議論文是一種重要的文體類型,它既要有邏輯嚴(yán)密的論證,又要有獨(dú)特的觀點和立場??偨Y(jié)可以借鑒一些寫作技巧,如采用概括性的句子、使用引用等。以下是小編為大家整理的總結(jié)范文,希望能夠給大家提供一些借鑒和參考。
鴿巢問題單元教學(xué)設(shè)計篇一
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€筒至少放進(jìn)2支筆”這句話對于學(xué)生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動者,特別是這種原理的初步認(rèn)識,不應(yīng)該是教師牽著學(xué)生去認(rèn)識,而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。
《鴿巢問題》這是一類與“存在性”有關(guān)的問題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學(xué),介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢至少放進(jìn)2個物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢里至少放進(jìn)(商+1)個物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過程。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問題,他們在具體分得過程中,都在運(yùn)用平均分的方法,也能就一個具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒有接觸,所以他們可能會認(rèn)為至少的情況就應(yīng)該是“1”。
1、通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建模”思想。
2、經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3、通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
1、具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運(yùn)用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進(jìn)了2支筆。”)。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報。
2匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個筒里,總有一個筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進(jìn)同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2、師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(jìn)(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
課件出示習(xí)題.:
1、三個小朋友同行,其中必有幾個小朋友性別相同。
2、五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3、從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
鴿巢問題單元教學(xué)設(shè)計篇二
教學(xué)內(nèi)容:教科書第68頁例1。
教學(xué)目標(biāo):
1、使學(xué)生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運(yùn)用“抽屜原理”解決相關(guān)的實際問題或解釋相關(guān)的現(xiàn)象。
2、通過操作、觀察、比較、說理等數(shù)學(xué)活動,使學(xué)生經(jīng)歷抽屜原理的形成過程,體會和掌握邏輯推理思想和模型思想,提高學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:
經(jīng)歷“抽屜原理”的探究過程,了解掌握“抽屜原理”。
教學(xué)難點:
理解“抽屜原理”,并對一些簡單的實際問題加以“模型化”。
教學(xué)模式:
學(xué)、探、練、展。
教學(xué)準(zhǔn)備:
多媒體課件一套。
教學(xué)過程:。
一、游戲?qū)搿?/p>
1.師生玩“撲克牌魔術(shù)”游戲。
(2)玩游戲,組織驗證。
通過玩游戲驗證,引導(dǎo)學(xué)生體會到:不管怎么抽,總有兩張牌是同花色的。
2.導(dǎo)入新課。
剛才這個游戲當(dāng)中,蘊(yùn)含著一個數(shù)學(xué)問題,這節(jié)課我們就一起來研究這個有趣的問題。
二、呈現(xiàn)問題,探究新知。
課件出示自學(xué)提示:
(1)“總有”和“至少”是什么意思?
(2)把4支鉛筆放進(jìn)3個筆筒中,可以怎么放?有幾種。
不同的放法?(請大家用擺一擺、畫一畫、寫一寫等方法把自己的想法表示出來。)。
(3)把4支鉛筆放進(jìn)3個筆筒中,不管怎么放總有一個筆筒至少放進(jìn)xxx支鉛筆?
(一)自主探究,初步感知。
1、學(xué)生小組合作探究。
2、反饋交流。
(1)枚舉法。
(2)數(shù)的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(3)假設(shè)法。
師:除了像這樣把所有可能的情況都列舉出來,還有沒有別的。
方法也可以證明這句話是正確的呢?
生:我是這樣想的,先假設(shè)每個筆筒中放1支,這樣還剩1支。這時無論放到哪個筆筒,那個筆筒中就有2支了。
師:你為什么要先在每個筆筒中放1支呢?
生:因為總共有4支,平均分,每個筆筒只能分到1支。
師:你為什么一開始就平均分呢?(板書:平均分)。
生:平均分就可以使每個筆筒里的筆盡可能少一點。
生:平均分已經(jīng)使每個筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。
(4)確認(rèn)結(jié)論。
師:到現(xiàn)在為止,我們可以得出什么結(jié)論?
生(齊):把4支鉛筆放進(jìn)3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。
(二)提升思維,構(gòu)建模型。
師:(口述)那要是。
(1)把5支鉛筆放進(jìn)4個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。
(2)把6支鉛筆放進(jìn)5個筆筒中,不管怎么放,總有一個筆筒里至少有xx支鉛筆。
(3)10支鉛筆放進(jìn)9個筆筒中呢?100支鉛筆放進(jìn)99個筆筒中。
2.建立模型。
師:通過剛才的.分析,你有什么發(fā)現(xiàn)?
生:只要鉛筆的數(shù)量比筆筒的數(shù)量多1,那么總有一個筆筒至少要放進(jìn)2支筆。
師:對。鉛筆放進(jìn)筆筒我們會解釋了,那么有關(guān)鴿子飛入鴿巢的問題,大家會解釋嗎?(課件出示)。
師:以上這些問題有什么相同之處呢?
