七年級數(shù)學(xué)有理數(shù)教案大全(23篇)

格式:DOC 上傳日期:2023-11-27 19:48:14
七年級數(shù)學(xué)有理數(shù)教案大全(23篇)
時間:2023-11-27 19:48:14     小編:文軒

編寫教案需要考慮學(xué)生的實際情況和學(xué)習(xí)特點。編寫教案時需要考慮教學(xué)方法和教具的選擇,以及課堂管理的策略。教案的編寫需要充分利用教學(xué)資源和現(xiàn)代教育技術(shù)手段。

七年級數(shù)學(xué)有理數(shù)教案篇一

學(xué)習(xí)目標(biāo):。

1、理解加減法統(tǒng)一成加法運算的意義.

2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.

3、培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,增強學(xué)習(xí)數(shù)學(xué)的信心.

教學(xué)方法:講練相結(jié)合。

教學(xué)過程。

1、一架飛機作特技表演,起飛后的高度變化如下表:

高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。

記作+4.5千米—3.2千米+1.1千米—1.4千米。

請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.

2、你是怎么算出來的,方法是。

1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!

2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導(dǎo).

如:(-20)+(+3)-(-5)-(+7)有加法也有減法。

=(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。

=-20+3+5-7再把加號記在腦子里,省略不寫。

可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.

4、師生完整寫出解題過程。

1、解決引例中的問題,再比較前面的方法,你的感覺是。

2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。

3、練習(xí):計算1)(—7)—(+5)+(—4)—(—10)。

1、小結(jié):說說這節(jié)課的收獲。

2、p241、2。

3、計算。

1)27—18+(—7)—322)。

五、作業(yè)。

1、p2552、p26第8題、14題。

七年級數(shù)學(xué)有理數(shù)教案篇二

1.1正數(shù)和負數(shù)(2)。

教學(xué)目標(biāo):

教學(xué)重點:

深化對正負數(shù)概念的理解。

教學(xué)難點:

正確理解和表示向指定方向變化的量。

教學(xué)準(zhǔn)備:彩色粉筆。

教學(xué)過程:

一、復(fù)習(xí)引入:

學(xué)生思考并討論.

(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準(zhǔn).

二、講解新課。

度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。

思考:教科書第4頁(學(xué)生先思考,教師再講解)。

三、課堂練習(xí)課本p4練習(xí)1,2,3,4。

四、課時小結(jié)。

引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.

五、課外作業(yè)教科書p5:2、4。

板書設(shè)計:

七年級數(shù)學(xué)有理數(shù)教案篇三

2.內(nèi)容解析。

有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學(xué)習(xí)是至關(guān)重要的.

與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學(xué)已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學(xué)生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.

基于以上分析,可以確定本課的教學(xué)重點是兩個有理數(shù)相乘的符號法則.

二、目標(biāo)及其解析。

1.目標(biāo)。

(1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.

(2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.

2.目標(biāo)解析。

達成目標(biāo)(1)的標(biāo)志是學(xué)生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.

達成目標(biāo)(2)的標(biāo)志是學(xué)生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.

三、教學(xué)問題診斷分析。

有理數(shù)的乘法與小學(xué)學(xué)習(xí)的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學(xué)生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導(dǎo),讓學(xué)生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學(xué)生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導(dǎo),并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.

本課的教學(xué)難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.

四、教學(xué)過程設(shè)計。

教師引導(dǎo)學(xué)生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).

設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習(xí)有關(guān)知識,為下面的教學(xué)做好準(zhǔn)備,又滲透了分類討論思想.

問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追問1:你認(rèn)為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?

如果學(xué)生仍然有困難,教師給予提示:

(1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.

(2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.

設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準(zhǔn)備.通過追問、提示,使學(xué)生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.

教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.

追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?

3×(-2)=,

3×(-3)=.

練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.

設(shè)計意圖:讓學(xué)生自主構(gòu)造算式,加深對運算規(guī)律的理解.

先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.

設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學(xué)習(xí)奠定基礎(chǔ).

問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓勵學(xué)生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.

設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準(zhǔn)備;培養(yǎng)學(xué)生的模仿、概括的能力.

追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認(rèn)為下面的空格應(yīng)各填什么數(shù)?

(-1)×3=,

(-2)×3=,

(-3)×3=.

練習(xí):請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.

先讓學(xué)生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.

追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?

設(shè)計意圖:讓學(xué)生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學(xué)生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.

問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

設(shè)計意圖:由學(xué)生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學(xué)生能獨立完成.

問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?

學(xué)生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學(xué)生看教科書.

學(xué)生獨立思考、回答.如果有困難,可先讓學(xué)生看課本第29頁有理數(shù)乘法法則后面的一段文字.

設(shè)計意圖:讓學(xué)生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.

例1計算:

(1)。

;(2)。

;(3)。

學(xué)生獨立完成后,全班交流.

教師說明:在(3)中,我們得到了。

=1.與以前學(xué)習(xí)過的倒數(shù)概念一樣,我們說。

與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).

追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?

設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).

設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.

小結(jié)、布置作業(yè)。

請同學(xué)們帶著下列問題回顧本節(jié)課的內(nèi)容:

(2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?

(3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.

(4)你能舉例說明符號法則“負負得正”的合理性嗎?

設(shè)計意圖:引導(dǎo)學(xué)生從知識內(nèi)容和學(xué)習(xí)過程兩個方面進行小結(jié).

作業(yè):教科書第30頁,練習(xí)1,2,3;第37頁,習(xí)題1.4第1題.

五、目標(biāo)檢測設(shè)計。

1.判斷下列運算結(jié)果的符號:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2計算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

設(shè)計意圖:檢測學(xué)生對有理數(shù)乘法法則的理解情況.

