學(xué)的經(jīng)驗(yàn),給出了如何將多媒體技術(shù)運(yùn)用于線性代數(shù)教學(xué)的幾點(diǎn)建議。

線性代數(shù)是理工類、經(jīng)管類數(shù)學(xué)課程最重要的基礎(chǔ)課之一,其基本內(nèi)容是講授向量空間和矩陣的理論。線性代數(shù)在數(shù)學(xué)、力學(xué)、物理學(xué)和技術(shù)學(xué)科中有著各種重要應(yīng)用,因而它在各種代數(shù)分支中占居首要地位。在計(jì)算機(jī)廣泛應(yīng)用的今天,計(jì)算機(jī)圖形學(xué)、計(jì)算機(jī)輔助設(shè)計(jì)、密碼學(xué)、虛擬現(xiàn)實(shí)等技術(shù)無不以線性代數(shù)為其理論和算法基礎(chǔ)的一部分。隨著科學(xué)的發(fā)展,各種實(shí)際問題在大多數(shù)情況下可以線性化,而由于計(jì)算機(jī)的發(fā)展,線性化了的問題又可以計(jì)算出來,線性代數(shù)正是解決這些問題的有力工具。線性代數(shù)對(duì)于培養(yǎng)學(xué)生的邏輯推理和抽象思維能力、空間直觀和想象能力具有重要的作用,但普遍被學(xué)生認(rèn)為是比較困難的一門課程,主要的困難是太抽象。多媒體作為一種現(xiàn)代的教育技術(shù),在很多方面顯示出其優(yōu)越性,如何將多媒體技術(shù)與傳統(tǒng)的教學(xué)手段良好的結(jié)合并應(yīng)用于線性代數(shù)的教學(xué)中,是一個(gè)值得關(guān)注的問題。

1.?dāng)U大課堂容量,提高教學(xué)效率。

教學(xué)內(nèi)容多,課時(shí)少一直是很多高等學(xué)校線性代數(shù)課程的一個(gè)重要矛盾。我們都知道線性代數(shù)課堂教學(xué)的特點(diǎn)是板書量大,費(fèi)時(shí),費(fèi)力,而用多媒體教學(xué)一些重要的定義、定理作成課件直接播放,節(jié)省了教師的板書時(shí)間,同時(shí)增加了更多的'講解和補(bǔ)充其他內(nèi)容的時(shí)間,可以在短時(shí)間內(nèi)向?qū)W生提供更多更有效的信息,有效節(jié)省了師生的時(shí)間和精力,提高了課堂的學(xué)習(xí)效率。

2.活躍課堂氣氛,增強(qiáng)學(xué)習(xí)興趣。

傳統(tǒng)教學(xué)中都是教師在講臺(tái)上講解,學(xué)生面對(duì)黑板這樣單一的教學(xué)模式,利用多媒體技術(shù),通過圖像、聲音、動(dòng)畫等形式,可以形象直觀的展現(xiàn)一些問題的求解過程。另外,利用多媒體還可以增加數(shù)學(xué)史,數(shù)學(xué)家軼事等內(nèi)容,拓展學(xué)生的知識(shí)面,從而提高了學(xué)生的注意力,降低了傳統(tǒng)授課方式的枯燥感,增加了學(xué)生的學(xué)習(xí)興趣。

3.提高教學(xué)質(zhì)量,促進(jìn)能力培養(yǎng)。

線性代數(shù)是一門應(yīng)用性很強(qiáng)的學(xué)科,而傳統(tǒng)的教學(xué)模式教學(xué)效果差,不利于學(xué)生創(chuàng)新意識(shí)和創(chuàng)新能力的培養(yǎng)。隨著科學(xué)技術(shù)的不斷發(fā)展,計(jì)算機(jī)的大規(guī)模普及,使得數(shù)學(xué)實(shí)驗(yàn)和數(shù)學(xué)模型進(jìn)入到教學(xué)環(huán)節(jié),運(yùn)用線性代數(shù)中的矩陣、線性方程組等內(nèi)容建立投入產(chǎn)出模型、leslie人口模型等數(shù)學(xué)模型,有利于培養(yǎng)學(xué)生分析問題和解決問題的能力,為培養(yǎng)創(chuàng)新型人才奠定基礎(chǔ)。

隨著科學(xué)技術(shù)的發(fā)展,教學(xué)手段的日益現(xiàn)代化,多媒體教學(xué)已成為現(xiàn)代課堂教學(xué)的主要教學(xué)手段之一,其教學(xué)手段的直觀性,教學(xué)內(nèi)容的豐富性,使其具有廣闊的應(yīng)用前景。但多媒體作為一種新興的教學(xué)手段,必然會(huì)存在著一定的不足,尤其在線性代數(shù)這門具有高度邏輯性和嚴(yán)密推理性的學(xué)科的教學(xué)中。例如,節(jié)奏快,不利于保持學(xué)生思維的連續(xù)性,不利于學(xué)生記筆記;糾錯(cuò),應(yīng)變能力差,不利于教師臨場(chǎng)的即興發(fā)揮;過多色彩動(dòng)畫、音效使學(xué)生眼花繚亂,分散學(xué)生注意力;不利于教師和學(xué)生良好的互動(dòng)。"。

線性代數(shù)教學(xué)中需要多媒體技術(shù),但如何合理的將多媒體技術(shù)應(yīng)用于線性代數(shù)課程的教學(xué),是一個(gè)值得我們思考的問題。下面結(jié)合本人多年線性代數(shù)課程的教學(xué)經(jīng)驗(yàn),對(duì)于多媒體技術(shù)在線性代數(shù)課程中的運(yùn)用給出一些建設(shè)性的建議。

1.雖然多媒體教學(xué)相對(duì)于傳統(tǒng)的教學(xué)模式有很多的優(yōu)勢(shì),但并不是所有的教學(xué)內(nèi)容都適合運(yùn)用多媒體教學(xué),尤其對(duì)于線性代數(shù)這門具有很強(qiáng)邏輯性的學(xué)科。這就需要教師認(rèn)真?zhèn)湔n,鉆研教材,根據(jù)教學(xué)內(nèi)容有選擇的選用多媒體教學(xué)。當(dāng)然,傳統(tǒng)的教學(xué)模式也有其優(yōu)勢(shì)所在,課堂上將傳統(tǒng)的教學(xué)模式與多媒體教學(xué)良好的結(jié)合,做到優(yōu)勢(shì)互補(bǔ),以期達(dá)到最好的教學(xué)效果。

2.色彩、聲音、動(dòng)畫是多媒體教學(xué)的一大特色,也是最容易吸引學(xué)生的注意力,產(chǎn)生學(xué)習(xí)興趣的一大亮點(diǎn),但這些元素的運(yùn)用不宜過多,否則將會(huì)適得其反。因此,教師在制作課件時(shí)應(yīng)該注意,色彩要鮮明,但不要太花哨,聲音和動(dòng)畫的運(yùn)用不要太頻繁,以免分散學(xué)生的注意力,影響學(xué)生對(duì)教學(xué)內(nèi)容的理解。而且要充分利用這些優(yōu)勢(shì),例如,對(duì)于一些重要的內(nèi)容要用特殊的顏色加以強(qiáng)調(diào),以加深學(xué)生的印象,加強(qiáng)學(xué)生的記憶;對(duì)于一些概念之間的聯(lián)系可以采用動(dòng)畫的形式進(jìn)行演示,使其更直觀、形象,易于學(xué)生理解。

3.在進(jìn)行多媒體教學(xué)時(shí)一定要注意教師與學(xué)生之間的交流和互動(dòng),把握課堂節(jié)奏,不要只顧點(diǎn)擊鼠標(biāo),照本宣科,讓學(xué)生感覺是在聽報(bào)告,而忽略了學(xué)生的理鷦和接受情況。課堂上,要多提問,適當(dāng)?shù)淖鼍毩?xí)并走到學(xué)生中間,了解學(xué)生的掌握情況,以便及時(shí)調(diào)整課堂教學(xué)進(jìn)度,避免教學(xué)進(jìn)度過快,影響教學(xué)質(zhì)量。

4.對(duì)于已經(jīng)講授完的課件可以傳到校園網(wǎng)上,供學(xué)生瀏覽和下載,便于學(xué)生溫習(xí)和記筆記。另外,對(duì)于一些習(xí)題,思考題也可以在網(wǎng)上給出簡(jiǎn)要的解題思路,供學(xué)生參考和借鑒。

四、結(jié)束語。

多媒體教學(xué)作為現(xiàn)代化教學(xué)的一種手段在優(yōu)化教學(xué)效果中起著越來越重要的作用。在教學(xué)過程中,恰當(dāng)?shù)剡x擇運(yùn)用多媒體技術(shù),可以激發(fā)學(xué)生創(chuàng)造性思維,提高學(xué)生的洞察力,有效地實(shí)施素質(zhì)教育。當(dāng)然,多媒體也有其局限性,隨著科學(xué)的發(fā)展,其作用將會(huì)更大,其局限性也將逐步減小.

