三角形內(nèi)角和數(shù)學(xué)教案(優(yōu)秀21篇)

格式:DOC 上傳日期:2023-11-26 21:15:04
三角形內(nèi)角和數(shù)學(xué)教案(優(yōu)秀21篇)
時間:2023-11-26 21:15:04     小編:薇兒

教案應(yīng)該符合學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)特點,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣和提高學(xué)習(xí)效果。教師在編寫教案時,應(yīng)當(dāng)充分參考和利用各類教學(xué)資源,提高教學(xué)質(zhì)量。這些教案范文能夠幫助我們更好地掌握教學(xué)內(nèi)容和深入理解教學(xué)目標(biāo)。

三角形內(nèi)角和數(shù)學(xué)教案篇一

“三角形內(nèi)角和”是人教版數(shù)學(xué)四年級下冊的一節(jié)探索與發(fā)現(xiàn)課,讓學(xué)生在學(xué)習(xí)了三角形的特征、高以及三角形分類的基礎(chǔ)上,進(jìn)一步研究三角形三個角的關(guān)系。本節(jié)課學(xué)生對知識點的掌握還不錯,但是,這一節(jié)課還有很多不足之處,需要加以改進(jìn):

1、教學(xué)設(shè)計不錯,環(huán)節(jié)緊湊,思路清晰。

2、重視操作過程,時間把握得好。本節(jié)課用了大量的時間來讓學(xué)生做小組實驗,從而讓他們自己感知三角形內(nèi)角和是180°,印象深刻。

3、能注意前后照應(yīng),解決了前面的疑問。在講授新課前,設(shè)置一個疑問“為什么同一個三角形不能有兩個直角?”以此來吸引學(xué)生,找出三角形內(nèi)角和的特性。在掌握了三角形內(nèi)角和是180°后,再次把問題提出來,讓學(xué)生解決。

4、板書巧妙,一步步引入課題。先是讓學(xué)生復(fù)習(xí)“三角形”的定義,接著簡單說明什么是“三角形內(nèi)角”,最后再講授三角形三個內(nèi)角度數(shù)的和叫做“三角形內(nèi)角和”。

5、課堂紀(jì)律好,氣氛活躍,學(xué)生踴躍積極。學(xué)生在小組活動時,活躍而有序,上課時能認(rèn)真聽講,積極舉手。同時,實行小組評價更是發(fā)揮了學(xué)生的主動性。

6、求三角形內(nèi)角和的方法,一個比一個直觀、生動。從量一量、算一算,到剪一剪、折一折,讓學(xué)生更容易感受到三角形內(nèi)角和是180°。

7、練習(xí)題設(shè)計得比較好,特別是判斷題,都是學(xué)生平時容易出錯的題目,在課堂上用比較直觀的課件顯示出來,讓學(xué)生的印象深刻。組合題也很有靈活性,先是找出能組成三角形的度數(shù),然后根據(jù)度數(shù)判斷出是什么三角形。

8、能尊重學(xué)生的意見,有的小組沒有在算一算的時候,沒有得出180°的結(jié)果,老師能夠分析其中的原因。

1、在老師給出“畫有2個內(nèi)角是直角的三角形”的任務(wù)時,學(xué)生明顯是畫不出來。但是教師也可以把學(xué)生失敗的作品展示出來,照應(yīng)之后的講解。而不能一帶而過。

2、如果量一量的方法,不能讓人信服,要在后面打個“?”,等到解決疑問后,再去掉。

3、在進(jìn)行剪一剪、折一折的活動時,老師應(yīng)該先用板書上的三角形來示范一次,告訴學(xué)生應(yīng)該怎么做。因為有些學(xué)生折不出來。拼的時候,也有出錯。

4、把三角形拼成平角后,要用直尺或者是量角器測量一下,看看得出的圖形是不是平角,要用嚴(yán)謹(jǐn)?shù)膽B(tài)度對待,不能光用眼睛來判斷。

5、老師注意提醒學(xué)生讀題的時候要規(guī)范,要讀出度數(shù)單位,這很好。但是,在做題練習(xí)時,應(yīng)該請一兩個學(xué)生在黑板上做,這樣也便于教師提醒學(xué)生,在書寫時,也要注意寫上度數(shù)單位,強調(diào)格式。

三角形內(nèi)角和數(shù)學(xué)教案篇二

通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。

三角形的內(nèi)角和

課前準(zhǔn)備

電腦課件、學(xué)具卡片

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導(dǎo)學(xué)生說出90度、60度、30度。

出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。

提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻€角一共多少度?

學(xué)生計算后指名回答。

師:三角尺三個角的和是180度。

提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上

任畫一個三角形,量出它們?nèi)齻€角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。

全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。

提問:你發(fā)現(xiàn)了什么?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

要求學(xué)生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計算的方法。

教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以

計算的結(jié)果為準(zhǔn)。

完成想想做做的題目。

學(xué)生獨立計算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計算的結(jié)果想比較。

指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。計算三角形三個角的內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個內(nèi)角的和是180度。

通過操作、計算,使學(xué)生認(rèn)識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。

引導(dǎo)學(xué)生運用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點培養(yǎng)學(xué)生靈活運用知識解決問題的能力。

三角形內(nèi)角和數(shù)學(xué)教案篇三

通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。

教學(xué)重難點。

三角形的內(nèi)角和課前準(zhǔn)備電腦課件、學(xué)具卡片。

教學(xué)活動。

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導(dǎo)學(xué)生說出90度、60度、30度。

出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。

提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻€角一共多少度?

