高中數(shù)學(xué)教案集錦(專業(yè)19篇)

格式:DOC 上傳日期:2023-11-28 21:22:14
高中數(shù)學(xué)教案集錦(專業(yè)19篇)
時間:2023-11-28 21:22:14     小編:紫衣夢

撰寫教案時應(yīng)注意語言簡明扼要、條理清晰、有針對性。教案的編寫要注意資源的合理利用和教學(xué)環(huán)境的創(chuàng)設(shè)。https://example.com/教案1

高中數(shù)學(xué)教案集錦篇一

1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認知結(jié)構(gòu)。

3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

高中數(shù)學(xué)教案集錦篇二

各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進行說課。

高中數(shù)學(xué)教案集錦篇三

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學(xué)內(nèi)容是公式(三)。教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

高中數(shù)學(xué)教案集錦篇四

通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

高中數(shù)學(xué)教案集錦篇五

教學(xué)過程:

1、問題引入:

前面我們已經(jīng)研究了一類特殊的數(shù)列――等差數(shù)列。

問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?

(學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。

已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。

師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

(第一次類比)類似的,我們提出這樣一個問題。

問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。

(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)。

2、新課:

1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。

師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。

公式的推導(dǎo):(師生共同完成)。

若設(shè)等比數(shù)列的公比為q和首項為a1,則有:

方法一:(累乘法)。

3)等比數(shù)列的性質(zhì):

下面我們一起來研究一下等比數(shù)列的性質(zhì)。

通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。

問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?

(根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:

3、例題鞏固:

例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。

答案:1458或128。

例2、正項等比數(shù)列{an}中,a6?a15+a9?a12=30,則log15a1a2a3…a20=_10____.

(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)。

1、小結(jié):

今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習(xí)。

我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比――猜想――證明的科學(xué)思維的過程。

2、作業(yè):

p129:1,2,3。

教學(xué)設(shè)計說明:

1、教學(xué)目標(biāo)和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學(xué)教學(xué)除了要傳授知識,更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對培養(yǎng)學(xué)生類比――猜想――證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點。

2、教學(xué)設(shè)計過程:本節(jié)課主要從以下幾個方面展開:

1)通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;。

2)等比數(shù)列的通項公式的推導(dǎo);。

3)等比數(shù)列的性質(zhì);。

有意識的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生回顧舊。

知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。

在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進行鑒別,旨在遵循“特殊――一般――特殊”的認識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識的能力。

在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學(xué)生產(chǎn)生不得不考慮通項公式的'心理傾向,造成學(xué)生認知上的沖突,從而使學(xué)生主動完成對知識的接受。

通過等差數(shù)列和等比數(shù)列的通項公式的比較使學(xué)生初步體會到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。

等比性質(zhì)的研究是本節(jié)課的高潮,通過類比。

關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。

高中數(shù)學(xué)教案集錦篇六

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

知識目標(biāo)――理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標(biāo)――通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標(biāo)――創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。

高中數(shù)學(xué)教案集錦篇七

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)。

練習(xí):1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過a(-10,0)、b(10,0)、c(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求a2p2的長度。

例3、點m(x0,y0)在x2+y2=r2上,求過m的圓的切線方程(一題多解,訓(xùn)練思維)。

高中數(shù)學(xué)教案集錦篇八

1、教學(xué)方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。

2、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強直觀教學(xué),還要預(yù)先做好一些二面角的模型。

高中數(shù)學(xué)教案集錦篇九

1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形?!岸娼恰笔侨私贪妗稊?shù)學(xué)》第二冊(下b)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

2、教學(xué)目標(biāo):。

知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。

德育目標(biāo):(1)使學(xué)生認識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,增強學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。

情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。

3、重點、難點:

重點:“二面角”和“二面角的平面角”的概念。

難點:“二面角的平面角”概念的形成過程。

高中數(shù)學(xué)教案集錦篇十

重點:集合的含義與表示方法.