線性代數(shù)教學(xué)總結(jié)篇十三

線性代數(shù)課程是以討論有限維空間線性理論為主的課程,具有較強(qiáng)的抽象性與邏輯性。在當(dāng)前的線性代數(shù)課程教學(xué)中,采用的基本是講授式教學(xué)法。

講授式教學(xué)法就是老師通過語言給學(xué)生傳授知識(shí)的教學(xué)方法。講授法采取定論的形式直接向?qū)W生傳遞知識(shí),不僅避免了認(rèn)識(shí)過程中的許多不必要的曲折和困難,而且具有無法取代的簡(jiǎn)捷和高效兩大優(yōu)點(diǎn)。

但是講授式教學(xué)法如果運(yùn)用不當(dāng),很容易使教學(xué)失去生機(jī)而成為填鴨式、一言堂等帶有貶義色彩的教法代表。探究式教學(xué)是指學(xué)生在學(xué)習(xí)概念和原理時(shí),教師只是給他們一些事例和問題,讓學(xué)生自己通過閱讀、觀察、實(shí)驗(yàn)、思考等途徑去獨(dú)立探究,自行發(fā)現(xiàn)并掌握相應(yīng)的原理和結(jié)論的一種方法。隨著探究式教學(xué)法、個(gè)別教學(xué)法等現(xiàn)代教學(xué)方法的崛起,傳統(tǒng)的講授式教學(xué)法作為滿堂灌的教法代表而成為眾矢之的。本文結(jié)合線性代數(shù)課程的特點(diǎn)和多年的教學(xué)實(shí)踐體會(huì),分析了講授式教學(xué)法和探究式教學(xué)法在線性代數(shù)課程中的可行性。

一、講授式教學(xué)法是其他教學(xué)方法的`基礎(chǔ)。

講授法依舊是課堂教學(xué)中的一種重要的教學(xué)方法,尤其對(duì)于一些深?yuàn)W、難懂,不易探究或不能探究的教學(xué)內(nèi)容,我們?nèi)孕栌玫街v授法。

從教的角度來看,任何方法都離不開教師的“講”,講授是其他方法的工具,教師只有講得好,其他各種方法的有效運(yùn)用才有了前提。從學(xué)的角度來看,講授法也是學(xué)生學(xué)習(xí)的一種最基本的方法,其他各種學(xué)習(xí)方法的掌握大多是建立在講授法的基礎(chǔ)上。講授式教學(xué)法中,教師可通過口頭語言、多媒體或者模型向?qū)W生系統(tǒng)地傳授科學(xué)文化知識(shí),不需要做大量的配套設(shè)施準(zhǔn)備,便于廣泛運(yùn)用。

離開講授法,各種教與學(xué)的方法都易成為無土之木,無源之水。講授式教學(xué)過程中應(yīng)盡量想辦法講得有趣。譬如線性方程組來源于實(shí)際問題,我們就可以這樣來引入線性方程組??催@樣的趣題:隔墻聽得賊分銀,不知人數(shù)不知銀,七兩分之多四兩,九兩分之少半斤(注:古秤十六兩為一斤)。實(shí)際上求人數(shù)和銀兩數(shù)的問題就是求解一個(gè)簡(jiǎn)單的二元一次線性方程組。學(xué)生的興趣馬上就來了。

二、講授式教學(xué)法能更好地解決線性代數(shù)教學(xué)面臨的內(nèi)容與學(xué)時(shí)的矛盾。

線性代數(shù)教學(xué)時(shí)數(shù)一般為48學(xué)時(shí),傳統(tǒng)的線性代數(shù)教學(xué)內(nèi)容體系要求面面俱到,理論上追求嚴(yán)謹(jǐn),有些工科院校把向量代數(shù)與空間解析這一塊內(nèi)容也納入進(jìn)去,因而教學(xué)內(nèi)容相對(duì)較多。

對(duì)同一教學(xué)內(nèi)容,探究式教學(xué)法,耗時(shí)更長(zhǎng),在課時(shí)比較少的學(xué)科實(shí)施探究式教學(xué)時(shí)只能夠選擇性應(yīng)用。而利用講授式教學(xué)法可以合理安排教學(xué)的主要內(nèi)容及重點(diǎn)進(jìn)行講授式教學(xué)。切忌貪多求全及平均使用力量和時(shí)間。教師可以事先在教學(xué)組織上狠下功夫,形成精練的課堂教學(xué)內(nèi)容,甚至在備課環(huán)節(jié)把講授時(shí)所用的語言都準(zhǔn)備好。抓住主要問題形成精練的講授內(nèi)容。對(duì)教學(xué)內(nèi)容須分清主次,從而以基本概念、基本理論、基本方法等主要內(nèi)容為核心形成精練的內(nèi)容。

對(duì)這些內(nèi)容,保證學(xué)時(shí),講透徹。而其他內(nèi)容,應(yīng)根據(jù)學(xué)生的實(shí)際情況,可簡(jiǎn)明扼要地講解,或者在教師引導(dǎo)下學(xué)生自學(xué)。教師要注意運(yùn)用精練的表達(dá),對(duì)講授的語言、板書的運(yùn)用都講究精練。除此之外,將多媒體技術(shù)引入教學(xué)中來,提前準(zhǔn)備好教學(xué)課件,把書寫冗長(zhǎng)的定義、定理的時(shí)間節(jié)省出來,用于解釋定義的背景、定理的證明及應(yīng)用,把寶貴的課堂教學(xué)時(shí)間充分利用起來。

三、借助探究式教學(xué)法解決線性代數(shù)內(nèi)容從抽象到具體的矛盾線性代數(shù)的內(nèi)容抽象,要掌握其原理與方法,必須具備較強(qiáng)的抽象思維能力,即對(duì)形式概念的理解能力和形式邏輯的演繹能力,這導(dǎo)致學(xué)生在學(xué)習(xí)的過程中,普遍感到概念難以理解,內(nèi)容不易接受,面對(duì)具體的問題經(jīng)常茫然不知所措,不知從何處下手。

譬如向量組與極大線性無關(guān)組的關(guān)系,我們可以這樣具體化來理解。我們班有很多人(對(duì)應(yīng)一個(gè)向量組),但如果認(rèn)為任意兩個(gè)男生是線性相關(guān)的,任意兩個(gè)女生也是線性相關(guān)的,則其實(shí)只有兩個(gè)人即男生和女生(對(duì)應(yīng)一個(gè)極大線性無關(guān)組),任選一個(gè)男生和一個(gè)女生就可以代表我們整個(gè)班(一個(gè)向量組的極大線性無關(guān)組不唯一)。

事實(shí)上,對(duì)線性代數(shù)中的那些抽象的理論,我們完全可以通過提問,借助于探究式教學(xué)法,讓學(xué)生自己去尋找這樣有趣的具體化解釋,然后讓他們自己討論,優(yōu)中取優(yōu),讓學(xué)生準(zhǔn)確理解概念,這樣就能使課程中枯燥的內(nèi)容變得豐富多彩,就會(huì)使那些死的東西活起來,會(huì)使那些抽象的東西實(shí)際起來,使那些難懂的東西親切起來,變得被學(xué)生樂意接受。

數(shù)學(xué)不僅僅是一種“思維體操”.隨著人們對(duì)數(shù)學(xué)更深層次的認(rèn)識(shí),數(shù)學(xué)的文化現(xiàn)象已明顯地凸現(xiàn)了出來。我們學(xué)習(xí)數(shù)學(xué)不僅是為了獲取知識(shí),更能通過數(shù)學(xué)學(xué)習(xí)接受數(shù)學(xué)精神、數(shù)學(xué)思想和數(shù)學(xué)方法的熏陶,提高思維能力,鍛煉思維品質(zhì)。數(shù)學(xué)文化的教育應(yīng)該成為數(shù)學(xué)教育的根本點(diǎn)。線性代數(shù)作為一門大學(xué)數(shù)學(xué)基礎(chǔ)課程也不例外。

線性代數(shù)中充盈著豐富的數(shù)學(xué)文化。借助探究式教學(xué)法,我們可以通過提問等方式讓學(xué)生自己去摸索、總結(jié)心得體會(huì)。譬如,矩陣的初等變換這個(gè)概念我們說非常重要,類似于《西游記》里的照妖鏡。一個(gè)看上去很復(fù)雜的東西,容易被其表象所蒙騙時(shí),我們用照妖鏡照一下就露出本質(zhì)來了。那么初等變換照出來的本質(zhì)是什么呢?原來就是矩陣的秩。這一思想繼續(xù)引導(dǎo)學(xué)生提升:數(shù)學(xué)是在干什么?原來數(shù)學(xué)就是研究一個(gè)對(duì)象(線性方程組或者是矩陣)在一一對(duì)應(yīng)下(初等變換或者說照妖鏡)所得到的另一個(gè)對(duì)象(簡(jiǎn)化階梯型矩陣)。當(dāng)然,后一對(duì)象要比前一對(duì)象簡(jiǎn)單易懂才能真正解決問題。這就體現(xiàn)出數(shù)學(xué)的文化內(nèi)涵:轉(zhuǎn)化就是創(chuàng)新。

又如,線性方程組來源于實(shí)際問題,而為了對(duì)線性方程組求解,我們得到了矩陣?yán)碚摚缓笪覀冇掷镁仃嚴(yán)碚搧斫鉀Q二次型的標(biāo)準(zhǔn)化問題。這種理論來源于實(shí)踐,反過來理論又能指導(dǎo)實(shí)踐的方法,正符合馬克思主義哲學(xué)中辯證唯物主義的認(rèn)識(shí)論。因此,學(xué)習(xí)線性代數(shù),可以幫助我們更好地認(rèn)識(shí)自然,了解世界,適應(yīng)生活;它可以促進(jìn)我們有條理地思考,有效地表達(dá)與交流,不僅僅運(yùn)用數(shù)學(xué)具體的知識(shí)去分析問題和解決問題,更能運(yùn)用數(shù)學(xué)的思想文化去分析問題和解決問題。

可見,這兩種教學(xué)方法各有所長(zhǎng),教學(xué)過程當(dāng)中既要有教師主動(dòng)的精練講解,又要在教師的引導(dǎo)下,以學(xué)生為主體,讓學(xué)生自覺地、主動(dòng)地探索,掌握認(rèn)識(shí)和解決問題的方法和步驟,研究客觀事物的屬性,發(fā)現(xiàn)事物發(fā)展的起因和事物內(nèi)部的聯(lián)系,從中找出規(guī)律,形成自己的概念。在樹立新的教學(xué)理念的同時(shí),不應(yīng)該完全摒棄傳統(tǒng)的教學(xué)觀念,應(yīng)使兩者有機(jī)結(jié)合,取長(zhǎng)補(bǔ)短,從而更為合理地安排教學(xué)。