七年級數(shù)學(xué)有理數(shù)教案篇四

理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分?jǐn)?shù),是正數(shù)、負數(shù)還是零。

二、過程與方法。

經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。

三、情感態(tài)度與價值觀。

通過對有理數(shù)的學(xué)習(xí),體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系。

教學(xué)重難點及突破。

在引入了負數(shù)后,本課對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。

教學(xué)準(zhǔn)備。

用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。

教學(xué)過程。

四、課堂引入。

2.舉例說明現(xiàn)實中具有相反意義的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?

4.舉兩個例子說明+5與-5的區(qū)別。

七年級數(shù)學(xué)有理數(shù)教案篇五

1.1正數(shù)和負數(shù)(2)。

教學(xué)目標(biāo):

教學(xué)重點:

深化對正負數(shù)概念的理解。

教學(xué)難點:

正確理解和表示向指定方向變化的量。

教學(xué)準(zhǔn)備:彩色粉筆。

教學(xué)過程:

一、復(fù)習(xí)引入:

學(xué)生思考并討論.

(數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準(zhǔn).

二、講解新課。

度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。

思考:教科書第4頁(學(xué)生先思考,教師再講解)。

三、課堂練習(xí)課本p4練習(xí)1,2,3,4。

四、課時小結(jié)。

引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與以前學(xué)過的數(shù)有很大的區(qū)別.

五、課外作業(yè)教科書p5:2、4。

板書設(shè)計:

七年級數(shù)學(xué)有理數(shù)教案篇六

2.培養(yǎng)學(xué)生觀察、分析、歸納及運算能力。

三、教學(xué)重點。

四、教學(xué)難點。

五、教學(xué)用具。

三角尺、小黑板、小卡片。

六、課時安排。

1課時。

七、教學(xué)過程。

(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題。

1.計算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化簡下列各式符號:

(1)-(-6);(2)-(+8);(3)+(-7);。

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;。

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3題中,已知一個加數(shù)與和,求另一個加數(shù),在小學(xué)里就是減法運算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎樣算出來的?這就是有理數(shù)的減法,減法是加法的逆運算。

(二)、師生共同研究有理數(shù)減法法則。

問題1(1)(+10)-(+3)=______;。

(2)(+10)+(-3)=______.

教師引導(dǎo)學(xué)生發(fā)現(xiàn):兩式的結(jié)果相同,(更多內(nèi)容請訪問首頁:)即(+10)-(+3)=(+10)+(-3).

(2)(+10)+(+3)=______.

(2)的結(jié)果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教師引導(dǎo)學(xué)生歸納出有理數(shù)減法法則:

減去一個數(shù),等于加上這個數(shù)的。相反數(shù)。

教師強調(diào)運用此法則時注意“兩變”:一是減法變?yōu)榧臃?;二是減數(shù)變?yōu)槠湎喾磾?shù)。減數(shù)變號(減法============加法)。

(三)、運用舉例變式練習(xí)。

例1計算:

(1)(-3)-(-5);(2)0-7.

例2計算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通過計算上面一組有理數(shù)減法算式,引導(dǎo)學(xué)生發(fā)現(xiàn):

在小學(xué)里學(xué)習(xí)的減法,差總是小于被減數(shù),在有理數(shù)減法中,差不一定小于被減數(shù)了,只要減去一個負數(shù),其差就大于被減數(shù)。

閱讀課本63頁例3。

(四)、小結(jié)。

1.教師指導(dǎo)學(xué)生閱讀教材后強調(diào)指出:

由于把減數(shù)變?yōu)樗南喾磾?shù),從而減法轉(zhuǎn)化為加法。有理數(shù)的加法和減法,當(dāng)引進負數(shù)后就可以統(tǒng)一用加法來解決。

2.不論減數(shù)是正數(shù)、負數(shù)或是零,都符合有理數(shù)減法法則。在使用法則時,注意被減數(shù)是永不變的。

(五)、課堂練習(xí)。

1.計算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。

2.計算:

3.計算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。

(4)(-5.9)-(-6.1);。

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理數(shù)減法解下列問題。

八、布置課后作業(yè):

課本習(xí)題2.6知識技能的2、3、4和問題解決1。

九、板書設(shè)計。

2.5有理數(shù)的減法。

(一)知識回顧(三)例題解析(五)課堂小結(jié)。

例1、例2、例3。

(二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計。

十、課后反思。

七年級數(shù)學(xué)有理數(shù)教案篇七

1.通過與溫度計的類比,了解數(shù)軸的概念,會畫數(shù)軸。

2.知道如何在數(shù)軸上表示有理數(shù),能說出數(shù)軸上表示有理數(shù)的點所表示的數(shù),知道任何一個有理數(shù)在數(shù)軸上都有唯一的點與之對應(yīng)。

過程方法。

1.從直觀認(rèn)識到理性認(rèn)識,從而建立數(shù)軸概念。

2.通過數(shù)軸概念的學(xué)習(xí),初步體會對應(yīng)的思想、數(shù)形結(jié)合的思想方法。

3.會利用數(shù)軸解決有關(guān)問題。

情感態(tài)度。

通過對數(shù)軸的學(xué)習(xí),體會到數(shù)形結(jié)合的思想方法,進而初步認(rèn)識事物之間的聯(lián)系性。

【教學(xué)重點】。

1.數(shù)軸的概念。

2.能將已知數(shù)在數(shù)軸上表示出來,說出數(shù)軸上已知點所表示的數(shù)。

【教學(xué)難點】。

從直觀認(rèn)識到理性認(rèn)識,從而建立數(shù)軸的概念。

【情景引入】。

1.小明感冒了,醫(yī)生用體溫計測量了他的體溫,并說:“37.8度?!?/p>

提疑:醫(yī)生為什么通過體溫計就可以讀出任意一個人的體溫?

(體溫計上的刻度)。

2.我們再一起去看看12月時祖國各地的自然風(fēng)光和溫度情況(電腦分別顯示黑龍江、焦作、海南三個城市美麗的自然風(fēng)光,溫度分別為-10°c,0°c,20°c)。

提疑:那么要測量這種氣溫所需要的溫度計的刻度應(yīng)該如何安排?需要用到哪些數(shù)?