生:其實都是一樣的,鴿巢就相當(dāng)于筆筒,鴿子就相當(dāng)于鉛筆。
師:像這樣的數(shù)學(xué)問題,我們就叫做“鴿巢問題”或“抽屜問題”,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做“鴿巢問題”或“抽屜問題”。(揭題)。
三、基本練習(xí)。
四、拓展提升。
五、課堂小結(jié)。
六、作業(yè)布置。
完成課本第71頁,練習(xí)十三,第1題。
鴿巢問題單元教學(xué)設(shè)計篇三
“鴿巢”問題就是“抽屜原理”,教材通過三個例題來呈現(xiàn)本章知識,“鴿巢”問題教學(xué)反思。例1:本例描述“抽屜原理”的最簡單的情況,例2:本例描述“抽屜原理”更為一般的形式,例3:跟之前教材的編排是一樣的,是抽屜原理的一個逆向的應(yīng)用。本節(jié)內(nèi)容實際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。讓學(xué)生經(jīng)歷將具體問題數(shù)學(xué)化的過程,初步形成模型思想,體會和理解數(shù)學(xué)與外部世界的緊密聯(lián)系,發(fā)展抽象能力、推理能力和應(yīng)用能力,是課標(biāo)的重要要求。
興趣是學(xué)習(xí)最好的老師。所以在本節(jié)課我認(rèn)真鉆研教材,吃透教材,盡量找到好的方法引課,在網(wǎng)上搜索了一個較好的引課設(shè)計,就照搬了:“同學(xué)們:在上新課之前,我們來做個“搶凳子”游戲怎么樣?想?yún)⑴c這個游戲的請舉手。叫舉手的一男一女兩個同學(xué)上臺,然后問,老師想叫三位同學(xué)玩這個游戲,但是現(xiàn)在已有兩個,你們說最后一個是叫男生還是女生呢?”同學(xué)們回答后,老師就說:“不管是男生還是女生,總有二個同學(xué)的性別是一樣的,你們同意嗎?”并通過三人“搶凳子”游戲得出不管怎樣搶“總有一根凳子至少有兩個同學(xué)”。借機(jī)引入本節(jié)課的重點“總有……至少……”。這樣設(shè)計使學(xué)生在生動、活潑的數(shù)學(xué)活動中主動參與。
鴿巢問題單元教學(xué)設(shè)計篇四
鴿巢問題是我們數(shù)學(xué)中比較有意思且在生活中運(yùn)用比較廣泛的問題。因此,在錄制一師一優(yōu)課時我想到了給學(xué)生講這一節(jié)課,使學(xué)生更加清楚的認(rèn)識到數(shù)學(xué)是源于生活,并運(yùn)用于生活中的。
鴿巢問題又可以叫做抽屜原理,是一種在生活中常見的數(shù)學(xué)原理,許多游戲的設(shè)置都運(yùn)用了該原理,例如搶凳子游戲,紙牌游戲等。因此,在講課開始我先用紙牌游戲中引出今天的鴿巢問題,讓學(xué)生帶著好奇心來學(xué)習(xí)本節(jié)課內(nèi)容。接著我出示例題,先找一位同學(xué)演示3支筆放進(jìn)2個筆筒中應(yīng)該怎么放,并記錄下來,使學(xué)生明白小組應(yīng)該怎樣進(jìn)行活動并記錄。接著出示課本例1的題目,學(xué)生小組內(nèi)通過剛才的方法很輕易的就找出一共有幾種方法,在找一位學(xué)生進(jìn)行演示加強(qiáng)大家的認(rèn)識。我有介紹了剛才學(xué)生們實驗的方法叫做枚舉法。并通過觀察引出概念總有一個筆筒里至少有2支鉛筆。接著讓學(xué)生們轉(zhuǎn)換思想求實有沒有更簡單的方法得出結(jié)論,學(xué)生通過實驗和討論得出可以用平均分的方法得到同樣的結(jié)論。并把其轉(zhuǎn)化為算式。
接著增加鉛筆和筆筒的個數(shù)仍能得到相同的結(jié)論,由此學(xué)生發(fā)現(xiàn)當(dāng)鉛筆數(shù)比筆筒數(shù)多1時,總有一個筆筒至少有2支鉛筆的結(jié)論。把鉛筆和筆筒換成其他物品學(xué)生還能相似的結(jié)論,說明學(xué)生已經(jīng)可以學(xué)移致用了。之后介紹鴿巢問題的發(fā)現(xiàn)者,增加學(xué)生的知識面。
最后,我又引到游戲揭示答案,再通過幾道層次遞進(jìn)的題目的練習(xí),使學(xué)生能夠靈活運(yùn)用鴿巢問題,從而達(dá)到本節(jié)課的教學(xué)目的。
鴿巢問題單元教學(xué)設(shè)計篇五
審定人教版六年級下冊數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問題》,也就是原實驗教材《抽屜原理》。
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€筒至少放進(jìn)2支筆”這句話對于學(xué)生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動者,特別是這種原理的初步認(rèn)識,不應(yīng)該是教師牽著學(xué)生去認(rèn)識,而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。
《鴿巢問題》這是一類與“存在性”有關(guān)的問題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學(xué),介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢至少放進(jìn)2個物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢里至少放進(jìn)(商+1)個物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的'除法算式表示思維的過程。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問題,他們在具體分得過程中,都在運(yùn)用平均分的方法,也能就一個具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒有接觸,所以他們可能會認(rèn)為至少的情況就應(yīng)該是“1”。
1.通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運(yùn)用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進(jìn)了2支筆。”)。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報。
2匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個筒里,總有一個筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
1.課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進(jìn)同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(jìn)(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
課件出示習(xí)題:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
鴿巢問題單元教學(xué)設(shè)計篇六
1.經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢問題”解決簡單的實際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“鴿巢問題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