【參考文獻(xiàn)】。

線性代數(shù)教學(xué)總結(jié)篇十四

2010年全國(guó)碩士研究生入學(xué)統(tǒng)一考試于1月9-10日進(jìn)行,現(xiàn)在已經(jīng)全部結(jié)束了。各位學(xué)生經(jīng)過一年多的努力、拼搏,終于考完了所有的課程。對(duì)于考數(shù)學(xué)的考生來說,更希望了解今年數(shù)學(xué)試卷的總體特點(diǎn);而對(duì)于很多準(zhǔn)備參加2011年考試的學(xué)生也希望了解明年數(shù)學(xué)命題的趨勢(shì),現(xiàn)針對(duì)線性代數(shù)部分的試題進(jìn)行以下分析。

線性代數(shù)一共是5道考題,兩個(gè)選擇題,一個(gè)填空題,兩個(gè)解答題,兩個(gè)解答題是22分,今年這兩道大題主要是計(jì)算題,只有數(shù)學(xué)一21題第二問是證明a是正定矩陣的,而這個(gè)證明也是很簡(jiǎn)單的。因?yàn)橥瑢W(xué)害怕的是線性代數(shù)的證明題,今年兩個(gè)都是計(jì)算題,所以從這個(gè)角度來說,線性代數(shù)的考題并不難。但是相對(duì)于09年的線性代數(shù)題目來說,今年的線性代數(shù)題目比09年的題目個(gè)別題目要略微難一些,因?yàn)?9年的兩道大題都是比較常規(guī)的計(jì)算,一個(gè)是具體的非齊次線性方程組的求解和證明線性無關(guān),另一個(gè)是求二次型所對(duì)應(yīng)矩陣的特征值,這兩個(gè)題目都是比較常規(guī)的題目,今年的兩個(gè)大題中,數(shù)一、數(shù)二、數(shù)三都考察了一個(gè)帶參數(shù)線性方程組的求解,這道題涉及到了參數(shù)的問題以及非齊次線性方程組解的結(jié)構(gòu),比09年的具體的非齊次線性方程組的求解稍微靈活一些,對(duì)于第二道大題,數(shù)一考察的是已知二次型在正交變換x=qy下的標(biāo)準(zhǔn)形以及q的第三列,反求a的問題,這是一個(gè)抽象的問題,比09年具體的二次型要稍微有些難度,并且計(jì)算量有點(diǎn)大,所以說,從這個(gè)角度來說,今年的線性代數(shù)題的兩道大題應(yīng)當(dāng)比09年的線性代數(shù)題要略微難一些。從今年出題的情況來看,考得很全面,六章,每一章都考到了,章章都有考的出題點(diǎn),題目還是有一些靈活性的。

從大綱的角度來看,現(xiàn)在數(shù)一、數(shù)二、數(shù)三的考試大綱幾乎完全一樣,數(shù)一的同學(xué)多一個(gè)知識(shí)點(diǎn),多一個(gè)向量空間,而今年正好在這兒考了一道小的題目,考察了向量空間的維數(shù)。線性代數(shù)今年這五道題來說,兩道解答題,數(shù)二、數(shù)三完全一樣,數(shù)一有一道和數(shù)二、數(shù)三的不一樣,只是換了一個(gè)出題方法,考的出題點(diǎn)還是同樣的。從這幾年考試的特點(diǎn)來看,線性代數(shù)題考得很基本,而線性代數(shù)題本身比較靈活,一道題往往有多種解法,基于這樣的情況,作為2011年的考生,如果要準(zhǔn)備線性代數(shù)的復(fù)習(xí)的話,還是應(yīng)該按照考研題的特點(diǎn),重視基礎(chǔ),把概念搞清楚,把基本的東西搞清楚。像今年數(shù)一考的一道題,考的矩陣的秩,這道考題實(shí)際上涉及到的兩個(gè)基本的知識(shí)點(diǎn),一個(gè)是矩陣乘積的秩,即r(ab)=r(a),r(ab)=r(b);另一個(gè)是矩陣的秩的一個(gè)性質(zhì),即若a為m*n矩陣,則r(a)=m,r(a)=n,由這兩個(gè)知識(shí)點(diǎn)我們就可以得到相應(yīng)的結(jié)論,而08年數(shù)一的一道大題同樣考的是矩陣秩的性質(zhì),這兩道題用到了相同的知識(shí)點(diǎn);同樣的,今年數(shù)一、數(shù)二、數(shù)三都涉及到的一道題,已知a為四階實(shí)對(duì)稱矩陣,,且r(a)=3,求a相似于什么樣的對(duì)角陣,這道題實(shí)際上就是求a的特征值,而02年數(shù)三就有一道基本上一模一樣的.大題,所以說歷年真題在考研復(fù)習(xí)中起到了一定的作用,在復(fù)習(xí)中要引起充分的重視。另外,線性代數(shù)的題目比較靈活,今年其他幾道題也是一樣的,出得很靈活。所以這就要求同學(xué)們?cè)趶?fù)習(xí)過程當(dāng)中,在這方面一定要注意,注意知識(shí)點(diǎn)之間內(nèi)部的聯(lián)系。

以上我們從考試知識(shí)點(diǎn)方面對(duì)2010年考研數(shù)學(xué)試題線性代數(shù)部分考點(diǎn)進(jìn)行了分析。從歷年的數(shù)學(xué)考題來看,命題組的專家都是緊緊扣住三基本,“基本概念、基本理論、基本方法”,試卷中基礎(chǔ)知識(shí)的考查占有相當(dāng)大的比例,所以對(duì)準(zhǔn)備2011年考試的考生來說,復(fù)習(xí)時(shí)首先應(yīng)該注重基本概念、基本原理的理解,弄懂、弄通教材,打一個(gè)堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),書本上每一個(gè)概念、每一個(gè)原理都要理解到位,切不可開始就看復(fù)習(xí)資料而放棄課本的復(fù)習(xí)。在第一次的全面復(fù)習(xí)中,還要扎扎實(shí)實(shí)的把每個(gè)大綱要求的知識(shí)點(diǎn)都過一遍,查漏補(bǔ)缺;其次,注重公式的記憶,方法的掌握和應(yīng)用。在研讀教材時(shí)要重視習(xí)題,不要求每個(gè)概念都背下來,但一定要熟習(xí)它是如何反映在題目中的;最后,要注意綜合。今年解答題主要是考察綜合能力,我們這種綜合能力不是簡(jiǎn)單的一個(gè)知識(shí)點(diǎn)、兩個(gè)知識(shí)點(diǎn),都是跨章節(jié)的,涉及多個(gè)知識(shí)點(diǎn)的綜合題。不管是線性代數(shù)還是概率論與數(shù)理統(tǒng)計(jì),還是微積分,一定要加強(qiáng)綜合、加強(qiáng)訓(xùn)練。你只有一步一個(gè)腳印,方法得當(dāng),一定能取得好成績(jī)。

將本文的word文檔下載到電腦,方便收藏和打印。

線性代數(shù)教學(xué)總結(jié)篇十五

2015考研線性代數(shù)行列式與矩陣知識(shí)點(diǎn)復(fù)習(xí)。結(jié)合考試分析,建議考生從行列式自身知識(shí)、與其它知識(shí)的聯(lián)系這兩方面來把握該部分內(nèi)容。

一、行列式。

行列式是線性代數(shù)中的基本運(yùn)算。該部分單獨(dú)出題情況不多,很多時(shí)候,考試將其與其它知識(shí)點(diǎn)(矩陣、線性方程組、特征值與特征向量等)結(jié)合起來考查。行列式的重點(diǎn)是計(jì)算,包括數(shù)值型行列式、抽象型行列式和含參數(shù)行列式的計(jì)算。

結(jié)合考試分析,建議考生從行列式自身知識(shí)、與其它知識(shí)的聯(lián)系這兩方面來把握該部分內(nèi)容。具體如下:

1.行列式自身知識(shí)。

考生應(yīng)在理解定義、掌握性質(zhì)及展開定理的基礎(chǔ)上,熟練掌握各種形式的行列式的計(jì)算。行列式計(jì)算的基本思路是利用性質(zhì)化簡(jiǎn),利用展開定理降階。常見的計(jì)算方法有:“三角化”法,直接利用展開定理,利用范德蒙行列式結(jié)論,逆向運(yùn)用展開定理。

2.行列式與其它知識(shí)的`聯(lián)系。

行列式與其它知識(shí)(線性方程組的克拉默法則、由伴隨矩陣求逆矩陣、證明矩陣可逆、判定n個(gè)n維向量線性相關(guān)(無關(guān))、計(jì)算矩陣特征值、判斷二次型的正定性)有較多聯(lián)系。考生應(yīng)準(zhǔn)確把握這些聯(lián)系,并靈活運(yùn)用。

二、矩陣。

矩陣是線性代數(shù)的核心,也是考研數(shù)學(xué)的重點(diǎn)考查內(nèi)容??荚噯为?dú)考查本部分以小題為主,平均每年1至2題。但是矩陣是線性代數(shù)的“活動(dòng)基地”,線性代數(shù)的考題絕大部分是以矩陣為載體出題的,因此矩陣復(fù)習(xí)的成敗基本決定了整個(gè)線性代數(shù)復(fù)習(xí)的成敗。

該部分的??碱}型有:矩陣的運(yùn)算,逆矩陣,初等變換,矩陣方程,矩陣的秩,矩陣的分塊。其中逆矩陣考得最多。

結(jié)合考試分析,建議考生從以下方面把握該部分內(nèi)容:

矩陣運(yùn)算中矩陣乘法是核心,要特別注意乘法不滿足交換律和消去律。逆矩陣需注意三方面――定義、與伴隨矩陣的關(guān)系、利用初等變換求逆矩陣。伴隨矩陣是難點(diǎn),需熟記最基本的公式,并靈活運(yùn)用。對(duì)于矩陣的秩,著重理解其定義,及其與行列式及矩陣可逆性的關(guān)系。

線性代數(shù)教學(xué)總結(jié)篇十六

姓名:xxx學(xué)號(hào):xxx通過線性代數(shù)的學(xué)習(xí),能使學(xué)生獲得應(yīng)用科學(xué)中常用的矩陣、線性方程組等理論及其有關(guān)基本知識(shí),并具有較熟練的矩陣運(yùn)算能力和用矩陣方法解決一些實(shí)際問題的能力。同時(shí),該課程對(duì)于培養(yǎng)學(xué)生的邏輯推理和抽象思維能力、空間直觀和想象能力具有重要的作用。