(正數(shù)、零、負數(shù))。

3.請嘗試畫出你想像中的溫度計,并和其他同學(xué)交流,注意交流時要發(fā)表自己的見解。然后提問:請找出一支溫度計從外觀上具有哪些不可缺少的特征?(組織學(xué)生討論交流)學(xué)生可能會從不同的角度回答,教師給予必要的引導(dǎo),總結(jié)出與數(shù)軸相對應(yīng)的特點,如形狀是直的、0刻度、單位刻度。(電腦動態(tài)演示,將溫度計水平放置,抽象得出數(shù)軸圖形表示有理數(shù)-10,0,20的過程)從而引出課題------數(shù)軸。

七年級數(shù)學(xué)有理數(shù)教案篇八

學(xué)習(xí)目標(biāo):。

1、理解有理數(shù)的運算法則;能根據(jù)有理數(shù)乘法運算法則進行有理的簡單運算。

2、經(jīng)歷探索有理數(shù)乘法法則過程,發(fā)展觀察、歸納、猜想、驗證能力.

3、培養(yǎng)語言表達能力.調(diào)動學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣.

學(xué)習(xí)重點:有理數(shù)乘法。

學(xué)習(xí)難點:法則推導(dǎo)。

教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合。

教學(xué)過程。

一、學(xué)前準(zhǔn)備。

計算:

(1)(一2)十(一2)。

(2)(一2)十(一2)十(一2)。

(3)(一2)十(一2)十(一2)十(一2)。

(4)(一2)十(一2)十(一2)十(一2)十(一2)。

猜想下列各式的值:

(一2)×2(一2)×3。

(一2)×4(一2)×5。

二、探究新知。

1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁的填空.

2、觀察以上各式,結(jié)合對問題的研究,請同學(xué)們回答:

(3)負數(shù)乘以正數(shù)積為__________數(shù),(4)負數(shù)乘以負數(shù)積為__________數(shù)。

提出問題:一個數(shù)和零相乘如何解釋呢?

七年級數(shù)學(xué)有理數(shù)教案篇九

1、知識目標(biāo):了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準(zhǔn)確運算。

2、能力目標(biāo):通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。

3、情感目標(biāo):培養(yǎng)積極思考和勇于探索的精神,形成良好的學(xué)習(xí)習(xí)慣。

重點:有理數(shù)乘法運算法則的推導(dǎo)及熟練運用。

難點:有理數(shù)乘法運算中積的符號的確定。

1、在小學(xué)我們已經(jīng)接觸了乘法,那什么叫乘法呢?

求幾個的運算,叫乘法。

一個數(shù)同0相乘,得0。

2、請你列舉幾道小學(xué)學(xué)過的乘法算式。

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

可以列式為:(+2)(+3)=。

問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘后蝸牛應(yīng)在o點的()邊()cm處。

可以列式為:

問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

可以表示為:

問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?

規(guī)定:向右為正,現(xiàn)在之后為正。

3分鐘前蝸牛應(yīng)在o點的()邊()cm處。

可以表示為:

2、觀察這四個式子:

(+2)(+3)=+6(—2)(—3)=+6。

(—2)(+3)=—6(+2)(—3)=—6。

正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):

負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):

乘積的絕對值等于各乘數(shù)絕對值的_____。

思考:當(dāng)一個因數(shù)為0時,積是多少?

兩數(shù)相乘,同號得,異號得,并把絕對值。

任何數(shù)同0相乘,都得。

1、你能確定下列乘積的符號嗎?

37積的符號為;(—3)7積的符號為;

3(—7)積的`符號為;(—3)(—7)積的符號為。

2先閱讀,再填空:

(—5)x(—3)。同號兩數(shù)相乘。

(—5)x(—3)=+()得正。

5x3=15把絕對值相乘。

所以(—5)x(—3)=15。

填空:(—7)x4____________________。

(—7)x4=—()___________。

7x4=28_____________。

所以(—7)x4=____________。

[例1]計算:

(1)(—5)(2)(—5)。

(3)(—6)(—0.45)(4)(—7)0=。

解:(1)(—5)(—6)=+(56)=+30=30。

請同學(xué)們仿照上述步驟計算(2)(3)(4)。

(2)(—5)6==。

(3)(—6)(—0.45)==。

(4)(—7)0=。

讓我們來總結(jié)求解步驟:

兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。

1、小組口算比賽,看誰更棒。

(1)3(—4)(2)2(—6)(3)(—6)2。

(4)6(—2)(5)(—6)0(6)0(—6)。

2、仔細計算。,注意積的符號和絕對值。

(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。

(4)(—2)(—)(5)(—)(—)(6)(—)5。

1、下列說法錯誤的是()。

a、一個數(shù)同0相乘,仍得0。

b、一個數(shù)同1相乘,仍得原數(shù)。

c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。

d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。

2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。

a、10b、12c、—20d、不是以上的答案。

3、計算下列各題:

(5)(—6)(—5)=;(6)(—5)(—6)=。

七年級數(shù)學(xué)有理數(shù)教案篇十

三、情感態(tài)度與價值觀。

體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、

教學(xué)重點、難點與關(guān)鍵。

1、重點:有理數(shù)加減法統(tǒng)一為加法運算,掌握有理數(shù)加減混合運算、

2、難點:省略括號和加號的加法算式的運算方法、

投影儀、

四、教學(xué)過程。

一、復(fù)習(xí)提問,引入新課。

1、敘述有理數(shù)的加法、減法法則、

2、計算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。

(4)(—8)—6;(5)5—14、

五、新授。

我們已學(xué)習(xí)了有理數(shù)加、減法的運算,今天我們來研究怎樣進行有理數(shù)的加減混合運算、

六、鞏固練習(xí)。

1、課本第24頁練習(xí)、

(1)題是已寫成省略加號的代數(shù)和,可運用加法交換律、結(jié)合律、

原式=1+3—4—0。5=0—0。5=—0。5。

(2)題運用加減混合運算律,同號結(jié)合、

原式=—2。4—4。6+3。5+3。5=—7+7=0。

(3)題先把加減混合運算統(tǒng)一為加法運算、

原式=(—7)+(—5)+(—4)+(+10)。

=—7—5—4+10(省略括號和加號)。

=—16+10。

=—6。

七、課堂小結(jié)。

八、作業(yè)布置。

1、課本第25頁第26頁習(xí)題1、3第5、6、13題、

九、板書設(shè)計:

第四課時。

1、把有理數(shù)加減混合運算轉(zhuǎn)化為加法后,常用加法交換律和結(jié)合律使計算簡便、

歸納:加減混合運算可以統(tǒng)一為加法運算、

用式子表示為a+b—c=a+b+(—c)、

2、隨堂練習(xí)。

3、小結(jié)。

4、課后作業(yè)。

十、課后反思。

本課教學(xué)反思。

本節(jié)課主要采用過程教案法訓(xùn)練學(xué)生的聽說讀寫。過程教案法的理論基礎(chǔ)是交際理論,認(rèn)為寫作的過程實質(zhì)上是一種群體間的交際活動,而不是寫作者的個人行為。它包括寫前階段,寫作階段和寫后修改編輯階段。在此過程中,教師是教練,及時給予學(xué)生指導(dǎo),更正其錯誤,幫助學(xué)生完成寫作各階段任務(wù)。課堂是寫作車間,學(xué)生與教師,學(xué)生與學(xué)生彼此交流,提出反饋或修改意見,學(xué)生不斷進行寫作,修改和再寫作。在應(yīng)用過程教案法對學(xué)生進行寫作訓(xùn)練時,學(xué)生從沒有想法到有想法,從不會構(gòu)思到會構(gòu)思,從不會修改到會修改,這一過程有利于培養(yǎng)學(xué)生的寫作能力和自主學(xué)習(xí)能力。學(xué)生由于能得到教師的及時幫助和指導(dǎo),所以,即使是英語基礎(chǔ)薄弱的同學(xué),也能在這樣的環(huán)境下,寫出較好的作文來,從而提高了學(xué)生寫作興趣,增強了寫作的自信心。

這個話題很容易引起學(xué)生的共鳴,比較貼近生活,能激發(fā)學(xué)生的興趣,在教授知識的同時,應(yīng)注意將本單元情感目標(biāo)融入其中,即保持樂觀積極的生活態(tài)度,同時要珍惜生活的點點滴滴。在教授語法時,應(yīng)注重通過例句的講解讓語法概念深入人心,因直接引語和間接引語的概念相當(dāng)于一個簡單的定語從句,一個清晰的脈絡(luò)能為后續(xù)學(xué)習(xí)打下基礎(chǔ)。此教案設(shè)計為一個課時,主要將安妮的處境以及她的精神做一個簡要概括,下一個課時則對語法知識進行講解。

在此教案過程中,應(yīng)注重培養(yǎng)學(xué)生的自學(xué)能力,通過輔導(dǎo)學(xué)生掌握一套科學(xué)的學(xué)習(xí)方法,才能使學(xué)生的學(xué)習(xí)積極性進一步提高。再者,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,增強教案效果,才能避免在以后的學(xué)習(xí)中產(chǎn)生兩極分化。

在教案中任然存在的問題是,學(xué)生在“說”英語這個環(huán)節(jié)還有待提高,大部分學(xué)生都不愿意開口朗讀課文,所以復(fù)述課文便尚有難度,對于這一部分學(xué)生的學(xué)習(xí)成績的提高還有待研究。

七年級數(shù)學(xué)有理數(shù)教案篇十一

學(xué)習(xí)過程:

一、自主學(xué)習(xí)不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:

1.小學(xué)學(xué)過的加法運算律有哪些?舉例說明運用運算律有何好處?

2.加法的交換律:

兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.

3.加法的結(jié)合律:

七年級數(shù)學(xué)有理數(shù)教案篇十二

難點:有理數(shù)乘方運算的符號法則?

1?求n個相同因數(shù)的積的運算叫做乘方?

2?乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?

一般地,在an中,a取任意有理數(shù),n取正整數(shù)?

應(yīng)當(dāng)注意,乘方是一種運算,冪是乘方運算的結(jié)果?當(dāng)an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。

例1計算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教師指出:2就是21,指數(shù)1通常不寫?讓三個學(xué)生在黑板上計算?

引導(dǎo)學(xué)生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?

(1)模向觀察。

正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?

(2)縱向觀察。

互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?

(3)任何一個數(shù)的偶次冪都是什么數(shù)?

任何一個數(shù)的偶次冪都是非負數(shù)?

你能把上述的結(jié)論用數(shù)學(xué)符號語言表示嗎?

當(dāng)a0時,an0(n是正整數(shù));

當(dāng)a。

當(dāng)a=0時,an=0(n是正整數(shù))?

(以上為有理數(shù)乘方運算的符號法則)。

a2n=(-a)2n(n是正整數(shù));

=-(-a)2n-1(n是正整數(shù));

a2n0(a是有理數(shù),n是正整數(shù))?

例2計算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

讓三個學(xué)生在黑板上計算?

課堂練習(xí)。

計算:

(1),,,-,;

(2)(-1)20xx,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

讓學(xué)生回憶,做出小結(jié):

1?乘方的有關(guān)概念?2?乘方的符號法則?3?括號的作用?

1?計算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2?填表:

3?a=-3,b=-5,c=4時,求下列各代數(shù)式的值:

4?當(dāng)a是負數(shù)時,判斷下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5*?平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?