重點:經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。難點:理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
多媒體課件。
紙杯。
吸管。
一、課前游戲引入。
生:想。
師:我這里有一副撲克牌,我找五位同學(xué)每人抽一張。老師猜。(至少有兩張花色一樣)。
二、通過操作,探究新知。
(一)探究例1。
1、研究3根小棒放進(jìn)2個紙杯里。
(1)要把3枝小棒放進(jìn)2個紙杯里,有幾種放法?請同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
(2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)(3)從兩種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結(jié):在研究3根小棒放進(jìn)2個紙杯時,同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個紙杯里放進(jìn)2根小棒)。
2、研究4根小棒放進(jìn)3個紙杯里。
(1)要把4根小棒放進(jìn)3個紙杯里,有幾種放法?請同學(xué)們動手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個紙杯里至少有2根小棒)。
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個紙杯里放進(jìn)2根小棒”。
師:大家看,全放到一個杯子里,就有四個了。太多了。那怎么樣讓每個杯子里都盡可能少,你覺得應(yīng)該要怎樣放?(小組合作,討論交流)(每個紙杯里都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個紙杯,總會有一個紙杯里至少有2根小棒)(你真是一個善于思想的孩子。)。
(6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個紙杯里里放1根小棒,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
(8)在探究4枝鉛筆放進(jìn)3個文具盒的問題,同學(xué)們的方法有兩種,一是。
3、類推:把5枝小棒放進(jìn)4個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把6枝小棒放進(jìn)5個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把7枝小棒放進(jìn)6個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
把100枝小棒放進(jìn)99個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的小棒比紙杯的數(shù)量多1,總有一個紙杯里至少放進(jìn)2根小棒。)。
5、小結(jié):剛才我們分析了把小棒放進(jìn)紙杯的情況,只要小棒數(shù)量多于紙杯數(shù)量時,總有一個紙杯里至少放進(jìn)2根小棒。
這就是今天我們要學(xué)習(xí)的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?小棒相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么紙杯就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個抽屜里放進(jìn)了2個物體。
小練習(xí):
1、任意13人中,至少有幾人的出生月份相同?
2、任意367名學(xué)生中,至少有幾名學(xué)生,他們在同一天過生日?為什么?
3、任意13人中,至少有幾人的屬相相同?”
6、剛才我們研究的是小棒數(shù)比紙杯多1的情況,如果小棒比紙杯數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個紙杯里至少有2根小棒?!?/p>
鴿巢問題單元教學(xué)設(shè)計篇七
教學(xué)內(nèi)容:教科書第68、69頁例1、2。
教學(xué)目標(biāo):
1、使學(xué)生經(jīng)歷將一些實際問題抽象為代數(shù)問題的過程,并能運(yùn)用所學(xué)知識解決有關(guān)實際問題。
2、能與他人交流思維過程和結(jié)果,并學(xué)會有條理地、清晰地闡述自己的觀點。
教學(xué)重點:分配方法。
教學(xué)難點:分配方法。
教學(xué)方法:列舉法分析法。
學(xué)習(xí)方法:嘗試法自主探究法。
教學(xué)用具:課件。
教學(xué)過程:
一、定向?qū)W(xué)(3分)。
(一)游戲引入。
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?
游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。
(二)揭示目標(biāo)。
理解并掌握解決鴿巢問題的解答方法。
二、自主學(xué)習(xí)(8分)。
1、看書68頁,閱讀例1:把4枝鉛筆放進(jìn)3個文具盒中,可以怎么放?有幾種情況?
(1)理解“總有”和“至少”的意思。
(2)理解4種放法。
2、全班同學(xué)交流思維的過程和結(jié)果。
3、跟蹤練習(xí)。
68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進(jìn)同一個鴿舍里。為什么?
(1)說出想法。
如果每個鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個鴿舍或分別飛進(jìn)其中的兩個鴿舍。所以至少有2只鴿子飛進(jìn)同一個鴿舍。
(2)嘗試分析有幾種情況。
(3)說一說你有什么體會。
三、合作交流(8)。
1、出示例2。
把7本書放進(jìn)3個抽屜中,不管怎么放,總有一個抽屜至少放進(jìn)幾本書?(1)合作交流有幾種放法。
不難得出,總有一個抽屜至少放進(jìn)3本。
(2)指名說一說思維過程。
如果每個抽屜放2本,放了6本書。剩下的1本還要放進(jìn)其中一個抽屜,所以至少有1個抽屜放進(jìn)3本書。
2、如果一共有8本書會怎樣呢10本呢?
3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。為什么?
四、質(zhì)疑探究(5分)。
小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個抽屜至少放進(jìn)的本數(shù)。
2、做一做。
69頁做一做2題。
五、小結(jié)檢測(10)。
(一)小結(jié)。
物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜里至少放進(jìn)(商+1)個物體。
(二)檢測。
1、填空。
(1)7只鴿子飛進(jìn)5個鴿舍,至少有()只鴿子要飛進(jìn)同伴的鴿舍里。
(2)有9本書,要放進(jìn)2個抽屜里,必須有一個抽屜至少要放()本書。
(3)四年級兩個班共有73名學(xué)生,這兩個班的學(xué)生至少有()人是同一月出生的。4、任意給出3個不同的自然數(shù),其中一定有2個數(shù)的'和是()數(shù)。
2、選擇。
3、幼兒園老師準(zhǔn)備把15本圖畫書分給14個小朋友,結(jié)果是什么?