在現(xiàn)代社會(huì),除了算術(shù)以外,線性代數(shù)是應(yīng)用最廣泛的數(shù)學(xué)學(xué)科了。但是線性代數(shù)教學(xué)卻對(duì)線性代數(shù)的應(yīng)用涉及太少,課本上涉及最多的應(yīng)用只有算解線性方程組,但這只是線性代數(shù)很初級(jí)的應(yīng)用。而線性代數(shù)在計(jì)算機(jī)數(shù)據(jù)結(jié)構(gòu)、算法、密碼學(xué)、對(duì)策論等等中都有著相當(dāng)大的作用。

線性代數(shù)被不少同學(xué)稱為天書,足見這門課給同學(xué)們?cè)斐傻睦щy。我認(rèn)為,每門課程都是有章可循的,線性代數(shù)也不例外,只要有正確的方法,再加上自己的努力,就可以學(xué)好它。

線性代數(shù)主要研究三種對(duì)象:矩陣、方程組和向量。這三種對(duì)象的理論是密切相關(guān)的,大部分問題在這三種理論中都有等價(jià)說法。因此,熟練地從一種理論的敘述轉(zhuǎn)移到另一種中去,是學(xué)習(xí)線性代數(shù)時(shí)應(yīng)養(yǎng)成的一種重要習(xí)慣和素質(zhì)。如果說與實(shí)際計(jì)算結(jié)合最多的是矩陣的觀點(diǎn),那么向量的觀點(diǎn)則著眼于從整體性和結(jié)構(gòu)性考慮問題,因而可以更深刻、更透徹地揭示線性代數(shù)中各種問題的內(nèi)在聯(lián)系和本質(zhì)屬性。由此可見,只要掌握矩陣、方程組和向量的內(nèi)在聯(lián)系,遇到問題就能左右逢源,舉一反三,化難為易。

線性代數(shù)課程特點(diǎn)比較鮮明:概念多、運(yùn)算法則多內(nèi)容相互縱橫交錯(cuò)正是因?yàn)榫€性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,線性代數(shù)題的綜合性與靈活性較大,線性代數(shù)的概念多比如代數(shù)余子式,伴隨矩陣,逆矩陣,初等變換與初等矩陣,矩陣的秩,線性組合與線性表示,線性相關(guān)與線性無關(guān)等。

線性代數(shù)教學(xué)總結(jié)篇十七

知識(shí)點(diǎn)2:余子式、代數(shù)余子式。

知識(shí)點(diǎn)3:行列式的性質(zhì)。

知識(shí)點(diǎn)4:行列式按一行(列)展開公式。

知識(shí)點(diǎn)5:計(jì)算行列式的方法。

知識(shí)點(diǎn)6:克拉默法則。

知識(shí)點(diǎn)7:矩陣的概念、線性運(yùn)算及運(yùn)算律。

知識(shí)點(diǎn)8:矩陣的乘法運(yùn)算及運(yùn)算律。

知識(shí)點(diǎn)9:計(jì)算方陣的冪。

知識(shí)點(diǎn)10:轉(zhuǎn)置矩陣及運(yùn)算律。

知識(shí)點(diǎn)11:伴隨矩陣及其性質(zhì)。

知識(shí)點(diǎn)12:逆矩陣及運(yùn)算律。

知識(shí)點(diǎn)13:矩陣可逆的判斷。

知識(shí)點(diǎn)14:方陣的行列式運(yùn)算及特殊類型的矩陣的運(yùn)算。

知識(shí)點(diǎn)15:矩陣方程的求解。

知識(shí)點(diǎn)16:初等變換的概念及其應(yīng)用。

知識(shí)點(diǎn)17:初等方陣的概念。

知識(shí)點(diǎn)18:初等變換與初等方陣的關(guān)系。

知識(shí)點(diǎn)19:等價(jià)矩陣的概念與判斷。

知識(shí)點(diǎn)20:矩陣的子式與最高階非零子式。

知識(shí)點(diǎn)21:矩陣的秩的概念與判斷。

知識(shí)點(diǎn)22:矩陣的秩的性質(zhì)與定理。

知識(shí)點(diǎn)23:分塊矩陣的概念與運(yùn)算、特殊分塊陣的運(yùn)算。

知識(shí)點(diǎn)24:矩陣分塊在解題中的技巧舉例。

知識(shí)點(diǎn)25:向量的概念及運(yùn)算。

知識(shí)點(diǎn)26:向量的線性組合與線性表示。

知識(shí)點(diǎn)27:向量組之間的線性表示及等價(jià)[]。

知識(shí)點(diǎn)28:向量組線性相關(guān)與線性無關(guān)的概念。

知識(shí)點(diǎn)29:線性表示與線性相關(guān)性的關(guān)系。

知識(shí)點(diǎn)30:線性相關(guān)性的判別法。

知識(shí)點(diǎn)31:向量組的最大線性無關(guān)組和向量組的秩的概念。

知識(shí)點(diǎn)32:矩陣的秩與向量組的秩的關(guān)系。

知識(shí)點(diǎn)33:求向量組的最大無關(guān)組。

知識(shí)點(diǎn)35:內(nèi)積的概念及性質(zhì)。

知識(shí)點(diǎn)36:正交向量組正交陣及其性質(zhì)。

知識(shí)點(diǎn)37:向量組的正交規(guī)范化、施密特正交化方法。

知識(shí)點(diǎn)38:向量空間(數(shù)一)。

知識(shí)點(diǎn)39:基變換與過渡矩陣(數(shù)一)。

知識(shí)點(diǎn)40:基變換下的坐標(biāo)變換(數(shù)一)。

知識(shí)點(diǎn)41:齊次線性方程組解的性質(zhì)與結(jié)構(gòu)。

知識(shí)點(diǎn)42:非齊次方程組解的性質(zhì)及結(jié)構(gòu)。

知識(shí)點(diǎn)43:非齊次線性線性方程組解的各種情形。

知識(shí)點(diǎn)44:用初等行變換求解線性方程組。

知識(shí)點(diǎn)45:線性方程組的公共解、同解。

知識(shí)點(diǎn)46:方程組、矩陣方程與矩陣的乘法運(yùn)算的關(guān)系。

知識(shí)點(diǎn)47:方程組、矩陣與向量之間的聯(lián)系及其解題技巧舉例。

知識(shí)點(diǎn)48:特征值與特征向量的概念與性質(zhì)。

知識(shí)點(diǎn)49:特征值和特征向量的求解。

知識(shí)點(diǎn)50:相似矩陣的概念及性質(zhì)。

知識(shí)點(diǎn)51:矩陣的相似對(duì)角化。

知識(shí)點(diǎn)52:實(shí)對(duì)稱矩陣的相似對(duì)角化。

知識(shí)點(diǎn)53:利用相似對(duì)角化求矩陣和矩陣的冪。

知識(shí)點(diǎn)54:二次型及其矩陣表示。

知識(shí)點(diǎn)55:矩陣的合同。

知識(shí)點(diǎn)56:矩陣的等價(jià)、相似與合同的關(guān)系。

知識(shí)點(diǎn)57:二次型的標(biāo)準(zhǔn)形。

知識(shí)點(diǎn)58:用正交變換化二次型為標(biāo)準(zhǔn)形。

知識(shí)點(diǎn)59:用配方法化二次型為標(biāo)準(zhǔn)形。

知識(shí)點(diǎn)60:正定二次型的概念及判斷。

線性代數(shù)教學(xué)總結(jié)篇十八

線性代數(shù)是數(shù)學(xué)的一個(gè)分支,它的研究對(duì)象是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。

線性代數(shù)是繼微積分之后又一門高等數(shù)學(xué),與微積分想比,線性代數(shù)的基礎(chǔ)行列式和矩陣是在高中有所學(xué)習(xí)的,入門還是相對(duì)比較簡(jiǎn)單的。線性代數(shù)從內(nèi)容上看前后聯(lián)系緊密,環(huán)環(huán)相扣,因此解題方法靈活多變,學(xué)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。所以多做題也是積累經(jīng)驗(yàn)來方便自己在解題時(shí)能更快更準(zhǔn)確得運(yùn)用適當(dāng)?shù)男再|(zhì)來簡(jiǎn)化題目。

線性代數(shù)的許多公式定理難理解,但一定要理解這些東西才能記得牢,理解不需要知道它的證明過程的每一步,只要能朦朦朧朧地想到它的所以然就行了。學(xué)習(xí)線代及其它任何學(xué)科時(shí)都要靜下心來,如果學(xué)習(xí)前很亢奮就拿出一兩分鐘時(shí)間平靜下來再開始學(xué)習(xí)。遇到不會(huì)做的題時(shí)不要去想“這道題我怎么又不會(huì)做”等與這道題無關(guān)的東西,一心想題,這樣解出來的可能性會(huì)大很多。做完題后要想想答案上的方法和自己的方法是怎么想出來的,尤其對(duì)于自己不會(huì)做的題或某個(gè)題答案給出的解法非常好且較難想到,然后將這種思路記住,即做完題目后要總結(jié)自己做題的思路,活用在之后的做題中。

很多人都說,審計(jì)是文科的,學(xué)像微積分和線代這樣的理科課程沒有什么意義,雖然表面看起來是這樣的,但實(shí)際上卻不然。理科注重的邏輯,在學(xué)習(xí)的理科的過程中,我們的思路會(huì)變得清晰,會(huì)計(jì)是很復(fù)雜的一個(gè)專業(yè),很多時(shí)候不同的條件會(huì)需要進(jìn)行不同的處理,而理科會(huì)讓這些復(fù)雜的東西在我們腦海中變得僅僅有條,所以學(xué)習(xí)線代也是有必要的。

線性代數(shù)教學(xué)總結(jié)篇十九

提到考研數(shù)學(xué),很多同學(xué)都能想到高數(shù)和概率。其實(shí)線性代數(shù)也是數(shù)學(xué)一,數(shù)學(xué)二和數(shù)學(xué)三中的考查重點(diǎn),而且往往是難點(diǎn)。以下是小編整理的數(shù)學(xué)線性代數(shù)之矩陣。

歡迎閱讀!