學(xué)生計算后指名回答。

二、自主探索,解決問題。

提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上任畫一個三角形,量出它們?nèi)齻€角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。

全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。

提問:你發(fā)現(xiàn)了什么?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

三、試一試。

要求學(xué)生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計算的方法。

教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以。

計算的結(jié)果為準(zhǔn)。

四、鞏固提高。

完成想想做做的題目。

三角形內(nèi)角和數(shù)學(xué)教案篇四

通過猜想、驗證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的.過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導(dǎo)學(xué)生說出90度、60度、30度。

出示另一個三角尺,引導(dǎo)學(xué)生分別說出三個角的度數(shù):90度、45度、45度。

提問:請同學(xué)們?nèi)芜x一個三角尺,算出他們?nèi)齻€角一共多少度?

學(xué)生計算后指名回答。

師:三角尺三個角的和是180度。

提問:是不是任一個三角形三個角的和都是180度呢?請同學(xué)們在自備本上任畫一個三角形,量出它們?nèi)齻€角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

學(xué)生小組活動,教師了解學(xué)生情況,個別同學(xué)加以輔導(dǎo)。

全班交流:讓學(xué)生分別說出三個角的度數(shù)以及它們的和。

提問:你發(fā)現(xiàn)了什么?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

要求學(xué)生先計算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計算的方法。

教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以。

計算的結(jié)果為準(zhǔn)。

完成想想做做的題目。

三角形內(nèi)角和數(shù)學(xué)教案篇五

1、知識與技能:

(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

2、過程與方法:

(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

(3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。

3、情感態(tài)度與價值觀:

讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。

教學(xué)課件、各種三角形。

1、猜謎語:。

形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。

(打一圖形名稱)。

2、猜三角形。

3、引出課題。

師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進(jìn)數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)。

2、猜一猜。

3、驗證。

4、學(xué)生匯報。

(1)測量。

(2)剪拼。

a、學(xué)生上臺演示。

b、請大家三人小組合作,用剪拼的方法驗證其它三角形。

c、師演示。

(3)折拼。

師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。

(5)數(shù)學(xué)小知識。

5、鞏固知識。

教師:為什么不是360°?

師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

1、看圖,求未知角的度數(shù)。

2、判斷。

3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

(1)我三邊相等。

(2)我是等腰三角形,我的頂角是96°。

(3)我有一個銳角是40°。

4、求四邊形、五邊形內(nèi)角和。

師:這節(jié)課你有什么收獲?

三角形內(nèi)角和數(shù)學(xué)教案篇六

根據(jù)上面三組實驗分別證明了銳角三角形、直角三角形、鈍角三角形的內(nèi)角和都等于180度。

四、練一練。

請學(xué)生自己畫任意的`三角形,并用剛才老師所講的方法自己來判斷一下三角形的內(nèi)角和。

五、實踐活動:

第1題:用紙剪出一個等邊三角形。

第2題:將等邊三角形兩邊取中點,并向底作垂線,

第3題:把紙沿著虛線對折。

第4題:觀察三個角的內(nèi)角加起來為多少?

三角形內(nèi)角和數(shù)學(xué)教案篇七

人教版義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書數(shù)學(xué)四年級下冊第67頁。

遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點之一?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》指出,讓學(xué)生學(xué)習(xí)有價值的數(shù)學(xué),讓學(xué)生帶著問題、帶著自己的思想、自己的思維進(jìn)入數(shù)學(xué)課堂,對于學(xué)生的數(shù)學(xué)學(xué)習(xí)有著重要作用。因此,我嘗試著將數(shù)學(xué)文本、課外預(yù)習(xí)、課堂教學(xué)三方有機(jī)整合,在質(zhì)疑、解疑、釋疑中展開教學(xué),培養(yǎng)學(xué)生提出問題、分析問題和解決問題的探究能力。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。

學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

1、使學(xué)生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運用這一規(guī)律解決一些簡單的問題。

2、使學(xué)生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學(xué)思考能力。

三角形內(nèi)角和數(shù)學(xué)教案篇八

1、知識與技能:

(2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

2、過程與方法:

(1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

(2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

(3)發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。

3、情感態(tài)度與價值觀:

讓學(xué)生體驗數(shù)學(xué)活動的探索樂趣,通過教學(xué)中的活動體會數(shù)學(xué)的轉(zhuǎn)化思想。

【教學(xué)重、難點】。

【教具準(zhǔn)備】。

教學(xué)課件、各種三角形。

【教學(xué)過程】。

一、創(chuàng)設(shè)情景,引出問題。

1、猜謎語:

形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。

(打一圖形名稱)。

2、猜三角形。

3、引出課題。

師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進(jìn)數(shù)學(xué)王國,探討三角形的內(nèi)角和的奧秘。(板書課題)。

二、探究新知。

2、猜一猜。

3、驗證。

讓學(xué)生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。

4、學(xué)生匯報。

(1)測量。

(2)剪拼。

a、學(xué)生上臺演示。

b、請大家三人小組合作,用剪拼的方法驗證其它三角形。

c、師演示。

(3)折拼。

師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學(xué)們看一看他是怎么折的(課件演示)。

(5)數(shù)學(xué)小知識。

5、鞏固知識。

(2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。

教師:為什么不是360°?

三、解決相關(guān)問題。

師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

1、看圖,求未知角的度數(shù)。

2、判斷。

3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

求出下面三角形各角的度數(shù)。

(1)我三邊相等。

(2)我是等腰三角形,我的頂角是96°。

(3)我有一個銳角是40°。

4、求四邊形、五邊形內(nèi)角和。

四、總結(jié)。

師:這節(jié)課你有什么收獲?