六、作業(yè)(6分)。
完成課本練習(xí)十二第2、4題。
板書。
抽屜原理。
物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜里至少放進(jìn)(商+1)個物體。
鴿巢問題單元教學(xué)設(shè)計篇八
1、教學(xué)內(nèi)容:人教版義務(wù)教育教科書六年級下冊第68頁例1及做一做。
2、教材地位及作用。
本單元用直觀的方法,介紹了“鴿巢問題”的兩種形式,并安排了很多具體問題和變式,幫助學(xué)生加深理解,學(xué)會利用“鴿巢問題”解決簡單的實際問題。實際上,通過“說理”的方式來理解“鴿巢問題”的過程就是一種數(shù)學(xué)證明的雛形,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。
(二),才能靈活運(yùn)用這一原理解決各種實際問題。
要創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主體性。
2、思維特點:知識掌握上,六年級的學(xué)生對于總結(jié)規(guī)律的方法接觸比較少,尤其對于“數(shù)學(xué)證明”。因此教師要耐心細(xì)致的引導(dǎo),重在讓學(xué)生經(jīng)歷知識發(fā)生、發(fā)展的過程,而不是生搬硬套,只求結(jié)論,要讓學(xué)生不但知其然,更要知其所以然。
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容以及學(xué)生的學(xué)情,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:
知識性目標(biāo):初步了解“鴿巢問題”的特點,理解“鴿巢問題”的含義,會用此原理解決簡單的實際問題。
能力性目標(biāo):經(jīng)歷探究“鴿巢問題”的學(xué)習(xí)過程,通過實踐操作,發(fā)現(xiàn)、歸納、總結(jié)原理,滲透數(shù)形結(jié)合的思想。
情感性目標(biāo):通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,感受到數(shù)學(xué)的魅力。
教學(xué)重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。
教學(xué)難點:找出“鴿巢問題”解決的竅門進(jìn)行反復(fù)推理。
教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實踐操作法。根據(jù)六年級學(xué)生的理解能力和思維特征,為使課堂生動、高效,課堂始終以設(shè)疑及觀察思考討論貫穿于整個教學(xué)環(huán)節(jié)中,采用師生互動的教學(xué)模式進(jìn)行啟發(fā)式教學(xué)。
學(xué)法上主要采用了自主合作、探究交流的學(xué)習(xí)方式。體現(xiàn)數(shù)學(xué)知識的形成過程,讓學(xué)生在自己的經(jīng)驗中通過觀察,實驗,猜測,交流等數(shù)學(xué)活動形成良好的數(shù)學(xué)思維習(xí)慣,提高解決問題的能力,感受數(shù)學(xué)學(xué)習(xí)的樂趣。
在教學(xué)設(shè)計上,我本著“以學(xué)定教”的設(shè)計理念,把教學(xué)過程分四環(huán)節(jié)進(jìn)行:設(shè)疑導(dǎo)入,激發(fā)興趣——自主操作,探究新知——?dú)w納小結(jié),形成規(guī)律——回歸生活,靈活應(yīng)用。
在導(dǎo)入部分,通過抽撲克牌“魔術(shù)”,激發(fā)學(xué)生的興趣,引入新知。
根據(jù)學(xué)生學(xué)習(xí)的困難和認(rèn)知規(guī)律,我在探究部分設(shè)計了三個層次的數(shù)學(xué)活動。
(一)實物操作,初步感知。
學(xué)生通過例1要求通過“把4枝鉛筆放入3個筆筒”的實際操作,解決3個問題:
1、怎樣放?
重點是讓學(xué)生明確如果只是放入每個筆筒中的枝數(shù)的排序不一樣,應(yīng)視為一種分法,并引導(dǎo)其有序思考,為后面枚舉法的運(yùn)用掃清障礙。
2、共有幾種放法?