同學(xué)們?cè)趯W(xué)習(xí)線代的時(shí)候覺得有難度。我認(rèn)為有兩個(gè)方面的原因:

1.大家在學(xué)習(xí)了高數(shù)后,難免在學(xué)習(xí)線代時(shí)后勁不足;

2.線代知識(shí)體系錯(cuò)綜復(fù)雜,聯(lián)系比較多,大家往往搞不清聯(lián)系。

下面,跨考教育數(shù)學(xué)教研室的向喆老師跟大家說說一些難理解和??嫉母拍睢=裉焖f的是線性代數(shù)中的矩陣學(xué)習(xí)問題,大家分三個(gè)步驟來學(xué)習(xí)。

首先,構(gòu)建矩陣知識(shí)框架。矩陣這一章在線性代數(shù)中處于核心地位。它是前后聯(lián)系的紐帶。具體來說,矩陣包括定義,性質(zhì),常見矩陣運(yùn)算,常見矩陣類型,矩陣秩,分塊矩陣等問題。可以說,內(nèi)容多,聯(lián)系多,各個(gè)知識(shí)點(diǎn)的理解就至關(guān)重要了。

然后,把握知識(shí)原理。在有前面的知識(shí)做鋪墊后,大家就要開始學(xué)習(xí)矩陣了。首先是矩陣定義,它是一個(gè)數(shù)表。這個(gè)與行列式有明顯的區(qū)別。然后看運(yùn)算,常見的運(yùn)算是求逆,轉(zhuǎn)置,伴隨,冪等運(yùn)算。要注意它們的綜合性。還有一個(gè)重點(diǎn)就是常見矩陣類型。大家特別要注意實(shí)對(duì)稱矩陣,正交矩陣,正定矩陣以及秩為1的矩陣。最后就是矩陣秩。這是一個(gè)核心和重點(diǎn)??梢院敛豢鋸埖恼f,矩陣的秩是整個(gè)線性代數(shù)的核心。那么同學(xué)們就要清楚,秩的定義,有關(guān)秩的很多結(jié)論。針對(duì)結(jié)論,我給的建議是大家最好能知道他們是怎么來的。最好是自己動(dòng)手算一遍。我還補(bǔ)充說一點(diǎn)就是分塊矩陣。要注意矩陣分塊的原則,分塊矩陣的初等變換與簡(jiǎn)單矩陣初等變換的區(qū)別和聯(lián)系。

最后,多做習(xí)題練習(xí)。在前面有了知識(shí)體系和掌握了知識(shí)原理后,剩下的就是多做題對(duì)知識(shí)進(jìn)行理解了。有句古話:光說不練假把式。所以對(duì)知識(shí)的熟練掌握還是要通過做題來實(shí)現(xiàn)。同時(shí),我也反對(duì)題海戰(zhàn)術(shù),做題不是盲目的做題,不是只做不練。做題應(yīng)該是有選擇的做題,做一個(gè)題就應(yīng)該了解一個(gè)方法,掌握一個(gè)原理。所以,大家可以參考?xì)v年真題來進(jìn)行練習(xí)。每做一個(gè)題,大家就該考慮下它是怎么考察我們所學(xué)的知識(shí)點(diǎn)的。如果做錯(cuò)了,大家還要多進(jìn)行反思。找到做錯(cuò)的原因,并且逐步改正。這樣才能長(zhǎng)久的提高。

總之,希望大家在學(xué)習(xí)線性代數(shù)的矩陣的時(shí)候把握這三個(gè)原則,在此基礎(chǔ)上,勤思考,多練習(xí),那么大家一定可以學(xué)習(xí)好,祝大家考研成功!

線性代數(shù)教學(xué)總結(jié)篇二十

1.不扎實(shí)的基礎(chǔ)知識(shí)體系。

由于獨(dú)立院校的圣元多為高考分?jǐn)?shù)低于二本高中基礎(chǔ)知識(shí)總體上比較差強(qiáng)人意的高中生,其知識(shí)的的體系性是非常的不容樂觀的,出現(xiàn)偏科的現(xiàn)象時(shí)經(jīng)常發(fā)生的,每個(gè)學(xué)生都或多或少的有此問題,對(duì)于自己不喜歡的科目會(huì)有明顯的排斥感和抵觸情緒。由于學(xué)生的學(xué)習(xí)習(xí)慣學(xué)習(xí)方式等環(huán)節(jié)存在明顯的不足,導(dǎo)致課上學(xué)習(xí)的效率非常低。

2.個(gè)性彰顯但缺乏自我管理能力。

目前,大多是獨(dú)生子女的獨(dú)立學(xué)院的學(xué)生,基本為九零后,時(shí)代性與個(gè)性顯著。個(gè)性強(qiáng)烈在生活和學(xué)習(xí)方面,擁有很強(qiáng)的自我意識(shí),極為缺乏團(tuán)隊(duì)合作。是較差表現(xiàn)在參加集體活動(dòng)與遵守紀(jì)律方面,自由散漫且具有一定逆反情緒的大部分學(xué)生。而生活中的大部分學(xué)生卻與學(xué)習(xí)中有著截然相反的表現(xiàn),自信心差,目標(biāo)不明確是大部分學(xué)生普遍具有的問題。對(duì)自我的要求較低,并在出現(xiàn)問題后不知道如何處理。

3.家境好,低分高能。

三本的學(xué)費(fèi)是比較普遍偏高的,這就要求進(jìn)入到獨(dú)立院校中的學(xué)生家境要承擔(dān)一定的較高的學(xué)習(xí)費(fèi)用。由于家境的影響,學(xué)生在表現(xiàn)力、適應(yīng)社會(huì)的能力、以及溝通交流的能力上具有突出的優(yōu)勢(shì),并且大部分的學(xué)生失手過特有的特長(zhǎng)教育的,是具有敏捷的思維與極強(qiáng)的動(dòng)手能力的,與其他方面比,是很出眾的。

1.缺乏自主特色的教育教學(xué)計(jì)劃。

大多的獨(dú)立學(xué)院的`教育體系不夠清晰明確,大多翻版母體學(xué)校的教育教學(xué)管理模式以及方式。沒有有教無類的對(duì)學(xué)生的個(gè)性區(qū)別對(duì)待,傳統(tǒng)環(huán)境下降學(xué)生的個(gè)性抹殺。

2.教學(xué)資源缺乏。

獨(dú)立學(xué)院的建立多為依靠母校的教學(xué)資源,一部分的教學(xué)資源是在母校的基礎(chǔ)上分配而來的。一些母校主題在趨于飽和后對(duì)于教學(xué)資源上是十分缺乏的,對(duì)獨(dú)立院校的需求也是愛莫能助,另外一些師資力量上,一部分老師一面負(fù)責(zé)本體母校的教學(xué)另一方面也要負(fù)責(zé)獨(dú)立院校上的師資力量,在一定程度上使獨(dú)立院校的師資投入上大大降低,并且一些派到獨(dú)立院校的老師多為主體母校的畢業(yè)生或是年輕教師,教學(xué)經(jīng)驗(yàn)不夠深厚。

3.管理隊(duì)伍的不健全。

獨(dú)立學(xué)院的主體建設(shè)時(shí)間短,缺少教學(xué)管理人員,一人多崗普遍存在。工作壓力大,還辛苦。而新進(jìn)來的管理人員又存在著管理經(jīng)驗(yàn)缺乏等問題。此外針對(duì)獨(dú)立學(xué)院的特有的特點(diǎn),需要的管理人員需要有相應(yīng)的新的教育教學(xué)管理手段,陳舊的管理理念已不能適應(yīng)獨(dú)立學(xué)院的發(fā)展體制。

三、應(yīng)對(duì)策略。

1.改革教育教學(xué)體系。

夯實(shí)基礎(chǔ),強(qiáng)化實(shí)踐,制定出具有針對(duì)性的行之有效的教育教學(xué)計(jì)劃,突出素質(zhì)教育的地位,注重學(xué)生能力的培養(yǎng),和綜合能力的提升。教學(xué)主體依據(jù)低分高能的特點(diǎn),必須改革傳統(tǒng)的教學(xué)模式,初期加強(qiáng)基礎(chǔ)知識(shí)的學(xué)習(xí)和補(bǔ)充,理論性教學(xué)具有針對(duì)性和適應(yīng)性,建立切實(shí)可行的教學(xué)方案。走實(shí)踐性教學(xué)的道路,讓學(xué)生充分發(fā)揮自身的特長(zhǎng),多動(dòng)手,走出研究性學(xué)習(xí)的教育誤區(qū),培養(yǎng)學(xué)生的特色能力,建立實(shí)習(xí)基地,為學(xué)生的特長(zhǎng)找到一個(gè)具有發(fā)揮余地的平臺(tái)。

教師是傳道授業(yè)的主體,而獨(dú)立院校在師資力量上是極為缺乏的。而目前獨(dú)立院校的教師是由母體學(xué)校教師、外聘教師、內(nèi)聘教師三類組成的。而最具有經(jīng)驗(yàn)的教師就是母體學(xué)校的教師了,但是由于母體學(xué)校的師資力量的飽和,母體學(xué)校的教師明顯不夠用,而且母體學(xué)校的教師雖然經(jīng)驗(yàn)豐富,但是缺乏對(duì)于獨(dú)立學(xué)校的特定人群所具有針對(duì)性的先進(jìn)經(jīng)驗(yàn),教育教學(xué)模式停留在原始的學(xué)術(shù)研究型教學(xué),這樣更不適用于獨(dú)立學(xué)校。因此加強(qiáng)師資力量的建設(shè)迫在眉睫。獨(dú)立學(xué)校急需培養(yǎng)具有針對(duì)性的教育教學(xué)管理人員。