五、板書設(shè)計:(略)。

三角形內(nèi)角和數(shù)學(xué)教案篇九

《三角形的內(nèi)角和》教材是先讓學(xué)生通過計算三角尺得個內(nèi)角的度數(shù)和,激發(fā)學(xué)生好奇心,進(jìn)而引發(fā)學(xué)生猜想:其他三角形的內(nèi)角和也是180度嗎?再通過組織操作活動驗證猜想,得出結(jié)論。根據(jù)這樣的教材安排,本課的重點也就應(yīng)放在“三角形內(nèi)角和是180度”的探索上,讓學(xué)生在探索中深入理解得出過程。針對教材的如此安排,我也設(shè)計了如下的開放的課堂預(yù)設(shè):

1、要知道我們猜測的是否正確,你有什么辦法驗證呢?

先獨立思考,有想法了在小組里交流。

生一:我們組根據(jù)剛才三角板的內(nèi)角和是三個角的度數(shù)加起來得出的,所以,我們就用量角器量出了三個角的度數(shù),再加起來。

學(xué)生說出了測量的度數(shù)相加,雖然不是很精確180度,量的過程中有點誤差,得到了在180度左右。

生二:我們組是把銳角三角形的三個角跟書上一樣去折,折在一起發(fā)現(xiàn)正好是個平角,所以我們發(fā)現(xiàn)銳角三角形內(nèi)角和也是180度。(及時表揚了能主動預(yù)習(xí)的好習(xí)慣。)。

生三:我們組把鈍角三角形跟剛才一組一樣,折在一起,發(fā)現(xiàn)也能拼成一個平角,所以鈍角三角形的內(nèi)角和也是180度。

生四:我們組研究的是直角三角形,跟上面兩組的同學(xué)一樣折在一起,三個角拼起來也是一個平角,所以直角三角形的內(nèi)角和也是180度。

生五:我們也是折的,但我們沒有把三個角折在一起,而是把兩個小的角折到直角那里發(fā)現(xiàn)兩個銳角合起來正好與直角三角形的直角重合,圖形也就成了一個長方形,兩個銳角的和是90度再加個直角也就是180度。

也有同學(xué)提出了采用了減下角再拼的方法。

以上這個小片段,雖然在孩子們表述中沒這么流利,完整,但卻是他們最真實的發(fā)現(xiàn),這堂課上下來,感覺收獲很大。

自己感覺這節(jié)課的設(shè)計上把握了學(xué)生學(xué)習(xí)起點與心理,遵循了教材讓學(xué)生先猜想再驗證的思路,從學(xué)生已有的知識背景出發(fā),為他們提供了重復(fù)粉從事數(shù)學(xué)活動的時間和交流機(jī)會。學(xué)生思考著,討論著,交流著,感悟著,在這一過程中,學(xué)生不僅掌握了知識,尋求到了解決問題的方法,更重要的是在交流中,學(xué)生的語言表達(dá)能力也得到了很大的增強。

三角形內(nèi)角和數(shù)學(xué)教案篇十

l教學(xué)目標(biāo):

知識與技能目標(biāo):

1.會用平行線的性質(zhì)與平角的定義證明三角形內(nèi)角和等于180o;。

2.能用三角形內(nèi)角和等于180o進(jìn)行角度計算和簡單推理,并初步學(xué)會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應(yīng)用.

過程與方法目標(biāo):

2.掌握三角形內(nèi)角和定理,并初步學(xué)會利用輔助線證題,同時培養(yǎng)學(xué)生觀察、猜想和論證能力..

情感態(tài)度與價值觀目標(biāo):

1.通過操作、交流、探究、表述、推理等活動,培養(yǎng)學(xué)生的合作精神,體會數(shù)學(xué)知識內(nèi)在的聯(lián)系與嚴(yán)謹(jǐn)性,鼓勵學(xué)生大膽提出疑問,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.

l重點:

難點:

l教學(xué)流程:

一、情境引入。

內(nèi)角三兄弟之爭。

在一個直角三角形里住著三個內(nèi)角,平時,它們?nèi)值芊浅F(tuán)結(jié)可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起了……”“為什么?”老二很納悶.

同學(xué)們,你們知道其中的道理嗎?

目的:通過對話激發(fā)學(xué)生的求知欲;讓學(xué)生通過小組討論:其中的道理.

三角形內(nèi)角和數(shù)學(xué)教案篇十一

1.讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

2.讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

多媒體課件、學(xué)具。

一、激趣引入。

師:我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

生2:三角形有三個角……。

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)。

(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理。

師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)。

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)。

二、動手操作,探究新知。

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

1.猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……。

(1)小組合作、進(jìn)行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)。

(2)小組匯報結(jié)果。

師:請各小組匯報探究結(jié)果。

生1:180°。

生2:175°。

生3:182°。

……。

(三)繼續(xù)探究。

師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

三角形內(nèi)角和數(shù)學(xué)教案篇十二

義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書《數(shù)學(xué)》(人教版)四年級下冊第85頁。

設(shè)計思路。

遵循由特殊到一般的規(guī)律進(jìn)行探究活動是這節(jié)課設(shè)計的主要特點之一。學(xué)生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動解題的積極性。第一個練習(xí)從知識的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應(yīng)該達(dá)到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個練習(xí)設(shè)計了開放性的練習(xí),在小組內(nèi)完成。由一個同學(xué)出題,其它三個同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

教學(xué)目標(biāo)。

1.讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。

2.讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

教材分析。

三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進(jìn)行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。

教學(xué)重點。

讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。

教學(xué)準(zhǔn)備。

多媒體課件、學(xué)具。

教學(xué)過程。

一、激趣引入。

師:我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點?