難點:表示法的恰當(dāng)選擇.

教學(xué)目標(biāo)。

l.知識與技能。

(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;。

(2)知道常用數(shù)集及其專用記號;(3)了解集合中元素的確定性.互異性.無序性;。

(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;。

2.過程與方法。

(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.

3.情感.態(tài)度與價值觀。

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.

高中數(shù)學(xué)教案集錦篇十一

一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法――圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。

高中數(shù)學(xué)教案集錦篇十二

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

(二)教學(xué)內(nèi)容。

本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。

高中數(shù)學(xué)教案集錦篇十三

集合是中學(xué)數(shù)學(xué)的一個重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點是集合的基本概念集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明。

高中數(shù)學(xué)教案集錦篇十四

1.能夠仔細觀察餅干的形狀,初步感知圓形、三角形、正方形這三種圖形的特征。

2.在找朋友的情景中萌生給餅干分類的興趣。

活動準(zhǔn)備。

1.物質(zhì)準(zhǔn)備:一盒裝有圓形、三角形、正方形三種形狀的餅干、電話。

2.經(jīng)驗準(zhǔn)備:吃過不同形狀的餅干。

活動過程。

(一)情景導(dǎo)入,激發(fā)興趣。

有一塊餅干來到了我們小一班,它說自己沒有餅干朋友,感覺很孤單,于是它想邀請餅干朋友來玩,你們說可以嗎?這塊餅干說,它先找長得像自己的朋友。

(二)找一樣形狀的朋友。

1.你們看這塊餅干是什么形狀的,你是怎么看出來的?(圓形,沒邊沒角。)。

2.它打電話邀請餅干朋友說:“喂,圓形餅干們,小一班很好玩,你們想過來玩嗎?”它跟誰打電話?(圓形餅干)。

3.請拿圓形餅干的幼兒做接電話狀。引導(dǎo)全體幼兒一一檢查接電話的幼兒是否有圓形餅干。如果接電話幼兒所持餅干不是圓形的,就拿出來讓全體幼兒分辨,并跟隨老師用手指繞著圓形餅干摸一摸,進一步感知圓形的特征。

(三)找不同形狀的朋友。

1.我看到三角形餅干也來了(出示三角形餅干)。這樣吧,我再打電話給三角形,請三角形餅干接電話。

2.圓形餅干打電話邀請朋友:“喂,三角形餅干們,小一班很好玩,你們過來玩吧?!?/p>

3.請拿三角形餅干的幼兒做接電話狀。引導(dǎo)全體幼兒一一檢查接電話的幼兒是否有三角形餅干。如果所持餅干不是三角形的,就拿出來讓全體幼兒重點辨認,并跟隨老師用手指繞三角形餅干摸一摸,再次認識三角形的特征。

4.正方形餅干也來了(出示正方形餅干),我也打個電話給它們,請正方形餅干接電話。

5.重復(fù)2、3步驟。

(四)幼兒操作練習(xí)。

1.打開幼兒活動材料《數(shù)學(xué)》第4頁。

2.講解要求:剛才餅干找朋友的事已經(jīng)寫在書上了,請你們翻開書看一看有些什么形狀的餅干,給同一種形狀的餅干涂上相同的顏色。

3.幼兒操作,教師巡回指導(dǎo)并評價。

高中數(shù)學(xué)教案集錦篇十五

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。

利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

二.問題討論。

思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.

思維點撥::三角形中的三角變換,應(yīng)靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).

例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺。

風(fēng)中心位于城市o(如圖)的東偏南方向。

300km的海面p處,并以20km/h的速度向西偏北的。

方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,

并以10km/h的速度不斷增加,問幾小時后該城市開始受到。

臺風(fēng)的侵襲。

一.小結(jié):

1.利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。

2。利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;。

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問題常用的手段.