3.規(guī)范教育教學(xué)中的管理制度,完善教育教學(xué)體系。

獨(dú)立院校應(yīng)當(dāng)完善教育教學(xué)體系,并嚴(yán)格制定遵循規(guī)范化的教育教學(xué)中的管理規(guī)章制度,保障學(xué)生的教育教學(xué)中心地位,提高教學(xué)質(zhì)量的有效機(jī)制,將教育教學(xué)過程中的教學(xué)大綱的制定、教職人員的人事任用調(diào)動(dòng)、學(xué)生工作各項(xiàng)措施以及日常工作的監(jiān)督監(jiān)管工作作出明確的規(guī)章制度,使其行之有效的形成自身的運(yùn)作體系,久而久之形成針對(duì)獨(dú)立院校自身特色的理念與觀念,使教育教學(xué)管理規(guī)章化、制度化、有據(jù)可查,有章可循。

四、結(jié)語。

當(dāng)今中國(guó)的獨(dú)立院校的建設(shè)還處于初級(jí)階段,這就需要我們能夠不斷地進(jìn)行探索,并根據(jù)不同時(shí)代背景下的不同學(xué)生個(gè)性的需要進(jìn)行行之有效的調(diào)整,使中國(guó)的教育事業(yè)面向現(xiàn)代化,面向世界,面向未來。

線性代數(shù)教學(xué)總結(jié)篇二十一

在考研數(shù)學(xué)中,線性代數(shù)部分所占分值為22%,雖然所占比例不及高數(shù)分值高,但同樣重要。在線性代數(shù)的學(xué)習(xí)上,同學(xué)們經(jīng)常走兩個(gè)極端,有一部分同學(xué)感覺線性代數(shù)這部分是比較好掌握的,也有一部分同學(xué)感覺這部分難度比較大,這個(gè)跟線性代數(shù)本身的特點(diǎn)應(yīng)該說是緊密相連的。線性代數(shù)課程的特點(diǎn)是系統(tǒng),前后知識(shí)的聯(lián)系非常緊密,概念性很強(qiáng),對(duì)于抽象性與邏輯性有較高的要求,題型比較固定??佳休o導(dǎo)專家建議考生,在復(fù)習(xí)時(shí)一定要抓住線性代數(shù)前后聯(lián)系的這樣一些關(guān)鍵點(diǎn),把知識(shí)連貫起來,就會(huì)發(fā)現(xiàn)掌握起來是比較容易的。

考研輔導(dǎo)老師提醒考生,考研數(shù)學(xué)不同于大學(xué)數(shù)學(xué),大家在看書時(shí)如果遇到課程中超前的知識(shí)點(diǎn)可以暫時(shí)記住,查一下教材上相應(yīng)的知識(shí)點(diǎn),做個(gè)標(biāo)記,等在下面的章節(jié)中復(fù)習(xí)到或下次老師講到此類知識(shí)點(diǎn)的時(shí)候,再回過頭來看一看做標(biāo)記的題目,加以鞏固。

線性代數(shù)教學(xué)總結(jié)篇二十二

項(xiàng)目教學(xué)法具有科學(xué)合理性,是一種較為先進(jìn)的實(shí)踐性教學(xué)方式。在當(dāng)代建構(gòu)主義的引導(dǎo)下,主要注重項(xiàng)目開展的實(shí)踐性,首先教師對(duì)學(xué)習(xí)項(xiàng)目進(jìn)行合理分解,之后正確示范給學(xué)生。學(xué)生在老師的引導(dǎo)下,分小組根據(jù)問題的具體要求有針對(duì)性的收集數(shù)據(jù)資料,通過小組之間的探討和研究,共同協(xié)作完成學(xué)習(xí)并解決困難,從而鞏固學(xué)生對(duì)于知識(shí)的記憶。由此,學(xué)生在整個(gè)學(xué)習(xí)過程當(dāng)中掌握了學(xué)習(xí)技巧,教師也有效提升了課堂教學(xué)成效。項(xiàng)目教學(xué)法在具體應(yīng)用期間,學(xué)生要有獨(dú)立的學(xué)習(xí)時(shí)間、自主完成學(xué)習(xí)活動(dòng),對(duì)于項(xiàng)目開展期間遇到的各種困難,老師只起到簡(jiǎn)單的輔導(dǎo)和指引作用。項(xiàng)目教學(xué)法能充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極主動(dòng)性,提升學(xué)生求知欲,使其形成獨(dú)立思考的能力和團(tuán)結(jié)協(xié)作的意識(shí),全面發(fā)揮想象力和創(chuàng)造力,有效強(qiáng)化學(xué)生的社會(huì)實(shí)踐能力。

與傳統(tǒng)教學(xué)模式基本特征相比,項(xiàng)目教學(xué)法具有以下特點(diǎn):1.主要圍繞課本開展教學(xué)內(nèi)容和教學(xué)工作。學(xué)生在學(xué)習(xí)理論知識(shí)期間,不懂得保險(xiǎn)營(yíng)銷學(xué)這一專業(yè)具體是什么內(nèi)容和未來的就職方向,由此可見這種傳統(tǒng)教學(xué)方法直接阻礙到學(xué)生素質(zhì)的有效提高,雖然能熟背理論知識(shí)但卻不會(huì)具體使用。而在項(xiàng)目教學(xué)法當(dāng)中,老師將其與教學(xué)內(nèi)容有效結(jié)合,有針對(duì)性的整合教學(xué)內(nèi)容和教學(xué)方式,教學(xué)內(nèi)容主要是通過實(shí)際工作任務(wù)而產(chǎn)生。教學(xué)內(nèi)容的制定突破傳統(tǒng)專業(yè)學(xué)習(xí)的限制,教師以教學(xué)項(xiàng)目為教育核心,依據(jù)工作期間的思維邏輯展開具體教學(xué)。教學(xué)內(nèi)容的理論性,通過工作任務(wù)的制定與實(shí)踐內(nèi)容緊密結(jié)合。2.教學(xué)模式的核心是實(shí)操和理論相結(jié)合。傳統(tǒng)教學(xué)模式主要為硬塞式教學(xué)方法,以書本知識(shí)為主。而項(xiàng)目教學(xué)法的應(yīng)用可以改變這一局面,其主要以實(shí)踐操作與知識(shí)理論相結(jié)合為教學(xué)核心。以往的課堂教學(xué)期間老師注重課堂理論知識(shí)的學(xué)習(xí),但現(xiàn)在有所不同,課堂上主要進(jìn)行實(shí)踐項(xiàng)目的調(diào)查研究,將理論與實(shí)踐充分結(jié)合。由此一來既能將理論知識(shí)現(xiàn)學(xué)現(xiàn)用,又能深化理論知識(shí),為學(xué)生日后的實(shí)踐和工作打下堅(jiān)實(shí)基礎(chǔ)。3.學(xué)生的被動(dòng)學(xué)習(xí)地位轉(zhuǎn)為主動(dòng)學(xué)習(xí)地位。項(xiàng)目教學(xué)法的使用改變傳統(tǒng)教學(xué)期間學(xué)生被動(dòng)接受知識(shí)的學(xué)習(xí)模式。老師要考慮到每個(gè)學(xué)生的學(xué)習(xí)進(jìn)度,為其創(chuàng)造條件,讓學(xué)生能積極主動(dòng)的投入到學(xué)習(xí)當(dāng)中。開展項(xiàng)目教學(xué)法期間,學(xué)生能夠意識(shí)到自己是課堂的主導(dǎo),掌控從課題組建、課題選材到最終課題展示的整個(gè)教學(xué)環(huán)節(jié),而教師在其中只是起到輔助作用,從而使得學(xué)生能夠正確完成課程作業(yè),達(dá)成預(yù)期教學(xué)目的。教師通過使用項(xiàng)目教學(xué)法,引導(dǎo)學(xué)生形成正確解題思路,在學(xué)生開展項(xiàng)目的初始階段就給予指導(dǎo),使其順利完成實(shí)踐活動(dòng)。4.使得學(xué)生收獲實(shí)踐性理論知識(shí)。項(xiàng)目教學(xué)法為學(xué)生創(chuàng)設(shè)出輕松的學(xué)習(xí)環(huán)境,與此同時(shí)激發(fā)了學(xué)生的學(xué)習(xí)潛能,學(xué)習(xí)成果的收獲不是死板的背誦理論知識(shí),而是對(duì)學(xué)生的專業(yè)技能和實(shí)踐能力進(jìn)行強(qiáng)化,而且提升了學(xué)生的就業(yè)能力,即創(chuàng)新能力、解疑能力、社會(huì)適應(yīng)能力等,并使學(xué)生在心中明確自己將來所要從事的職業(yè)。這種教學(xué)效果不只是老師的指引與教導(dǎo),主要是在具體的實(shí)踐性教學(xué)當(dāng)中所形成。為進(jìn)一步增強(qiáng)實(shí)踐性,教師要帶領(lǐng)學(xué)生模擬職業(yè)情境,通過講解和示范實(shí)際工作任務(wù)給學(xué)生帶來更佳的實(shí)際體驗(yàn)感。