生1:三角形是由三條線段圍成的圖形。

師:請看屏幕(課件演示三條線段圍成三角形的過程)。

師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)。

(二)設(shè)疑,激發(fā)學(xué)生探究新知的心理。

師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)。

生:能。

師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。

師:有誰畫出來啦?

生1:不能畫。

生2:只能畫兩個直角。

生3:只能畫長方形。

師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。

師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?

生:想。

師:那就讓我們一起來研究吧!

(揭示矛盾,巧妙引入新知的探究)。

二、動手操作,探究新知。

師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。

生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。

師:也就是這個三角形各角的度數(shù)。它們的和怎樣?

生:是180°。

師:你是怎樣知道的?

生:90°+60°+30°=180°。

師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。

師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?

生:90°+45°+45°=180°。

生2:這兩個三角形都是直角三角形,并且是特殊的三角形。

1.猜一猜。

師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

生1:180°。

生2:不一定。

……。

(1)小組合作、進(jìn)行探究。

師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

生:可以先量出每個內(nèi)角的度數(shù),再加起來。

師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!

師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進(jìn)行合理分工,提高效率。)。

(2)小組匯報結(jié)果。

師:請各小組匯報探究結(jié)果。

生1:180°。

生2:175°。

生3:182°。

……。

(三)繼續(xù)探究。

師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

生1:有。

生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。

三角形內(nèi)角和數(shù)學(xué)教案篇十三

教學(xué)內(nèi)容:

義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書__版小學(xué)數(shù)學(xué)四年級下冊第42~46頁。

教學(xué)目標(biāo):

1、通過量、剪、拼、折等數(shù)學(xué)活動,讓學(xué)生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導(dǎo)并得出“三角形內(nèi)角和是180°”的結(jié)論,會應(yīng)用這一規(guī)律進(jìn)行計算。

2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

教學(xué)過程:

一、創(chuàng)設(shè)情境,導(dǎo)入新課。

1、談話:我們已經(jīng)認(rèn)識了三角形,你知道哪些關(guān)于三角形的知識?

2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

播放課件。

詳細(xì)內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的。”一個小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)。

通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

3、故事中到底誰說得對呢?今天我們就來研究三角形的內(nèi)角和。

【設(shè)計意圖】從學(xué)生的心理、興趣和意愿為出發(fā)點,利用故事的形式提出疑問,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生探索的積極性。

二、自主探究、發(fā)現(xiàn)規(guī)律。

(1)量一量。

生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

學(xué)生活動(小組合作---每組準(zhǔn)備三種不同的三角形)量角,求和,完成第43頁的表格。

學(xué)生交流匯報測量結(jié)果。

師:從剛才的交流中,你發(fā)現(xiàn)了什么?

生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

(在量的過程中,由于誤差,有的學(xué)生可能算出內(nèi)角和在180°左右,這時教師要相機(jī)誘導(dǎo):在測量的過程中出現(xiàn)一些誤差是正常的,因為同學(xué)們畫的角不夠標(biāo)準(zhǔn),量角器的不同,還有本身測量的原因都可能導(dǎo)致誤差。)。

師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學(xué)的辦法進(jìn)行驗證嗎?

(2)拼一拼。

學(xué)生分小組活動,教師參與學(xué)生的活動,并給予必要的指導(dǎo)。

學(xué)生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個平角,證明“三角形內(nèi)角和是180°”。

(3)折一折。

小組活動,學(xué)生交流。

生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

2、歸納。

師:通過剛才的活動,我們得出了什么結(jié)論?

3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么?

學(xué)生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

【設(shè)計意圖】動手實踐,自主探索,親身體驗,是學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結(jié)論,得到的不僅是三角形內(nèi)角和的知識,也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

三、靈活運用,鞏固練習(xí)。

1、判斷。

一個三角形最少有兩個銳角。()。

一個鈍角三角形最少有一個鈍角。()。

學(xué)生判斷并說出理由。

2、自主練習(xí)第6題。

練習(xí)時,先讓學(xué)生獨立填空,再說說自己是怎么想的,然后用量角器驗證計算的結(jié)果。

小結(jié):以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

3、游戲:選度數(shù),組三角形。

(課件顯示如下)。

請選出三個角的度數(shù)來組成一個三角形。

10°18°15°150°130°72°。

20°50°70°35°75°。

52°56°54°58°60°。

學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

[設(shè)計意圖]用已學(xué)到的新知解決實際數(shù)學(xué)問題,認(rèn)識學(xué)數(shù)學(xué)的價值,再次體驗成功,增強學(xué)習(xí)數(shù)學(xué)的興趣。尤其是第三個練習(xí),依據(jù)學(xué)生的年齡特征和認(rèn)知水平,設(shè)計探索性和開放性的問題,注重拓寬學(xué)生的思維活動空間。

四、課堂總結(jié)、深化認(rèn)識。

談話:這節(jié)課你學(xué)會了什么?解決了什么問題?是怎樣解決的?