6*?若(a+1)2+|b-2|=0,求a20xxb3的值?

七年級數(shù)學(xué)有理數(shù)教案篇十三

學(xué)習(xí)目標(biāo):

1.會用正.負數(shù)表示具有相反意義的量.

2.通過正.負數(shù)學(xué)習(xí),培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識的意識.

3.通過探究,滲透對立統(tǒng)一的辨證思想。

學(xué)習(xí)重點:

用正.負數(shù)表示具有相反意義的量。

學(xué)習(xí)難點:

實際問題中的數(shù)量關(guān)系。

教學(xué)方法:

講練相結(jié)合。

教學(xué)過程。

一.學(xué)前準(zhǔn)備。

通過上節(jié)課的學(xué)習(xí),我們知道在實際生產(chǎn)和生活中存在著兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.

問題1:“零”為什么即不是正數(shù)也不是負數(shù)呢?

引導(dǎo)學(xué)生思考討論,借助舉例說明.

參考例子:溫度表示中的零上,零下和零度.

二.探究理解解決問題。

問題2:(教科書第4頁例題)。

先引導(dǎo)學(xué)生分析,再讓學(xué)生獨立完成。

(2)20xx年下列國家的商品進出口總額比上一年的變化情況是:

美國減少6.4%,德國增長1.3%,

法國減少2.4%,英國減少3.5%,

意大利增長0.2%,中國增長7.5%.

寫出這些國家20xx年商品進出口總額的增長率.

解:(1)這個月小明體重增長2kg,小華體重增長―1kg,小強體重增長0kg.

(2)六個國家20xx年商品進出口總額的增長率:

美國―6.4%,德國1.3%,

法國―2.4%,英國―3.5%,

意大利0.2%,中國7.5%.

三.鞏固練習(xí)。

從0表示一個也沒有,是正數(shù)和負數(shù)的分界的角度引導(dǎo)學(xué)生理解.

在學(xué)生的討論中簡單介紹分類的數(shù)學(xué)思想先不要給出有理數(shù)的概念.

在例題中,讓學(xué)生通過閱讀題中的含義,找出具有相反意義的量,決定哪個用正數(shù)表示,哪個用負數(shù)表示.

通過問題(2)提醒學(xué)生審題時要注意要求,題中求的是增長率,不是增長值.

四.閱讀思考1頁。

(教科書第8頁)用正負數(shù)表示加工允許誤差.

問題:1.直徑為30.032mm和直徑為29.97的零件是否合格?

2.你知道還有那些事件可以用正負數(shù)表示允許誤差嗎?請舉例.

五.小結(jié)。

1.本節(jié)課你有那些收獲?

2.還有沒解決的問題嗎?

六.應(yīng)用與拓展。

1.必做題:

教科書5頁習(xí)題4.5.:6.7.8題。

2.選做題。

1).甲冷庫的溫度是―12°c,乙冷庫的溫度比甲冷酷低5°c,則乙冷庫的溫度是.

七年級數(shù)學(xué)有理數(shù)教案篇十四

2?培養(yǎng)學(xué)生準(zhǔn)確地運算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。

重點和難點:正確地求出代數(shù)式的值。

一、從學(xué)生原有的認(rèn)識結(jié)構(gòu)提出問題。

1?用代數(shù)式表示:(投影)。

(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;。

(3)a與b的和的50%?

2?用語言敘述代數(shù)式2n+10的意義?

3?對于第2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)。

若學(xué)校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?

二、師生共同研究代數(shù)式的值的意義。

2?結(jié)合上述例題,提出如下幾個問題:

(1)求代數(shù)式2x+10的值,必須給出什么條件?

(2)代數(shù)式的值是由什么值的確定而確定的?

(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?

下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案?(教師板書例題時,應(yīng)注意格式規(guī)范化)。

例1當(dāng)x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值?

解:當(dāng)x=7,y=4,z=0時,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代數(shù)式中省略乘號,代入后需添上乘號。

七年級數(shù)學(xué)有理數(shù)教案篇十五

本節(jié)教學(xué)的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進行單項式與多項式相乘的計算.本節(jié)知識是進一步學(xué)習(xí)多項式乘法,以及乘法公式等后續(xù)知識的基礎(chǔ)。

1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即。

其中,可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.。

2.利用法則進行單項式和多項式運算時要注意:

3根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的`符號;

設(shè)m=-4x2,a=2x2,b=3x,c=-1,

∴(-4x2)·(2x2+3x-1)。

=m(a+b+c)。

=ma+mb+mc。

=(-4x2)·2x2+(-4x2)·3x+(-4x2)·(-1)。

=-8x4-12x3+4x2.。

這樣過渡較自然,同時也滲透了一些代換的思想.。

教學(xué)設(shè)計示例。

一、教學(xué)目標(biāo)。

1.理解和掌握單項式與多項式乘法法則及推導(dǎo).。

2.熟練運用法則進行單項式與多項式的乘法計算.。

3.培養(yǎng)靈活運用知識的能力,通過用文字概括法則,提高學(xué)生數(shù)學(xué)表達能力.。

4.通過反饋練習(xí),培養(yǎng)學(xué)生計算能力和綜合運用知識的能力.。

5.滲透公式恒等變形的數(shù)學(xué)美.。

二、學(xué)法引導(dǎo)。

1.教學(xué)方法:講授法、練習(xí)法.。

類項,故在學(xué)習(xí)中應(yīng)充分利用這種方法去解題.。

三、重點·難點·疑點及解決辦法。

(一)重點。

單項式與多項式乘法法則及其應(yīng)用.。

(二)難點。

單項式與多項式相乘時結(jié)果的符號的確定.。

(三)解決辦法。

復(fù)習(xí)單項式與單項式的乘法法則,并注意在解題過程中將單項式乘多項式轉(zhuǎn)化為單項。

式乘單項式后符號確定的問題.。

四、課時安排。

一課時.。

五、教具學(xué)具準(zhǔn)備。

投影儀、膠片.。

六、師生互動活動設(shè)計。

(一)明確目標(biāo)。

本節(jié)課重點學(xué)習(xí)單項式與多項式的乘法法則及其應(yīng)用.。

(二)整體感知。

(三)教學(xué)過程。

1.復(fù)習(xí)導(dǎo)入。

復(fù)習(xí):

(1)敘述單項式乘法法則.。

(單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式.)。

(2)什么叫多項式?說出多項式的項和各項系數(shù).