這里主要是孕伏對“不管怎樣放”的理解。
3、認(rèn)識“總有一個”的意義。
通過觀察筆筒中鉛筆枝數(shù),找出4種放法中鉛筆枝數(shù)最多的筆筒中枝數(shù)分別有哪幾種情況,理解“總有一個”的含義,得到一個初步的印象:不管怎么放,總有一個筆筒放的枝數(shù)是最多的,分別是2枝,3枝和4枝。
(二)脫離具體操作,由形抽象到數(shù)。
通過“思考:把5枝鉛筆放入4個筆筒,又會出現(xiàn)怎樣的情況?”由學(xué)生直接完成表格,達(dá)成三個目的:
1、理解“至少”的含義,準(zhǔn)確表述現(xiàn)象。
(1)通過觀察表格中枝數(shù)最多的筆筒里的數(shù)據(jù),讓學(xué)生在“最多”中找“最少”。
(2)學(xué)會用“至少”來表達(dá),概括出“5枝放4盒”、“4枝放3盒”時,總有一個筆筒里至少放入2枝鉛筆的結(jié)論。
2、理解“平均分”的思路,知道為什么要“平均分”。抓住最能體現(xiàn)結(jié)論的一種情況,引導(dǎo)學(xué)生理解怎樣很快知道總有一個筆筒里至少是幾枝的方法——就是按照筆筒數(shù)平均分,只有這樣才能讓最多的筆筒里枝數(shù)盡可能少。
3、抽象概括,小結(jié)現(xiàn)象。
通過“4枝放入3個筆筒”、”5枝放入4個筆筒”等不同的實例讓學(xué)生較充分地感受、體驗、發(fā)現(xiàn)相同的現(xiàn)象,讓學(xué)生抽象概括出“當(dāng)物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體”,初步認(rèn)識鴿巢原理。
(三)學(xué)生自選問題探究。
首先設(shè)下疑問:“如果物體數(shù)不止比抽屜數(shù)多1,不管怎樣放,總有一個鉛筆盒中至少要放入幾枝鉛筆?”這一層次請學(xué)生理解當(dāng)余數(shù)不是1時,要經(jīng)歷兩次平均分,第一次是按抽屜的平均分,第二次是按余下的枝數(shù)平均分,只有這樣才能達(dá)到讓“最多的盒子里枝數(shù)盡可能少”的目的。
在學(xué)生經(jīng)歷了真實的探究過程后,我將本節(jié)課研究過的所有實例通過課件進(jìn)行總體呈現(xiàn)。讓學(xué)生通過比較,總結(jié)出抽屜原理中最簡單的情況:物體數(shù)不到抽屜數(shù)的2倍時,不管怎樣放,總有一個抽屜中至少要放入2個物體。
研究的問題來源于生活,還要還原到生活中去。
在教學(xué)的最后,請學(xué)生用這節(jié)課學(xué)的鴿巢原理解釋課始老師的魔術(shù)問題,進(jìn)行首尾的呼應(yīng);再讓學(xué)生應(yīng)用“鴿巢原理”解決的生活中簡單有趣的實際問題,激發(fā)學(xué)生的興趣,進(jìn)一步培養(yǎng)學(xué)生的“模型”思想,讓學(xué)生能正確地找出問題中什么是待分的“物體”,什么是“抽屜”,讓學(xué)生體會抽屜的形式是多種多樣的。同時也讓學(xué)生感受到數(shù)學(xué)知識在生活中的應(yīng)用,感受到數(shù)學(xué)的魅力。
鴿巢問題單元教學(xué)設(shè)計篇九
一堂好的數(shù)學(xué)課,我認(rèn)為應(yīng)該是原生態(tài),充滿“數(shù)學(xué)味”的課。本節(jié)課我讓學(xué)生經(jīng)歷了探究“鴿巢問題”的過程,初步了解了“鴿巢問題”,并能夠應(yīng)用與實際。
一、情境導(dǎo)入,初步感知。
興趣是最好的老師,在導(dǎo)入新課時,我以4人的搶凳子游戲,初步感受至少有兩位同學(xué)相同的現(xiàn)象,抓住學(xué)生注意力。
二、教學(xué)時以學(xué)生為主體,以學(xué)定教。
由于課前讓學(xué)生做了預(yù)習(xí),所以在課上我并沒有“滿堂灌”,而是先了解學(xué)生的已知和未知點,讓預(yù)習(xí)程度好的'同學(xué)來試著解決其他同學(xué)提出的問題,再師生質(zhì)疑,完成對新知的傳授。這樣既培養(yǎng)了學(xué)生預(yù)習(xí)的習(xí)慣,又能讓學(xué)生找到知識的盲點,從而對本節(jié)課感興趣,同時又鍛煉了學(xué)生的語言表達(dá)能力。
三、通過練習(xí),解釋應(yīng)用。
四、適當(dāng)設(shè)計形式多樣的練習(xí),可以引起并保持學(xué)生的學(xué)習(xí)興趣。如,撲克牌的游戲,學(xué)生們非常感興趣,達(dá)到了預(yù)期的效果。
不足:
1、學(xué)生們語言表達(dá)能力還有待提高。
2、課堂中教師與速較快。
將本文的word文檔下載到電腦,方便收藏和打印。
鴿巢問題單元教學(xué)設(shè)計篇十
教科書第68頁例1。
(一)知識與技能:通過數(shù)學(xué)活動讓學(xué)生了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。
(二)過程與方法:結(jié)合具體的實際問題,通過實驗、觀察、分析、歸納等數(shù)學(xué)活動,讓學(xué)生通過獨(dú)立思考與合作交流等活動提高解決實際問題的能力。
(三)情感態(tài)度和價值觀:在主動參與數(shù)學(xué)活動的過程中,讓學(xué)生切實體會到探索的樂趣,讓學(xué)生切實體會到數(shù)學(xué)與生活的緊密結(jié)合。
教學(xué)重點:經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。
教學(xué)難點:通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
多媒體課件。
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動我們來了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。
1、請同學(xué)們先來看例1。把4支鉛筆放進(jìn)3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。
請你再把題讀一次,這是為什么呢?
對總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆?;蛘呤钦f,鉛筆的支數(shù)要大于或等于兩支。
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?
方法二:用“假設(shè)法”證明。
對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進(jìn)2支鉛筆。(平均分)。
方法三:列式計算。
你能用算式表示這個方法嗎?
學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個筆筒,總有一個筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計算。
3、100支鉛筆,放進(jìn)99個筆筒,總有一個筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時候用起來比較麻煩??梢杂眉僭O(shè)法和列式計算。
4、表格中通過整理,總結(jié)規(guī)律。
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時,至少數(shù)等于2“商+1”。
經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實最早發(fā)現(xiàn)這個規(guī)律的不是我們,而是德國的一個數(shù)學(xué)家“狄里克雷”。
好,我們做幾道題檢測一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?