1.正確定位項(xiàng)目目標(biāo)項(xiàng)目教學(xué)法成功實(shí)施的關(guān)鍵在于是否能正確定位項(xiàng)目目標(biāo),其與大學(xué)生的學(xué)習(xí)興趣、自主學(xué)習(xí)能力、小組成員協(xié)作能力有直接關(guān)系。首先,項(xiàng)目?jī)?nèi)容的選取要有針對(duì)性,以教學(xué)目標(biāo)為考慮前提,與日常生活相結(jié)合制定具體內(nèi)容。在周圍企業(yè)當(dāng)中,明確具體工作事項(xiàng),將企業(yè)的實(shí)際營(yíng)銷內(nèi)容與傳統(tǒng)課堂教學(xué)相結(jié)合,通過對(duì)營(yíng)銷基礎(chǔ)工具的分析,實(shí)行“一個(gè)項(xiàng)目對(duì)一個(gè)課程知識(shí)點(diǎn)”的辦法展開教學(xué);其次,教師要注意項(xiàng)目教學(xué)的完整性,項(xiàng)目設(shè)計(jì)工作、項(xiàng)目實(shí)施、項(xiàng)目完成的整個(gè)流程一定要合情合理,一套程序下來使得學(xué)生能夠運(yùn)用所學(xué)知識(shí)解決實(shí)踐問題,即為最終的項(xiàng)目成果,學(xué)生會(huì)生出一種成就感;最后,教師要合理設(shè)計(jì)項(xiàng)目的難度,針對(duì)學(xué)生的個(gè)性和學(xué)習(xí)進(jìn)度適當(dāng)制定項(xiàng)目主題、內(nèi)容、任務(wù),并要按照實(shí)際情況完善自己的教學(xué)方案。通常情況下,教師要熟悉自己的項(xiàng)目?jī)?nèi)容,其也要有效激發(fā)學(xué)生的學(xué)習(xí)興趣。這就對(duì)教師提出要求,教師要善于將知識(shí)點(diǎn)進(jìn)行合理分解,為學(xué)生作出正確示范,在項(xiàng)目學(xué)習(xí)的整個(gè)過程當(dāng)中還要能提煉出與此相關(guān)的子項(xiàng)目,拓展書本知識(shí),從而激發(fā)學(xué)生的創(chuàng)新思維潛能。2.組織學(xué)生分組學(xué)習(xí)并探討項(xiàng)目開展形式老師給學(xué)生傳達(dá)項(xiàng)目任務(wù)后,學(xué)生要在組內(nèi)對(duì)項(xiàng)目進(jìn)行深入分析和探討,并在老師的引導(dǎo)下合理制定詳細(xì)的項(xiàng)目開展計(jì)劃。項(xiàng)目計(jì)劃主要分為三步:首先,將學(xué)生等分成學(xué)習(xí)小組,項(xiàng)目教學(xué)法當(dāng)中經(jīng)常用到分組教學(xué)方法,老師要按照班集體學(xué)生的學(xué)習(xí)進(jìn)度和個(gè)性特點(diǎn),讓學(xué)生進(jìn)行自由組合,之后教師可以做出相應(yīng)調(diào)整,針對(duì)學(xué)生的學(xué)習(xí)情況均勻分配,讓學(xué)生在組內(nèi)選出學(xué)習(xí)組長(zhǎng),通常一組5至7個(gè)人就可以,使得學(xué)生在組內(nèi)展開學(xué)習(xí)討論期間能夠強(qiáng)化團(tuán)隊(duì)合作精神;其次,學(xué)生要明確項(xiàng)目的思考方向和學(xué)習(xí)思路。小組集體明確項(xiàng)目的具體計(jì)劃步驟,分工完成計(jì)劃內(nèi)容,最后展示自己的學(xué)習(xí)成果,如果遇到任何疑難要及時(shí)請(qǐng)教老師;最后就是項(xiàng)目的完成要按照規(guī)范進(jìn)行操作,團(tuán)隊(duì)之間的工作要和諧融洽,小組成員要分工明確,注意自己的表述語言要流利,學(xué)習(xí)態(tài)度要認(rèn)真,動(dòng)作自然大方。組間收集的資料要全面并具有合理性,成員還要自如使用多種資料收集方式,使得組內(nèi)的項(xiàng)目?jī)?nèi)容更加豐富。3.項(xiàng)目要合理實(shí)施開展項(xiàng)目活動(dòng)的關(guān)鍵是項(xiàng)目的實(shí)施是否具有合理性。大學(xué)生是項(xiàng)目活動(dòng)的主導(dǎo)者,老師只是單純的引導(dǎo)者,是課堂教學(xué)期間學(xué)生群體的服務(wù)者。具體開展項(xiàng)目期間,學(xué)生主要進(jìn)行獨(dú)立學(xué)習(xí)或協(xié)作學(xué)習(xí),教師要培養(yǎng)學(xué)生的創(chuàng)新意識(shí),并敢于嘗試。與此同時(shí),學(xué)生要正視自己在課堂之上的角色,在課堂主導(dǎo)地位的角度對(duì)項(xiàng)目活動(dòng)的開展進(jìn)行思考,拓展學(xué)習(xí)思維,體會(huì)工作艱苦,從而激發(fā)求知欲、提升創(chuàng)新能力。在學(xué)生展開討論期間,教師要及時(shí)對(duì)學(xué)生的學(xué)習(xí)思路進(jìn)行正確引導(dǎo),分層次對(duì)學(xué)生展開輔導(dǎo)工作,對(duì)于多數(shù)學(xué)生都不理解的問題可以集中進(jìn)行講授。將理論內(nèi)容與實(shí)踐充分結(jié)合,從而拓展學(xué)生的理論知識(shí)面,幫助學(xué)生答疑解惑,提升教學(xué)效率。4.合理點(diǎn)評(píng)項(xiàng)目最終結(jié)果對(duì)于最終項(xiàng)目結(jié)果的點(diǎn)評(píng)是項(xiàng)目教學(xué)法的一種深化。項(xiàng)目教學(xué)法的使用就要求教師要維持學(xué)習(xí)的正確有效性,對(duì)于項(xiàng)目問題的評(píng)價(jià)并不只有對(duì)錯(cuò)或好壞。合理的點(diǎn)評(píng)對(duì)學(xué)生的學(xué)習(xí)具有導(dǎo)向作用,主要針對(duì)學(xué)習(xí)過程進(jìn)行點(diǎn)評(píng),包括對(duì)學(xué)生的參與積極性、協(xié)作精神、合作能力、應(yīng)用創(chuàng)新能力等進(jìn)行,其次再對(duì)項(xiàng)目的最終結(jié)果進(jìn)行點(diǎn)評(píng)。點(diǎn)評(píng)的方式有很多,可以是老師點(diǎn)評(píng),也可以是學(xué)生在組內(nèi)互相評(píng)價(jià)。與此同時(shí),教師還要抓住學(xué)生之間的共性問題展開詳細(xì)講解,制定行之有效的教學(xué)方案,從而使得學(xué)生不斷強(qiáng)化自己的學(xué)習(xí)能力,并能積極主動(dòng)解決問題。

四、結(jié)束語。

本篇文章中,首先闡述項(xiàng)目教學(xué)法的基本應(yīng)用原理,之后探討其實(shí)用特點(diǎn),并據(jù)此深入分析開展對(duì)策,旨在為我國(guó)高等院校的教育工作者提供教學(xué)指導(dǎo),幫助其為社會(huì)更好更快培養(yǎng)出高素養(yǎng)人才。

【參考文獻(xiàn)】。

[2]趙鋒.基于創(chuàng)業(yè)導(dǎo)向的《市場(chǎng)營(yíng)銷學(xué)》項(xiàng)目化教學(xué)改革與實(shí)踐[j].吉林廣播電視大學(xué)學(xué)報(bào),20xx.

[4]楊永超.市場(chǎng)營(yíng)銷課程的項(xiàng)目教學(xué)探究[j].市場(chǎng)論壇,20xx.

線性代數(shù)教學(xué)總結(jié)篇二十三

線性代數(shù)在考研數(shù)學(xué)中占有重要地位,必須予以高度重視.線性代數(shù)試題的特點(diǎn)比較突出,以計(jì)算題為主,證明題為輔,因此,專家們提醒廣大的的考生們必須注重計(jì)算能力.線性代數(shù)在數(shù)學(xué)一、二、三中均占22%,所以考生要想取得高分,學(xué)好線代也是必要的。下面,就將線代中重點(diǎn)內(nèi)容和典型題型做了總結(jié),希望對(duì)20考研的同學(xué)們學(xué)習(xí)有幫助。

行列式在整張?jiān)嚲碇兴急壤皇呛艽?,一般以填空題、選擇題為主,它是必考內(nèi)容,不只是考察行列式的概念、性質(zhì)、運(yùn)算,與行列式有關(guān)的考題也不少,例如方陣的行列式、逆矩陣、向量組的線性相關(guān)性、矩陣的秩、線性方程組、特征值、正定二次型與正定矩陣等問題中都會(huì)涉及到行列式.如果試卷中沒有獨(dú)立的行列式的試題,必然會(huì)在其他章、節(jié)的試題中得以體現(xiàn).行列式的重點(diǎn)內(nèi)容是掌握計(jì)算行列式的方法,計(jì)算行列式的主要方法是降階法,用按行、按列展開公式將行列式降階.但在展開之前往往先用行列式的性質(zhì)對(duì)行列式進(jìn)行恒等變形,化簡(jiǎn)之后再展開.另外,一些特殊的行列式(行和或列和相等的行列式、三對(duì)角行列式、爪型行列式等等)的計(jì)算方法也應(yīng)掌握.常見題型有:數(shù)字型行列式的計(jì)算、抽象行列式的計(jì)算、含參數(shù)的行列式的計(jì)算.關(guān)于每個(gè)重要題型的.具體方法以及例題見《年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)120種??碱}型精解》。

矩陣是線性代數(shù)的核心,是后續(xù)各章的基礎(chǔ).矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的始終.這部分考點(diǎn)較多,重點(diǎn)考點(diǎn)有逆矩陣、伴隨矩陣及矩陣方程.涉及伴隨矩陣的定義、性質(zhì)、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題.這幾年還經(jīng)常出現(xiàn)有關(guān)初等變換與初等矩陣的命題.常見題型有以下幾種:計(jì)算方陣的冪、與伴隨矩陣相關(guān)聯(lián)的命題、有關(guān)初等變換的命題、有關(guān)逆矩陣的計(jì)算與證明、解矩陣方程。

向量組的線性相關(guān)性是線性代數(shù)的重點(diǎn),也是考研的重點(diǎn)。2012年的考生一定要吃透向量組線性相關(guān)性的概念,熟練掌握有關(guān)性質(zhì)及判定法并能靈活應(yīng)用,還應(yīng)與線性表出、向量組的秩及線性方程組等相聯(lián)系,從各個(gè)側(cè)面加強(qiáng)對(duì)線性相關(guān)性的理解.常見題型有:判定向量組的線性相關(guān)性、向量組線性相關(guān)性的證明、判定一個(gè)向量能否由一向量組線性表出、向量組的秩和極大無關(guān)組的求法、有關(guān)秩的證明、有關(guān)矩陣與向量組等價(jià)的命題、與向量空間有關(guān)的命題。