2.探索新知,講授新課。

簡便計算:

由該等式,你能說出單項式與多項式相乘的法則嗎?單項式與多項式乘法法則:單項式。

與多項式相乘,就是用單項式乘多項式的每一項,再把所得的積相加.。

例1計算:

例2化簡:

練習(xí):錯例辨析。

(2)錯在單項式與多項式的每一項相乘之后沒有添上加號,故正確答案為。

(四)總結(jié)、擴展。

(99,河北)下列運算中,不正確的為()。

a.b.。

c.d.。

八、布置作業(yè)。

參考答案:

七年級數(shù)學(xué)有理數(shù)教案篇十六

3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學(xué)。

數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)。

教學(xué)過程(師生活動)設(shè)計理念。

設(shè)置情境。

教師通過實例、課件演示得到溫度計讀數(shù).

(多媒體出示3幅圖,三個溫度分別為零上、零度和零下)。

問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境。

(小組討論,交流合作,動手操作)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)。

教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

從而得出數(shù)軸的三要素:原點、正方向、單位長度體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。

尋找規(guī)律。

歸納結(jié)論。

問題3:

1,你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

3,哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

4,每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

(小組討論,交流歸納)。

歸納出一般結(jié)論,教科書第12的歸納。這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。

教科書第12頁練習(xí)。

課堂小結(jié)。

請學(xué)生總結(jié):

1,數(shù)軸的三個要素;

2,數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。

本課作業(yè)。

1,必做題:教科書第18頁習(xí)題1.2第2題。

2,選做題:教師自行安排。

本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)。

1,數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。

2,教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

3,注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

七年級數(shù)學(xué)有理數(shù)教案篇十七

《有理數(shù)的乘方》是人教版七年級上第一章第五節(jié)內(nèi)容,是有理數(shù)的一種基本運算,從教材編排結(jié)構(gòu)上,此節(jié)內(nèi)容共3課時,本課為第一課時,是在學(xué)生學(xué)習(xí)了有理數(shù)的加、減、乘、除運算后學(xué)習(xí)的,是有理數(shù)乘法的推廣和延續(xù),也是后續(xù)學(xué)習(xí)有理數(shù)的混合運算、科學(xué)計數(shù)法和開方及指數(shù)冪運算的基礎(chǔ),起到承前啟后的作用。通過本節(jié)課學(xué)習(xí)可以讓學(xué)生發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生的歸納能力,感受化歸及分類的數(shù)學(xué)思想。

(1)、知道乘方、底數(shù)、指數(shù)和冪的概念,會進行有理數(shù)的乘方運算;

(3)學(xué)生嘗試?yán)弥R的遷移獲得新知,通過發(fā)現(xiàn)問題、研究問題,探索規(guī)律,增強數(shù)學(xué)應(yīng)用意識。

1、學(xué)情分析:從知識基礎(chǔ)看,學(xué)生在小學(xué)已學(xué)習(xí)了求正方形的面積及正方體的體積,具備求一個正數(shù)的`平方和立方的知識水平,且剛學(xué)完有理數(shù)的乘法,能幫助學(xué)生很好的理解乘方的定義及表示,實現(xiàn)知識的正遷移。但學(xué)生對于有理數(shù)乘方的符號法則的掌握上會有難度,對于這類計算容易混淆,是本節(jié)課的難點。

2、教學(xué)重、難點

教學(xué)重點:理解乘方定義,會進行有理數(shù)的乘方運算;

教學(xué)難點:有理數(shù)乘方運算的符號法則的形成與運用。

教法:啟發(fā)式教學(xué),多媒體輔助教學(xué);

學(xué)法:觀察、比較、歸納,合作探究。

1、創(chuàng)設(shè)情境提出問題

通過創(chuàng)設(shè)問題情境,喚起舊知,為學(xué)習(xí)新知做好鋪墊。

2、自主探索形成新知

觀察下列各式有何特征?

(1)2×2×2×2=

(2)(—3)×(—3)×(—3)=

引導(dǎo)學(xué)生通過類比、探究、歸納乘方定義及表示,實現(xiàn)知識的遷移,培養(yǎng)學(xué)生歸納、概括的能力。明確乘方是乘法的特殊形式,體現(xiàn)化歸的數(shù)學(xué)思想。

3、應(yīng)用新知鞏固概念

練習(xí)1、2鞏固乘方定義及乘方表示的注意點,培養(yǎng)學(xué)()生良好的學(xué)習(xí)習(xí)慣。例題進一步強化乘方運算。

4、探索研究發(fā)現(xiàn)規(guī)律

通過題組訓(xùn)練,探索規(guī)律,合作交流,獲得乘方運算的符號法則,充分發(fā)揮學(xué)生的學(xué)習(xí)主體作用,體現(xiàn)分類的數(shù)學(xué)思想。

5、應(yīng)用新知鞏固訓(xùn)練

進一步鞏固學(xué)生對符號法則的運用及利用乘方的知識解決問題的能力。

6、拓展思維知識延伸

利用故事提高學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決解決問題能力,激發(fā)學(xué)生的探索的熱情。

7、課堂小結(jié)歸納反思

鍛煉學(xué)生及時總結(jié)的良好習(xí)慣和歸納能力。

1、教學(xué)評價分析:

對學(xué)生探究過程的參與及與同學(xué)合作交流進行評價,以增強學(xué)生學(xué)習(xí)主動性;