三.作業(yè):p80闖關(guān)訓(xùn)練。

高中數(shù)學(xué)教案集錦篇十六

活動目標(biāo):

1、嘗試根據(jù)生活經(jīng)驗找到由相應(yīng)關(guān)系的圖片,或根據(jù)圖片說出與之對應(yīng)的物體。

2、在游戲中獲得愉快的體驗,并初步感知一一對應(yīng)的關(guān)系。

活動準(zhǔn)備:

1、對應(yīng)關(guān)系的紅藍圖片若干,如牙膏與牙刷、小貓與小魚、娃娃與奶瓶。

2、幼兒已經(jīng)會唱歌曲《找朋友》。

3、幼兒用書第12頁。

活動過稱:

一、我的朋友在哪里----玩游戲“圖片找朋友”,初步感知物體的對應(yīng)關(guān)系。

1、幼兒邊唱歌曲,邊玩游戲。

2、圖片找朋友,感知對應(yīng)關(guān)系。

--這個游戲真好玩,我也很想玩,猜猜我的朋友會是誰呢?

--我們的朋友會是誰?

二、小紅小蘭對對碰—尋找有對應(yīng)關(guān)系的朋友,初步獲得一一對應(yīng)的相關(guān)經(jīng)驗。

1、個別游戲,尋找有對應(yīng)關(guān)系的朋友。

--小蘭,你們的朋友會是誰?請你去找你的小紅。

2、集體游戲,找到有對應(yīng)關(guān)系的圖片做朋友。

三、超級對對碰,根據(jù)圖片說出與圖片對應(yīng)的物體。

1、說說與圖片相對應(yīng)的物體。

--這次請小蘭去找一位沒有卡片的朋友,找到后相互說說in的朋友是誰?

高中數(shù)學(xué)教案集錦篇十七

掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

【難點】。

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

三、教學(xué)過程。

(一)復(fù)習(xí)舊知,引出課題。

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問1:已知圓心為(1,―2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案集錦篇十八

等比數(shù)列性質(zhì)請同學(xué)們類比得出.

【方法規(guī)律】。

1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學(xué)思想和方法.

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)。

a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)。

3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.

【示范舉例】。

例1:

(1)設(shè)等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為.

(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1=,q=.

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).

例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.

高中數(shù)學(xué)教案集錦篇十九

活動目標(biāo):

個------。

2、知道班里除了有一個我,還有許多個我的好朋友,體驗與朋友在一起的快樂。

活動重難點:

發(fā)現(xiàn)并感知1和許多的關(guān)系。

活動準(zhǔn)備:

1、人手一個玩具雪花插片,紅簍子、黃簍子各一個。

2、《幼兒畫冊》。

活動過程:

1、區(qū)別“1”和“許多”。

提問:紅簍子里有什么?有幾個?

黃簍子里有什么?有幾個?

引導(dǎo)幼兒說出:一個雪花插片,許多雪花插片。

2、感知“1”和“許多”的關(guān)系。

(1)提問:紅簍子里只有1個雪花插片,怎樣變成許多雪花插片?

引導(dǎo)幼兒想出辦法:往簍子里送雪花插片,邊送邊說:“我送了一個雪花插片?!?/p>

(2)提問:紅簍子里原來只有一個雪花插片,現(xiàn)在有多少個呢?

引導(dǎo)幼兒感知1個、1個------合起來就是許多。

(3)送朋友。

提問:圓圈里有幾個孩子?圓圈里怎樣可以只有一個孩子呢?

引導(dǎo)孩子依次走出圓圈,邊走邊說:“下次再來玩。”

提問:圓圈里原來有幾個孩子?現(xiàn)在有多少個呢?

引導(dǎo)孩子感知許多可以分成1個、1個-------。

3、操作練習(xí):完成,幼兒畫冊第三冊第四頁的練習(xí),鞏固對“1”和“許多”的認識。

建議:

結(jié)合平時的生活活動、游戲活動,讓幼兒反復(fù)感知1和許多的關(guān)系。

【本文地址:http://aiweibaby.com/zuowen/16172614.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