3、5只鴿子飛進(jìn)了3個鴿籠,總有一個鴿籠至少飛進(jìn)了2只鴿子。為什么?
今天你有什么收獲呢?
作業(yè):兩導(dǎo)兩練第70頁、71頁實踐應(yīng)用1、4題。
鴿巢問題單元教學(xué)設(shè)計篇十一
1.通過觀察、比較、判斷、歸納等方法,理解“抽屜原理”。
2.能夠根據(jù)“抽屜原理”解決生活中的實際問題。
【學(xué)習(xí)過程】。
一、知識鋪墊。
3個同學(xué)坐2張凳子。猜一猜結(jié)果怎樣?
我發(fā)現(xiàn):。
二、自主探究。
1.例:把4只鉛筆放進(jìn)3個文具盒中,有幾種不同的方法?
枚舉法:我們用括號里的`三個數(shù)字,分別代表三個文具盒中鉛筆的枝數(shù),則有(4,0,0),(),(),()等幾種情況。
假設(shè)法:假設(shè)先在每個文具盒中放1枝鉛筆,3個文具盒里就放了??______枝鉛筆,還剩下_____枝,放入任意一個文具盒,那么這個文具盒中就有______枝鉛筆。
小組討論:不管用哪種方法,文具盒中的鉛筆枝數(shù)總有什么特點?
小結(jié):把4枝鉛筆放到3個盒子里,不管怎么放,總有一個盒子里至少有_____枝鉛筆。
2.思考:把上述例題中的鉛筆換成蘋果,盒子換成抽屜,是否還有剛才的結(jié)論?
結(jié)論:
__________________________________________________________。
3.把5個蘋果放入4個抽屜,總有一個抽屜里至少有_____個蘋果?
把7個蘋果放入6個抽屜,總有一個抽屜里至少有_____個蘋果?
把100個蘋果放入99個抽屜,結(jié)論:______________________________。
你有什么發(fā)現(xiàn):
__________________________________________________。
當(dāng)蘋果個數(shù)比較多時,我們一般用什么方法思考?說一說枚舉法和假設(shè)法的優(yōu)缺點。
___________________________________________。
5.回顧反思。
通過以上學(xué)習(xí)你收獲了什么?你還有哪些疑問或困惑可以先在小組內(nèi)商討,解決不了的可以告訴老師一起解決。
三、課堂達(dá)標(biāo)。
1.6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進(jìn)同一個鴿舍里,為什么?
2.一盒圍棋棋子,黑白子混放,我們?nèi)我饷?個棋子,結(jié)果怎樣?(提示:把什么看作物體,什么看作抽屜?)。
3.足球隊共有13名學(xué)生,一定至少有2名學(xué)生的生日在同一個月里,為什么?
鴿巢問題單元教學(xué)設(shè)計篇十二
教學(xué)目標(biāo):
1.學(xué)生經(jīng)歷解決問題的過程,學(xué)會用除法兩步計算解決問題。
2.學(xué)生通過解決具體問題,獲得一些用除法計算解決問題的活動經(jīng)驗,感受數(shù)學(xué)在日常生活中的'作用。
3.在解決問題的過程中,放手讓學(xué)生自主探究,培養(yǎng)學(xué)生學(xué)習(xí)的自主性,感受解決問題方法的多樣性。
教學(xué)過程:
一、復(fù)習(xí)舊知,引入新課。
1.復(fù)習(xí)舊知,解決問題。
(1)有24瓶牛奶飲料,如果每箱可以裝4瓶,可以裝幾箱?
學(xué)生獨(dú)立練習(xí),匯報解決過程,師生簡單評價。
2.教師談話,引入新課。
我們這節(jié)課繼續(xù)學(xué)習(xí)dd解決問題。
設(shè)計意圖:復(fù)習(xí)除法一步計算和乘法兩步計算的解決問題,為學(xué)生學(xué)習(xí)新課做好知識鋪墊和心理準(zhǔn)備。引入新課,指明學(xué)習(xí)任務(wù),簡明扼要。
二、創(chuàng)設(shè)情境,探究新知。
(一)自主探究、學(xué)習(xí)新知。
1.創(chuàng)設(shè)情境,學(xué)生搜集信息。
多媒體播放學(xué)生團(tuán)體操表演的畫面,指出:團(tuán)體操表演是運(yùn)動會上的又一項內(nèi)容,并顯示出“這場團(tuán)體操有60人表演”的信息。
2.學(xué)生說出所觀察、搜集到的信息,提出一個兩步計算的問題:每個小圈有多少人?