(1)關(guān)注學(xué)生的智力參與度

(2)學(xué)生的課堂參與度

2、對不同層次的學(xué)生采取分層練習(xí)的評價方式,以滿足不同層次的學(xué)生知識技能的發(fā)展。

七年級數(shù)學(xué)有理數(shù)教案篇十八

準(zhǔn)確掌握積的乘方的運算性質(zhì)、

(二)難點

用數(shù)學(xué)語言概括運算性質(zhì)、

(三)解決辦法

增強對三種運算性質(zhì)的理解,并運用對比的方法強化訓(xùn)練以達到準(zhǔn)確地區(qū)分、

一課時、

投影儀或電腦、自制膠片、

3、通過舉例來說明積的乘方性質(zhì)應(yīng)如何正確使用,師生共練以達到熟練掌握、

4、多種題型的設(shè)計,讓學(xué)生能從不同的角度全面準(zhǔn)確地理解和運用該性質(zhì)、

(一)明確目標(biāo)

本節(jié)課重點學(xué)習(xí)積的乘方的運算性質(zhì)及其較靈活地運用、

(二)整體感知

(三)教學(xué)過程

1、創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

前面我們學(xué)習(xí)了同底數(shù)冪的乘法、冪的乘方這兩個寨的運算性質(zhì),請同學(xué)們通過完成一組練習(xí),來回顧一下這兩個性質(zhì):

填空:

七年級數(shù)學(xué)有理數(shù)教案篇十九

分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識,增強學(xué)生對數(shù)學(xué)的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎(chǔ)之一,它是整個初中代數(shù)的一個基礎(chǔ),它直接關(guān)系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內(nèi)容的學(xué)習(xí)。

2、就第二章而言,有理數(shù)的加法是本章的一個重點。有理數(shù)這一章分為兩大部分----有理數(shù)的意義和有理數(shù)的運算,有理數(shù)的意義是有理數(shù)運算的基礎(chǔ),有理數(shù)的混合運算是這一章的難點,但混合運算是以各種基本運算為基礎(chǔ)的。在有理數(shù)范圍內(nèi)進行的各種運算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進行的各種運算的思考方式(確定結(jié)果的符合和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。

從以上兩點不難看出它的地位和作用都是很重要的。

接下來,介紹本節(jié)課的教學(xué)目標(biāo)、重點和難點。(結(jié)合微機顯示)。

教學(xué)大綱是我們確定教學(xué)目標(biāo),重點和難點的依據(jù)。教學(xué)大鋼規(guī)定,在有理數(shù)的加法的第一節(jié)要使學(xué)生理解有理數(shù)加法的意義,理解有理數(shù)的加法法則,并運用法則進行準(zhǔn)確運算。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。1、知識目標(biāo)是:“(1)理解有理數(shù)加法的意義;(2)理解并掌握有理數(shù)加法的法則;(3)應(yīng)用有理數(shù)加法法則進行準(zhǔn)確運算;(4)滲透數(shù)形結(jié)合的思想。2、能力目標(biāo)是:(1)培養(yǎng)學(xué)生準(zhǔn)確運算的能力;(2)培養(yǎng)學(xué)生歸納總結(jié)知識的能力;3、德育目標(biāo)是:(1)滲透由特殊到一般的辯證唯物主義思想;(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。有理數(shù)加法的意義與小學(xué)學(xué)習(xí)的在正有理數(shù)和零的范圍內(nèi)進行的加法運算的意義相同,讓學(xué)生理解即可,有理數(shù)的加法法則的理解與運用是本節(jié)的重點內(nèi)容。因此本節(jié)課的重點是:有理數(shù)加法法則的理解與運用。由于本階段的學(xué)生很難把握住事物主要特征:如異號兩數(shù)、絕對值不相等的異號兩數(shù)和互為相反數(shù)之間的關(guān)系,這就對法則的理解造成困難。因此我確定本節(jié)課的難,是是;有理數(shù)加法法則的理解。

本節(jié)課是在前面學(xué)習(xí)了有理數(shù)的意義的基礎(chǔ)上進行的,學(xué)生已經(jīng)很牢固地掌握了正數(shù)、負數(shù)、數(shù)軸、相反數(shù)、絕對值等概念,因此我沒有把時間過多地放在復(fù)習(xí)這些舊知識上,而是利用學(xué)生的好奇心,采用生動形象的事例,讓學(xué)生充當(dāng)指揮官的角色,親身參加探索發(fā)現(xiàn),從而獲取知識。在法則的得出過程中,我引進了現(xiàn)代化的教學(xué)工具微機,讓學(xué)生在微機演示的一種動態(tài)變化中自己發(fā)現(xiàn)規(guī)律歸納總結(jié),這不但增加了課堂的趣味性提高了學(xué)生的能力。而且直接地向?qū)W生滲透了數(shù)形結(jié)合的思想。在法則的應(yīng)用這一環(huán)節(jié)我又選配了一些變式練習(xí),通過書上的基本練習(xí)達到訓(xùn)練雙基的目的,通過變式練習(xí)達到發(fā)展智力、提高能力的目的。這些我將在教學(xué)過程的設(shè)計中具體體現(xiàn)。而且在做練習(xí)的過程中讓學(xué)生互相提問,使課堂在學(xué)生的參與下積極有序的進行。

在教學(xué)過程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動情況,使其在教學(xué)過程中在掌握知識同時、發(fā)展智力、受到教育。

1、引入:再課堂的引入上,開始我本打算選擇教材上的例子,但是它過于簡單。并且不宜于引起學(xué)生的注意,所以我選擇了學(xué)生們感興趣的軍事問題,讓學(xué)生在充當(dāng)指揮官的同時,有一種解決問題的成就感,從而使學(xué)生積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍。