【設(shè)計意圖】不僅從知識方面進(jìn)行總結(jié),還引導(dǎo)學(xué)生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關(guān)注學(xué)生學(xué)習(xí)過程中的情感體驗。既讓學(xué)生習(xí)得一種學(xué)習(xí)方法,又培養(yǎng)了學(xué)習(xí)興趣。

課后反思:

本節(jié)課學(xué)生以小組為單位進(jìn)行合作學(xué)習(xí),從自己的已有經(jīng)驗出發(fā),積極地進(jìn)行操作、測量、計算,并對自己的結(jié)論進(jìn)行思考、分析。在充分發(fā)揮學(xué)生主體作用,放手讓學(xué)生開展探究的同時,教師也恰到好處的發(fā)揮了引導(dǎo)作用。整個探究過程學(xué)生是自主的、有積極性的,在獲得數(shù)學(xué)結(jié)論的同時學(xué)習(xí)了科學(xué)探究的方法,為今后的學(xué)習(xí)打下了堅實的基礎(chǔ)。

三角形內(nèi)角和數(shù)學(xué)教案篇十四

(1)知識與技能:

掌握三角形內(nèi)角和定理的證明過程,并能根據(jù)這個定理解決實際問題。

(2)過程與方法:

通過學(xué)生猜想動手實驗,互相交流,師生合作等活動探索三角形內(nèi)角和為180度,發(fā)展學(xué)生的推理能力和語言表達(dá)能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。

通過一題多解、一題多變等,初步體會思維的多向性,引導(dǎo)學(xué)生的個性化發(fā)展。

(3)情感態(tài)度與價值觀:

通過猜想、推理等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生主動探索,敢于實驗,勇于發(fā)現(xiàn),合作交流。

三角形內(nèi)角和數(shù)學(xué)教案篇十五

學(xué)習(xí)目標(biāo):

1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。3.發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學(xué)活動的探索樂趣,體會研究數(shù)學(xué)問題的思想方法。

教具、學(xué)具準(zhǔn)備:

課件、學(xué)生準(zhǔn)備直角三角形、銳角三角形和鈍角三角形各一個,并分別測量出每個內(nèi)角的角度,標(biāo)在圖中;一副三角板。

教具、學(xué)具準(zhǔn)備:課件、學(xué)生準(zhǔn)備直角三角形、銳角三角形和鈍角三角形各一個、一副三角板、磁鐵若干。

教學(xué)過程:

一、談話導(dǎo)入。

猜謎語:形狀似座山,穩(wěn)定性能堅。

三竿首尾連,學(xué)問不簡單。

(打一幾何圖形)師:最近我們一直在研究關(guān)于三角形的知識,誰能給大家介紹一下?(學(xué)生講學(xué)過的三角形知識。)。

師:就這么簡單的一個三角形我們就得出了那么多的知識,你們。

說數(shù)學(xué)知識神氣不神奇?

今天我們還要繼續(xù)研究三角形的新知識。

二、創(chuàng)設(shè)情境,引出課題,以疑激思。

師:什么是三角形的內(nèi)角?三角形有幾個內(nèi)角?生:就是三角形內(nèi)的三個角。每個三角形都有三個內(nèi)角。師:這個同學(xué)說得很好,三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角。

師:有兩個三角形為了一件事正在爭論,我們來幫幫他們。(播放課件)。

師:同學(xué)們,請你們給評評理:是這樣嗎?生1:我認(rèn)為是這樣的,因為大三角形大,它的三個內(nèi)角的和就大。

生2:我不同意,我認(rèn)為兩個三角形的三個內(nèi)角和的度數(shù)都是一樣的。

生4:我同意第二個同學(xué)的意見,兩個三角形的內(nèi)角和一樣大。師:現(xiàn)在出現(xiàn)了兩種不同的意見,有的同學(xué)認(rèn)為大三角形的內(nèi)角和大,還有部分同學(xué)認(rèn)為兩個三角形的內(nèi)角和的度數(shù)都是一樣的。那么到底誰說得對呢?這節(jié)課我們就一起來研究這個問題。(板書課題:

三、動手操作,探究問題,以動啟思。

1、師拿出兩個三角板,問:它們是什么三角形?生:直角三角形。

師:請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。

2、小組合作探究:

師:同學(xué)們能通過動手操作,想辦法來驗證自己的猜想嗎?請同學(xué)們先獨立思考想一想,再在小組內(nèi)把你的想法與同伴進(jìn)行交流,然后選用一種方法進(jìn)行驗證??凑l最先發(fā)現(xiàn)其中的“奧秘”;看誰能爭取到向大家作“實驗成功的報告”。

(1)、小組合作。

討論驗證方法(2)匯報驗證方法、結(jié)果。

師:誰愿意給大家介紹你們小組是用什么方法來驗證的?結(jié)果怎。

樣?

方法一:

生a:我們小組是用剪拼的方法,將三角形的三個角撕下來,拼成一個平角,得到三角形的內(nèi)角和是180度。

師:上來展示給大家瞧一瞧。你們看這位同學(xué)多細(xì)心呀,為了方便、不混淆,在剪之前,他先給3個角標(biāo)上了符號。

師:現(xiàn)在請同學(xué)們看屏幕,我們在電腦里把剛才剪拼的過程重播一遍。你們看成功了,3個角拼成了一個平角,剛才剪拼的是一個銳角三角形,那還有直角三角形、鈍角三角形呢?請同學(xué)們進(jìn)行剪拼,看是否能拼成一個平角。(學(xué)生操作)。

生:不管什么三角形三個角都能拼成一個平角。

師:剛才這種剪拼的方法可以不用再一個角一個角來量,就能證明三角形的內(nèi)角和是180°,你們覺得這種方法好不好?真會動腦筋,不用工具也行,那我們把掌聲送給剛才這個小組。

方法二:

生b:我們小組是用折的方法,同樣得到三角形的內(nèi)角和是180度。

師:請這位同學(xué)折來給大家看看。

生:3個角折成了一個平角。

師:真是個手巧的孩子。他剛才折的是一個銳角三角形,你們小組還有折其他三角形的嗎?(匯報其它三角形折的情況)。

師:說得真清楚。

方法三:

學(xué)生c:測量角的度數(shù),再加起來。(填表)。

師:這位同學(xué)測量的是銳角(鈍角)三角形,下面就請同學(xué)們另選一個三角形求出它的內(nèi)角和。(匯報:填寫結(jié)果)。

問:你們發(fā)現(xiàn)了什么?