往年考題中,方程組出現(xiàn)的頻率較高,幾乎每年都有考題,也是線性代數(shù)部分考查的重點(diǎn)內(nèi)容.本章的重點(diǎn)內(nèi)容有:齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結(jié)構(gòu)、齊次線性方程組基礎(chǔ)解系的求解與證明、齊次(非齊次)線性方程組的求解(含對(duì)參數(shù)取值的討論).主要題型有:線性方程組的求解、方程組解向量的判別及解的性質(zhì)、齊次線性方程組的基礎(chǔ)解系、非齊次線性方程組的通解結(jié)構(gòu)、兩個(gè)方程組的公共解、同解問題。

特征值、特征向量是線性代數(shù)的重點(diǎn)內(nèi)容,是考研的重點(diǎn)之一,題多分值大,共有三部分重點(diǎn)內(nèi)容:特征值和特征向量的概念及計(jì)算、方陣的相似對(duì)角化、實(shí)對(duì)稱矩陣的正交相似對(duì)角化.重點(diǎn)題型有:數(shù)值矩陣的特征值和特征向量的求法、抽象矩陣特征值和特征向量的求法、判定矩陣的相似對(duì)角化、由特征值或特征向量反求a、有關(guān)實(shí)對(duì)稱矩陣的問題。

由于二次型與它的實(shí)對(duì)稱矩陣式一一對(duì)應(yīng)的,所以二次型的很多問題都可以轉(zhuǎn)化為它的實(shí)對(duì)稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個(gè)基礎(chǔ).重點(diǎn)內(nèi)容包括:掌握二次型及其矩陣表示,了解二次型的秩和標(biāo)準(zhǔn)形等概念;了解二次型的規(guī)范形和慣性定理;掌握用正交變換并會(huì)用配方法化二次型為標(biāo)準(zhǔn)形;理解正定二次型和正定矩陣的概念及其判別方法.重點(diǎn)題型有:二次型表成矩陣形式、化二次型為標(biāo)準(zhǔn)形、二次型正定性的判別。

線性代數(shù)教學(xué)總結(jié)篇二十四

摘要:隨著我國(guó)經(jīng)濟(jì)水平的快速發(fā)展,越來越多的外國(guó)友人來到中國(guó),同時(shí),中國(guó)的學(xué)生到國(guó)外留學(xué)也成為大勢(shì)所趨。重視對(duì)初中生英語的學(xué)習(xí)與培養(yǎng)是促進(jìn)其全面發(fā)展的基礎(chǔ)。然而,無論是國(guó)內(nèi)交流還是出國(guó)學(xué)習(xí),都少不了與人的面對(duì)面交流,這就凸顯出了初中英語學(xué)習(xí)中情景對(duì)話的作用。

關(guān)鍵詞:初中英語;情景對(duì)話;作用。

隨著新課改的逐步實(shí)施,對(duì)初中英語的教學(xué)方法也提出了新的要求。情景教學(xué)是初中英語教學(xué)中新研究的教學(xué)方法,在提高初中生的學(xué)習(xí)興趣,在加強(qiáng)師生互動(dòng)性,提高學(xué)生的靈活性等方面具有重要的意義。

1、對(duì)情景教學(xué)的認(rèn)識(shí)與理解。

情景教學(xué)是一種借助課堂這個(gè)平臺(tái),由教師和學(xué)生親身還原現(xiàn)實(shí)生活中的交流場(chǎng)景,融入真實(shí)的對(duì)話過程的一種對(duì)課標(biāo)要求所掌握知識(shí)的靈活運(yùn)用的講課方式。在情景教學(xué)中情景對(duì)話是其主要的活動(dòng)形式。對(duì)情景教學(xué)的作用研究即是對(duì)情景對(duì)話過程的作用研究。學(xué)習(xí)知識(shí)的目的在于能夠應(yīng)用到具體的生活中去,對(duì)初中英語的學(xué)習(xí)也是如此,運(yùn)用情景教學(xué)的教學(xué)模式只不過是提前使學(xué)生投入到現(xiàn)實(shí)生活中來,這樣不僅有利于加深學(xué)生對(duì)所學(xué)知識(shí)的理解與運(yùn)用,更提高學(xué)生的自主學(xué)習(xí)能力,更快的適應(yīng)社會(huì)。

2、情景教學(xué)實(shí)施的現(xiàn)狀分析。

2.1情景教學(xué)與課程要求脫軌:在課堂上開展情景教學(xué)無疑肯定會(huì)耗時(shí)耗力,活動(dòng)的組織與安排都牽扯到時(shí)間的問題。這樣就不利于課標(biāo)所要求教學(xué)目標(biāo)的完成。如果想實(shí)施的效果更好難免有相關(guān)硬件的要求,這肯定會(huì)涉及金錢問題。也容易引起其他相關(guān)問題。

2.2情景對(duì)話流于形式:理想的情景對(duì)話模式是能夠?qū)崿F(xiàn)每位學(xué)生的積極參與對(duì)知識(shí)的運(yùn)用。然而在現(xiàn)實(shí)課堂中情景對(duì)話模式的作用沒能發(fā)揮出來。學(xué)生在交流的過程中只是按照已有的對(duì)話模式照讀或是背誦下來進(jìn)行僵硬的對(duì)話,沒有理解英語對(duì)話的真諦,做不到將英語的課本知識(shí)活化到對(duì)話中去。

3、情景教學(xué)問題的解決策略。

3.1針對(duì)第一個(gè)存在的問題,教育領(lǐng)導(dǎo)者可以選出在英語教學(xué)中經(jīng)驗(yàn)豐富,口語好的教師組成情景教學(xué)模擬小組,根據(jù)初中英語課堂安排,規(guī)定在一周的某個(gè)時(shí)間段內(nèi)開展情景對(duì)話課堂。此外,學(xué)校要加大投入力度,完善相關(guān)硬件設(shè)施,小組內(nèi)安排專門的物品采購(gòu)人員,做好財(cái)政預(yù)算等。這樣即有利于情景教學(xué)規(guī)范化、系統(tǒng)化、合理化,又有利于避免長(zhǎng)期實(shí)行造成學(xué)生的厭倦。

3.2情景對(duì)話要做到真實(shí)有效必須以掌握知識(shí)為前提。在開展情景對(duì)話課堂時(shí),要提前安排學(xué)生掌握對(duì)話內(nèi)容,在背誦記住的前提下融入自己的想法,鼓勵(lì)學(xué)生大膽地張開口去交流。在這個(gè)過程中教師要扮演好引導(dǎo)人的角色,防止出現(xiàn)兩極分化。要爭(zhēng)取做到每個(gè)學(xué)生平等的參與到學(xué)習(xí)中來。

4、開展情景教學(xué)的積極影響。

4.1鍛煉學(xué)生的口語交際能力:開展情景教學(xué)的目的在于鍛煉學(xué)生的口語能力,英語作為一門實(shí)用性語言,必須做到聽、說、讀、寫并重。在開展情景教學(xué)的過程中,學(xué)生能夠把自己背誦的單詞、短語組合成句子、短文然后再自己說出來。情景教學(xué)為學(xué)生創(chuàng)造了真實(shí)的交流環(huán)境,使學(xué)生全身心的投入到與人交流的情景當(dāng)中去,在邊聽邊說的對(duì)話過程中,提高了自己的口語表達(dá)能力。

4.2縮短師生間的距離,增進(jìn)了師生情誼:處理好學(xué)生與教師之間的關(guān)系也是提高學(xué)習(xí)效率的重要保證。學(xué)生對(duì)老師總有一種敬畏心理,使老師與學(xué)生之間有距離感,這就不利于彼此之間想法的溝通與交流。情景教學(xué)模式使教師與學(xué)生零距離接觸,在對(duì)話的過程中彼此溝通。教師能夠傾聽學(xué)生的意見,學(xué)生也敢于表達(dá)學(xué)習(xí)中遇到的問題。這樣就有利于增進(jìn)師生情誼,更高更快的實(shí)現(xiàn)學(xué)習(xí)目標(biāo),共同進(jìn)步。

4.3帶動(dòng)課堂氣氛,提高學(xué)習(xí)效率:情景教學(xué)模式是一種互動(dòng)的,全員參與的學(xué)習(xí)方式。在課堂上,教師可以根據(jù)每個(gè)學(xué)生的學(xué)習(xí)情況,分配搭檔小組,使每個(gè)人都參與到這個(gè)過程中來,讓課堂動(dòng)起來。打破了以往老師侃侃而談,學(xué)生昏昏沉沉的局面。這樣就有利于提高每個(gè)學(xué)生的學(xué)習(xí)興趣,自覺主動(dòng)的學(xué)習(xí)英語。從而有利于提高每堂課的學(xué)習(xí)效率,能夠更輕松的實(shí)現(xiàn)教學(xué)目標(biāo),讓學(xué)生在一種舒適,無壓的環(huán)境中學(xué)習(xí)與成長(zhǎng)。情景教學(xué)實(shí)現(xiàn)了理論與實(shí)踐的統(tǒng)一,讓初中英語的學(xué)習(xí)來源于生活,最終又反饋給生活。對(duì)任何一門學(xué)科學(xué)習(xí)都是為了讓學(xué)生掌握一種基本的技巧與能力,是學(xué)生真正踏入社會(huì)后可以獨(dú)當(dāng)一面。情景教學(xué)將這一時(shí)間縮短化,具體化。讓學(xué)生更早的接觸社會(huì),了解社會(huì)。因此,對(duì)情景教學(xué)進(jìn)行分析是為了將其推廣,使其有更加寬廣的發(fā)展空間。

參考文獻(xiàn):。

[2]李小琴.淺議情景課堂下的初中英語教與學(xué)[j].考試周刊.2015(95)。

[3]王化國(guó).情景教學(xué)在初中英語課堂的應(yīng)用探微[j].校園英語.2015(09)。

將本文的word文檔下載到電腦,方便收藏和打印。

【本文地址:http://www.aiweibaby.com/zuowen/15168306.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