2、探索規(guī)律:法則的得出重要體現(xiàn)知識的發(fā)生,發(fā)展,形成過程。我通過了一個小人在坐標(biāo)軸上來回的移動,使學(xué)生在小人的移動過程中體會兩個數(shù)相加的變化規(guī)律。由于采用了形式活潑的教學(xué)手段,學(xué)生能夠全副身心的投入到思考問題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識和技能的全過程。最后由學(xué)生對規(guī)律進行歸納總結(jié)補充,從而得出有理數(shù)的加法法則。

3、鞏固練習(xí):再習(xí)題的配備上,我注意了學(xué)生的思維是一個循序漸進的.過程,所以習(xí)題的配備由難而易,使學(xué)生在練習(xí)的過程中能夠逐步的提高能力,得到發(fā)展。并且采用男生出題,女生回答;女生出題,男生回答,活躍課堂氣氛,充分調(diào)動學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問題。

4、歸納總結(jié):歸納總結(jié)由學(xué)生完成,并且做適當(dāng)?shù)难a充。最后教師對本節(jié)的課進行說明。

七年級數(shù)學(xué)有理數(shù)教案篇二十

師:以前學(xué)過的數(shù),實際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).

問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?

請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負數(shù)的必要性)并思考討論,然后進行交流。

(也可以出示氣象預(yù)報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。

學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。

七年級數(shù)學(xué)有理數(shù)教案篇二十一

本課(節(jié))課題3.1認(rèn)識直棱柱第1課時/共課時。

教學(xué)目標(biāo)(含重點、難點)及。

1、了解多面體、直棱柱的有關(guān)概念.

2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.。

3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。

教學(xué)重點與難點。

教學(xué)重點:直棱柱的有關(guān)概念.

教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。

析:學(xué)生很容易回答出更多的答案。

師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

1.多面體、棱、頂點概念:

2.合作交流。

師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描。

述其特征。)。

師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

學(xué)生活動:分小組討論。

說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

師:請大家找出與長方體,立方體類似的物體或模型。

析:舉出實例。(找出區(qū)別)。

師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長方形含正方形。

長方體和正方體都是直四棱柱。

3.反饋鞏固。

完成“做一做”

析:由第(3)小題可以得到:

直棱柱的'相鄰兩條側(cè)棱互相平行且相等。

4.學(xué)以至用。

出示例題。(先請學(xué)生單獨考慮,再作講解)。

析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)。

最后完成例題中的“想一想”

5.鞏固練習(xí)(學(xué)生練習(xí))。

完成“課內(nèi)練習(xí)”

師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

合作交流后得到:重點直棱柱的有關(guān)概念。

直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側(cè)面都是長方形含正方形。

例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

板書設(shè)計。

作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)。

七年級數(shù)學(xué)有理數(shù)教案篇二十二

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題;。

3、體驗數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實際問題中的價值。

正確分析實際問題中的不等關(guān)系,列出不等式組。

建立不等式組解實際問題的數(shù)學(xué)模型。

出示教科書第145頁例2(略)。

問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

(3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

師生一起討論解決例2.

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

在討論或議論的基礎(chǔ)上老師揭示:

步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

七年級數(shù)學(xué)有理數(shù)教案篇二十三

教師在備課時,應(yīng)充分估計學(xué)生在學(xué)習(xí)時可能提出的問題,確定好重點,難點,疑點,和關(guān)鍵。根據(jù)學(xué)生的實際改變原先的教學(xué)計劃和方法,滿腔熱忱地啟發(fā)學(xué)生的思維,針對疑點積極引導(dǎo)。

非常高興,能有機會和同學(xué)們共同學(xué)習(xí)

昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學(xué)能幫老師算出最后結(jié)果?(學(xué)生在教師引導(dǎo)下回答)

我們已得出了每個小組的最后分?jǐn)?shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。

同學(xué)們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學(xué)表現(xiàn)得最出色?(原意)那么老師就按座次給同學(xué)們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。

希望各組同學(xué)積極思考、踴躍發(fā)言。同學(xué)們有沒有信心得到老師的小獎品?(有)同學(xué)們加油!

我們已得到了這7個小組的最后得分,那位同學(xué)能試著用算式表示?(學(xué)生在教師指導(dǎo)下列算式)

以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學(xué)習(xí)的有理數(shù)的加法(板書課題)。

剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分?jǐn)?shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學(xué)們能列出算式嗎?(學(xué)生列式)對于這個算式,同學(xué)們還能輕易的感知出結(jié)果嗎?(不能)

對于有理數(shù)的加法,有的同學(xué)們能直接感知得到結(jié)果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導(dǎo)學(xué)生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。

前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學(xué)們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)

同學(xué)們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。

(2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導(dǎo)學(xué)生分成兩類,容易得到絕對值相同情況的結(jié)論。再引導(dǎo)學(xué)生觀察絕對值不相同的情況,回答問題)哪位同學(xué)能概括一下這個規(guī)律?(引導(dǎo)學(xué)生得出)

(3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結(jié)論)

同學(xué)們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學(xué)能帶領(lǐng)大家共同回顧一下?(出示投影,學(xué)生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。

同學(xué)們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)

(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學(xué)評價加分)

同學(xué)們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學(xué)對這一內(nèi)容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲?。希望咱們同學(xué)能幫幫他們,看哪位同學(xué)能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)

看來同學(xué)們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學(xué)能解決這個問題呢?(學(xué)生口述 師板書)。在大家的努力下,我們終于攻破了這個難關(guān)。

通過這節(jié)課的學(xué)習(xí),大家有什么收獲?(學(xué)生回答)同學(xué)們都有很多收獲,老師認(rèn)為收獲最多的是優(yōu)勝組的同學(xué),因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領(lǐng)獎,大家掌聲鼓勵!

同學(xué)們,希望你們在未來的學(xué)習(xí)和生活中都能積極進取,獲得一個又一個的勝利。

【本文地址:http://aiweibaby.com/zuowen/15764245.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