3.學(xué)生自主探究解決方法,然后同桌交流,允許有困難的學(xué)生先交流再解答。
4.個別匯報解決方法和結(jié)果,鼓勵學(xué)生提出不同的解決問題的方法。
5.全體學(xué)生針對不同的解決方法,進(jìn)行評價,表揚(yáng)有不同解決問題方法的學(xué)生。
(二)學(xué)生自主解決教科書第99頁的做一做。
1.學(xué)生獨(dú)立看圖獲取信息,獨(dú)立解決,鼓勵解決方法的多樣性。
2.學(xué)生互相交流自己的解決過程和方法。
3.匯報解決問題的過程和方法。
4.組織學(xué)生進(jìn)行評價。
設(shè)計意圖:充分調(diào)動學(xué)生的學(xué)習(xí)經(jīng)驗和生活經(jīng)驗,讓學(xué)生自主收集、理解數(shù)學(xué)信息,采用獨(dú)立嘗試、討論等方式,讓學(xué)生主動探索解決問題的方法,體現(xiàn)學(xué)生學(xué)習(xí)的自主性;鼓勵學(xué)生尋找解決問題的多種方法,對于學(xué)生合乎情理的闡述,給予積極鼓勵,激發(fā)學(xué)生探索的欲望,增強(qiáng)信心,提高解決問題的能力。
三、實踐應(yīng)用、鞏固提高。
1.解決練習(xí)二十三的第10題。
學(xué)生獨(dú)立練習(xí),鼓勵解決方法的多樣性,學(xué)生匯報解決方法,學(xué)生可能出現(xiàn)的解決方法:
19600÷4÷2=1200(千克);。
29600÷2÷4=1200(千克)。
讓學(xué)生充分說明算理,其他學(xué)生補(bǔ)充、評價。
2.解決練習(xí)二十三的第14題。
讓學(xué)生看圖獲取信息,明確問題,獨(dú)立解決。
學(xué)生匯報解決問題的方法和過程??赡艹霈F(xiàn):
1954÷2÷3=159(張);。
2954÷3÷2=159(千克);。
33×2=6(場)954÷6=159(千克)。
組織學(xué)生討論,使學(xué)生明確:有些問題既可以用除法兩步計算解決,也可以用乘法兩步計算解決。
3.編題、解題。
教師先給出學(xué)生三個數(shù):240、6和2,然后讓學(xué)生聯(lián)系生活中的一些事情,用這三個數(shù)編出一道用除法兩步計算解決的問題,然后獨(dú)立解決,互相檢查。
4.分組解決練習(xí)二十三的第15、16題。
設(shè)計意圖:分層練習(xí),讓學(xué)生及時鞏固新知識,在練習(xí)過程中,進(jìn)一步培養(yǎng)學(xué)生搜集信息、整理信息的能力,積累用除法兩步計算解決實際問題的經(jīng)驗。在解決問題的過程中,通過交流,發(fā)現(xiàn)有些問題可以用多種不同的解決方法進(jìn)行解決,感受到解決問題方法的多樣性,同時讓學(xué)生感受到生活中存在很多的數(shù)學(xué)問題,培養(yǎng)學(xué)生用數(shù)學(xué)眼光觀察周圍事物的習(xí)慣和應(yīng)用意識,提高學(xué)生解決問題的能力。
四、總結(jié)全課,自我評價。
讓學(xué)生說一說通過本節(jié)課的學(xué)習(xí)有什么收獲,評價自己在本節(jié)課的表現(xiàn)。
設(shè)計意圖:讓學(xué)生在日常的學(xué)習(xí)過程中,學(xué)會反思、學(xué)會評價,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,形成學(xué)習(xí)方法。
鴿巢問題單元教學(xué)設(shè)計篇十三
教學(xué)內(nèi)容:
課本p54~56頁例2、3,練習(xí)十二第1~3題。
教學(xué)目標(biāo):
1、通過學(xué)生動手?jǐn)[一擺,進(jìn)一步理解“一個數(shù)是另一個數(shù)的幾倍”的含義,體會數(shù)量之間的相依關(guān)系。
2、通過分析、推理探究求“一個數(shù)是另一個數(shù)的幾倍”的實際問題的一般解決方法,初步學(xué)會用轉(zhuǎn)化的方法來解決簡單的實際問題。
3、培養(yǎng)學(xué)生獨(dú)立思考和合作交流的良好的學(xué)習(xí)習(xí)慣。
教學(xué)重點:
1、通過學(xué)生動手?jǐn)[一擺,進(jìn)一步理解“一個數(shù)是另一個數(shù)的幾倍”的含義,體會數(shù)量之間的相依關(guān)系。
2、初步學(xué)會用轉(zhuǎn)化的方法來解決求“一個數(shù)另一個數(shù)的`幾倍”的實際問題的一般解決方法。
教學(xué)難點:
理解“一個數(shù)是另一個數(shù)的幾倍”的含義,學(xué)會用轉(zhuǎn)化的方法解決該類問題。
教學(xué)準(zhǔn)備:主題圖、實物投影。
教學(xué)過程:
一、復(fù)習(xí)舊知。
1、出示題目,組織學(xué)生口答。
(1)蘋果有5個,梨的個數(shù)是蘋果的3倍,梨有多少個?板書:5×3=15。
(2)喜歡跑步的有6人,喜歡跳繩的人數(shù)是跑步的2倍,喜歡跳繩的有多少人?
板書:6×2=12。
2、組織學(xué)生說一說“倍”的含義。“梨的個數(shù)是蘋果的3倍”就是說梨的個數(shù)有3個蘋果的個數(shù)那么多。
3、小結(jié):從上面的復(fù)習(xí)中我們可以看出如果甲數(shù)是乙數(shù)的××倍,那就是說甲數(shù)有××個乙數(shù)那么多。反過來說,甲數(shù)有多少個乙數(shù),就是乙數(shù)的多少倍。今天我們要繼續(xù)學(xué)習(xí)有關(guān)“倍”的數(shù)學(xué)問題。
【設(shè)計意圖】:從學(xué)生已有的認(rèn)知出發(fā)為學(xué)習(xí)求“一個數(shù)是另一個數(shù)的幾倍”做好知識上的鋪墊。
二、合作探究、解決問題。
1、教學(xué)例2.