小結(jié):通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

師:三角形的內(nèi)角和就是180度,只是因為我們在測量時會出現(xiàn)一些誤差,所以測量出的結(jié)果不是很準(zhǔn)確。

3、小結(jié):

師:剛才同學(xué)們用量、拼、折等方法證明了無論是什么樣的三角形內(nèi)角和都是1800,(板書:是180°)現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。

(出示大小不等的三角形判斷內(nèi)角和,判斷前面兩個三角形的對話,得出大三角形的說法是不對的。)。

四、自主練習(xí),解決問題:

師:學(xué)會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)。

1、第一關(guān):下面每組中哪三個角能圍成一個三角形?(1)70。

60。

30。

90。

(2)42。

54。

58。

80。

2、第二關(guān):廬山真面目:求三角形中一個未知角的度數(shù)。

3、第三關(guān):解決生活實際問題。

(2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。

4、第四關(guān):變變變(拓展練習(xí))。

利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)。

師:小組的同學(xué)討論一下,看誰能找到最佳方法。學(xué)生匯報,在圖中畫上虛線,教師課件演示。

五、課堂總結(jié)。

帕斯卡法是國著名的數(shù)學(xué)家、物理學(xué)家、哲學(xué)家、科學(xué)家,他12歲發(fā)現(xiàn)“任何三角形的三個內(nèi)角和是1800!

帕斯卡小的時候身體不太強壯,而父親又認(rèn)為數(shù)學(xué)對小孩子有害。

且很傷腦筋,所以不敢讓他接觸到數(shù)學(xué)。在十二歲的時候,偶然看到父親在讀幾何書。他好奇的問幾何學(xué)是什么?父親為了不想讓他知道太多,只講幾何學(xué)的用處就是教人畫圖時能作出正確又美觀的圖。父親很小心的把自己的數(shù)學(xué)書都收藏好,怕被帕斯卡擅自翻動??墒菂s引起了巴斯卡的興趣,他根據(jù)父親講的一些簡單的幾何知識,自己獨立研究起來。當(dāng)他把發(fā)現(xiàn):“任何三角形的三個內(nèi)角和是一百八十度”的結(jié)果告訴他父親時,父親是驚喜交集,竟然哭了起來。父親于是搬出了歐幾里得的“幾何原理”給巴斯卡看。巴斯卡才開始接觸到數(shù)學(xué)書籍。

帕斯卡12歲發(fā)現(xiàn)此結(jié)論,我們同學(xué)10歲就發(fā)現(xiàn)了。所以只要善于用眼睛觀察,動腦思考,相信未來的數(shù)學(xué)家、物理學(xué)家、科學(xué)家就在你們中間!

三角形內(nèi)角和數(shù)學(xué)教案篇十六

本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級下冊第78~79頁的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測量;認(rèn)識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)?!度切蔚膬?nèi)角和》是三角形的一個重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點不是結(jié)論,而是驗證結(jié)論的過程。教材組織學(xué)生對不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過轉(zhuǎn)化、推理、比較、操作和驗證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。

下面就具體談?wù)勎⒄n的教學(xué)設(shè)計:

1、通過測量、轉(zhuǎn)化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實際問題。

2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學(xué)生的聯(lián)想意識和動手操作能力。體驗驗證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。

3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動學(xué)習(xí)數(shù)學(xué)的興趣。

重點:讓學(xué)生親自驗證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論

難點:對不同驗證方法的理解和掌握。

交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

引導(dǎo)學(xué)生得出三角尺的三個內(nèi)角的度數(shù)和是180度。

提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)

你有什么辦法驗證這一結(jié)論呢?(動手操作,尋找答案)

方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)

方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

提問:你有什么辦法來驗證這一猜想呢?

拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測量計算,教師巡視指導(dǎo)。

引導(dǎo):測量時要盡量做到準(zhǔn)確,測量是存在誤差的,對于測量的不準(zhǔn)的同學(xué)要重新測定和確認(rèn),計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。

方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。

方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。

交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

總結(jié):通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。

1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?

三角形內(nèi)角和數(shù)學(xué)教案篇十七

學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學(xué)生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

三角形內(nèi)角和數(shù)學(xué)教案篇十八

這節(jié)課中,我本著以學(xué)生的發(fā)展為本的教學(xué)理念,讓學(xué)生主動探索,互動學(xué)習(xí),充分運用教、學(xué)具,讓學(xué)生動手操作,展示知識的形成,發(fā)展和應(yīng)用的全過程。

一、創(chuàng)設(shè)問題情境,讓學(xué)生主動參與。

《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:"學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的,有意義富有挑戰(zhàn)性的,這些內(nèi)容主要有利于學(xué)生主動地進(jìn)行觀察、猜測、驗證、交流等數(shù)學(xué)活動?!鄙险n開始,我就講故事的情景引入,提出:拿的是有原來一個角的那塊玻璃還是有原來兩個角的那塊玻璃?他們之間到底有著怎樣的關(guān)系?等問題,富有挑戰(zhàn)性,充滿了濃濃的吸引力,激發(fā)了學(xué)生主動學(xué)習(xí)欲望,學(xué)生有了學(xué)習(xí)動力,從而提高學(xué)習(xí)效率。

二、經(jīng)歷探究過程,/xdth/jxfs/謝謝您的支持和鼓勵!

《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴與記憶,動手實踐自主探索和合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式”。要讓學(xué)生逐步探究發(fā)現(xiàn)三角形三個內(nèi)角的和是180°。本節(jié)課我安排了兩個環(huán)節(jié):先讓學(xué)生畫一畫:銳角三角形、直角三角形、鈍角三角形;量一量:銳角三角形、直角三角形、鈍角三角形,誰的內(nèi)角和大?算一算:三角形三個內(nèi)角的和各是多少度。生匯報:銳角三角形是180°;直角三角形是180°度;鈍角三角形是180°,比較是不是各種形狀、大小不同的三角形內(nèi)角和都是180°呢?比較發(fā)現(xiàn)三角形的三個內(nèi)角和大約是180°。再讓學(xué)生把三角形的三個內(nèi)角分別剪下來,再拼一拼或折一折。發(fā)現(xiàn)三個角可以拼(折)成一個平角,學(xué)生從已有的知識出發(fā),從而推理出三角形的內(nèi)角和是180°。讓學(xué)生在自主探究,合作交流中經(jīng)歷,猜想、驗證、結(jié)論這一個過程,體驗探究學(xué)習(xí)的樂趣。

三、注重練習(xí)設(shè)計,把課堂向生活延伸。

練習(xí)的設(shè)計注意了梯度,既有基本練習(xí),也有發(fā)展性練習(xí)。盡量體現(xiàn)因材施教,讓每一位學(xué)生都有收獲,體驗成功的喜悅。第一個練習(xí)用水果寶寶來遮住三角形其中一個角求出這個角的度數(shù)。學(xué)生根據(jù)三角形的內(nèi)角和180°很快就求出了被遮住的角度數(shù)。第二個練習(xí)是在第一個練習(xí)題的基礎(chǔ)上增加難度,也是利用三角形內(nèi)角和180°求出其它兩個角的度數(shù)。在題型上有一定的難度。學(xué)生必須根據(jù)已有的知識推理出圖形中沒有直接告訴我們的角的度數(shù),再利用三角形內(nèi)角和是180°性質(zhì)來求其余角的度數(shù)。第三個練習(xí)題是學(xué)生比較喜歡的“問不倒熱線”電話互動的形式,有新意,使學(xué)生在前兩題的基礎(chǔ)上來解決的:一個三角形中最多有幾個直角;有幾個鈍角;至少有幾個銳角?為什么?練習(xí)不光注意了形勢變化,更注意了練習(xí)坡度。使學(xué)生的思維得到了提高,課堂氣氛活躍,學(xué)生在交流切磋中迸發(fā)出思維的火花。

這樣,不僅讓學(xué)生認(rèn)識到數(shù)學(xué)就在我們身邊,生活中處處有數(shù)學(xué),而且讓學(xué)生體會到數(shù)學(xué)知識也是可以延伸運用到生活中去,促進(jìn)學(xué)生的自主發(fā)展。

三角形內(nèi)角和數(shù)學(xué)教案篇十九

這節(jié)課是上“三角形內(nèi)角和”,因為學(xué)生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出一塊三角尺三個內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°,再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進(jìn)一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

這篇教學(xué)設(shè)計通過施教,符合新課程理念,轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式,能讓學(xué)生以小組合作的形式進(jìn)行問題的探索與研究,學(xué)生在整節(jié)課中學(xué)得輕松。整節(jié)課的教學(xué)設(shè)計,條理清晰,層次清楚,教學(xué)一開始從學(xué)生熟悉的三角板抽象出特殊的三角形探討三角形的內(nèi)角和是180°,接下來很自然地引導(dǎo)學(xué)生探討所有的三角形的內(nèi)角和是不是也是180,過渡自然且有吸引力。

總之,在這節(jié)課中存在著很多不足,今后我將花更多的時間在課堂教學(xué)方法、策略的研究上,使自己不斷進(jìn)步。

三角形內(nèi)角和數(shù)學(xué)教案篇二十

教學(xué)《三角形的內(nèi)角和》這一課時,我首先利用猜謎語引出三角形,順理成章的讓學(xué)生回憶已經(jīng)學(xué)過的有關(guān)三角形的知識。然后,根據(jù)學(xué)生的認(rèn)知特點,設(shè)計了“三角形三兄弟之爭”引入課題。通過師生猜角度和活動,學(xué)生對內(nèi)角及內(nèi)角和的概念有了初步的認(rèn)識。學(xué)生很有興致地去數(shù)去觀察三角形內(nèi)角及內(nèi)角和。學(xué)生正在好奇之時,我適時激疑:“三角形有三個內(nèi)角,那么他們的內(nèi)角和是多少度呢?”一切都在順利地按我的預(yù)定設(shè)計進(jìn)行。請同學(xué)們同桌一組,利用有關(guān)的學(xué)具進(jìn)行驗證。”學(xué)生饒有興致地去探究,或數(shù)或量或折或比較,在討論交流中完整地得到了“三角形內(nèi)角和的知識”……,課堂氣氛十分熱烈,學(xué)生學(xué)得積極主動。反思整個教學(xué)過程本文來自優(yōu)秀教育資源網(wǎng),給我如下啟發(fā):我想通過本節(jié)課的學(xué)習(xí)讓學(xué)生體會到與人合作的必要性和培養(yǎng)動手操作的能力以及創(chuàng)新精神。所以課堂上體現(xiàn)了以下幾點:

一、激發(fā)學(xué)生探究知識的欲望。教師必須根據(jù)教學(xué)內(nèi)容和學(xué)生實際,精心設(shè)計每一節(jié)課的開頭導(dǎo)語,用別出心裁的導(dǎo)語來激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生主動地投入學(xué)習(xí)。如“三角形內(nèi)角和”的引入部分,我先要求學(xué)生拿出自己預(yù)先準(zhǔn)備的三個不同的三角形(直角、銳角和鈍角三角形),各自用量角器量出每個三角形中三個角的度數(shù),然后分別請幾個學(xué)生報出不同三角形的兩個角的度數(shù),我當(dāng)即說出第三個角的度數(shù)。一開始,有幾位同學(xué)還不服氣,認(rèn)為可能是巧合,又舉例說了幾個,都被我一一猜對了,這時學(xué)生都感到驚奇,教師的答案怎么和他們量出的答案會一致的?!疤絺€究竟”的興趣因此油然而生。

二、教師的教學(xué)方式要適應(yīng)學(xué)生的學(xué)習(xí)。在教學(xué)過程本文來自優(yōu)秀教育資源網(wǎng)中,我給學(xué)生設(shè)置了一個開放的、富有挑戰(zhàn)性的問題情境,讓學(xué)生獨立、自主地去探究驗證其他學(xué)生已發(fā)現(xiàn)的知識,通過實驗、操作、交流等活動,經(jīng)歷探究過程,獲得知識與能力,掌握解決問題的方法,獲得情感體驗。我想:只要我們堅持“為學(xué)生的發(fā)展而教”,那么我們的課堂將會更加生機(jī)勃勃、充滿智慧的歡樂和創(chuàng)造的快意。

三、聯(lián)系生活實際,感受數(shù)學(xué)的作用。數(shù)學(xué)來源于生活,又高于生活,應(yīng)用于生活。因此,數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際。學(xué)生學(xué)習(xí)的目的也就是讓他們在生活中學(xué)有所用。在本課的教學(xué)中,我設(shè)計了讓學(xué)生“量一量”、“撕一撕”、“折一折”“算一算”等活動,貼近了學(xué)生的生活,降低了學(xué)習(xí)難度。

四、存在問題:比如:課前的教具準(zhǔn)備不夠充分;學(xué)生在折紙驗證三角形的內(nèi)角和后匯報時,我引導(dǎo)小結(jié)不夠。同時我還在想:小學(xué)生畢竟知識有限,在小組合作探究時老師應(yīng)該干什么?是不停地提示學(xué)生應(yīng)該干什么怎么干好呢?還是快速瀏覽每個小組,找到最需要幫助的小組,然后介入其中好呢?再者就是當(dāng)學(xué)生的認(rèn)知和原有的經(jīng)驗發(fā)生沖突時怎么辦?在新教育理念下,實際的課堂情境中往往會有很多情況出現(xiàn)。如果我這樣做了,我的教學(xué)任務(wù)就完不成了;如果我那樣做了,就可能會偏離我的教學(xué)設(shè)計,學(xué)生的問題可能會讓我不知所措。我想,課堂教學(xué)是為學(xué)生的學(xué)習(xí)和成長服務(wù)的,教師要勇于放手,給學(xué)生更大的思維空間,授之以“漁”,而不是授之以“魚”。

三角形內(nèi)角和數(shù)學(xué)教案篇二十一

《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識與技能,教學(xué)過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):

1。通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識解決一些簡單問題。

2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學(xué)思想。

3。通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強自信心。培養(yǎng)學(xué)生的創(chuàng)新意識,探索精神和實踐能力。

因為學(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點是:驗證三角形的內(nèi)角和是180°。

本節(jié)課主要是通過教師的精心引導(dǎo)和點撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

因為《課程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力"。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導(dǎo)學(xué)生從"猜測――驗證"展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。

我以引入,猜測,證實,深化和應(yīng)用五個活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗。

呈現(xiàn)情境:出示多個已學(xué)的平面圖形,讓學(xué)生認(rèn)識什么是"內(nèi)角"。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

讓學(xué)生整體感知三角形內(nèi)角和的知識,這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景, 滲透數(shù)學(xué)知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)"。

提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。

(2)撕―拼:利用平角是180°這一特點,啟發(fā)學(xué)生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學(xué)生同桌合作,從學(xué)具中選出一個三角形,撕下來拼一拼。

(3)折—拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

(4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

利用已經(jīng)學(xué)過的知識構(gòu)建新的數(shù)學(xué)知識, 這不僅有助于學(xué)生理解新的知識, 而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系起來, 并使學(xué)生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

觀察:(指著黑板上兩個大小不同但三個角對應(yīng)相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

結(jié)論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關(guān)。

實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當(dāng)活動角的兩條邊與小棒重合時。

結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°。

小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識聯(lián)系起來,通過讓學(xué)生觀察利用"角的大小與邊的長短無關(guān)"的舊知識來理解說明。

對于利用精巧的小教具的演示, 讓學(xué)生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

1?;A(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個角的度數(shù)。

(2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習(xí)十四的習(xí)題

習(xí)題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習(xí)中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導(dǎo)學(xué)生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

第三題通過兩個三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識。

第四題是對三角形內(nèi)角和知識的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中, 學(xué)生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對多邊形內(nèi)角和知識的整體構(gòu)建。

【本文地址:http://www.aiweibaby.com/zuowen/15410852.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