(1)在實物投影上展示用小棒擺的飛機(jī)。數(shù)一數(shù)用了幾根小棒擺出一架飛機(jī)?
(2)指導(dǎo)學(xué)生自己動手?jǐn)[小棒。
(3)引導(dǎo)學(xué)生仔細(xì)觀察思考。并說說他們擺的小棒是教師根數(shù)的幾倍?
(4)如果學(xué)生再擺一架飛機(jī)這時飛機(jī)的根數(shù)是老師的多少倍。
(5)總結(jié),引導(dǎo)列式。
要求這些小棒的根數(shù)是老師的幾倍,其實就是求15里面有幾個5,15里面有3個5,就是說15是5的3倍。說明“倍”是一種關(guān)系,不是單位名稱,所以3后面什么也不用寫。
(6)引導(dǎo)學(xué)生完成第54頁的做一做。
2、教學(xué)例3.
(1)引導(dǎo)學(xué)生思考。想一想怎樣解決“唱歌的人數(shù)是跳舞的幾倍”這個問題?
(2)引導(dǎo)學(xué)生獨(dú)立解決該問題。
(3)讓學(xué)生說出自己的想法和算式,并組織學(xué)生進(jìn)行集體訂正。
(4)引導(dǎo)學(xué)生完成第55頁做一做。
三、鞏固練習(xí)。
引導(dǎo)學(xué)生完成書本第56頁1、2、3題。組織學(xué)生進(jìn)行集體訂正,必要時進(jìn)行講解。
【設(shè)計意圖】:盡可能讓學(xué)生獨(dú)立解答。
四、課堂總結(jié)。
教學(xué)反思:
鴿巢問題單元教學(xué)設(shè)計篇十四
本節(jié)課是數(shù)學(xué)廣角內(nèi)容,也叫“抽屜原理”。實際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。反思如下:
1.從學(xué)生喜歡的“游戲”入手,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲望,從而提出需要研究的數(shù)學(xué)問題。這樣設(shè)計使學(xué)生在生動、活潑的數(shù)學(xué)活動中主動參與、主動實踐、主動思考,使學(xué)生的數(shù)學(xué)知識、數(shù)學(xué)能力、數(shù)學(xué)思想、數(shù)學(xué)情感得到充分的發(fā)展,從而達(dá)到動智與動情的完美結(jié)合,全面提高學(xué)生的整體素質(zhì)。
2.引導(dǎo)學(xué)生在經(jīng)歷猜測、嘗試、驗證的過程中逐步從直觀走向抽象。
在例1中針對實驗的所有結(jié)果,在學(xué)生總結(jié)表征的基礎(chǔ)上,進(jìn)而提出“你還可以怎樣想?”的問題,組織學(xué)生展開討論交流。我引導(dǎo)學(xué)生借助平均分即每個筆筒里先只放1支,這時學(xué)生看到還剩下1支鉛筆,這1支鉛筆不管放入其中的哪一個筆筒,這個筆筒都會有2支鉛筆。進(jìn)一步引導(dǎo)學(xué)生加深對“至少有一個筆筒中有2支鉛筆”的理解。最后,組織學(xué)生進(jìn)一步借助直觀操作,討論諸如“5支鉛筆放進(jìn)4個筆筒,不管怎么放,總有一個筆筒中至少有2支鉛筆,為什么?”的問題,并不斷改變數(shù)據(jù)(鉛筆數(shù)比筆筒數(shù)多1),讓學(xué)生繼續(xù)思考,引導(dǎo)學(xué)生歸納得出一般性的結(jié)論:(+1)支鉛筆放進(jìn)個筆筒里,總有一個筆筒里至少放進(jìn)2支鉛筆。注重讓學(xué)生在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,培養(yǎng)學(xué)生能進(jìn)行有條理的思考,能比較清楚地表達(dá)自己的思考過程與結(jié)果,經(jīng)歷與他人合作交流解決問題的過程。
本節(jié)課首先通過三個基礎(chǔ)練習(xí)回顧了“鴿巢原理”,接下來的練習(xí)題是鴿巢問題的原理比較簡單,但是在實際的題目當(dāng)中,最主要的.是幫助學(xué)生在不同的題目中找出該道題目的“鴿巢”是什么,然后要放到“鴿巢”里的東西是什么,只有幫助學(xué)生在解題時有了構(gòu)建鴿巢問題模型的能力,才能使學(xué)生真正的理解鴿巢問題,以便更好地解決鴿巢問題。
鴿巢問題的出題方式都比較有趣,可以涉及生活的許多不同的方面。在解決這些問題時可以讓學(xué)生都動手,構(gòu)解題的模型,用實物去解決問題,教師要提高學(xué)生的這種能力,才能讓學(xué)生真正地學(xué)會學(xué)習(xí),產(chǎn)生學(xué)習(xí)數(shù)學(xué)動力,掌握學(xué)習(xí)數(shù)學(xué)的方法。
鴿巢問題單元教學(xué)設(shè)計篇十五
原實際問題的編排設(shè)計為用下面兩輛車運(yùn)煤,如果每次每輛車都裝滿,怎樣安排能恰好運(yùn)完8噸煤?小貨車的載質(zhì)量為2噸,大貨車的載質(zhì)量為3噸?!霸鯓优绍嚹芮『冒?噸煤運(yùn)完?”就是求載質(zhì)量2噸的車、載質(zhì)量3噸的車各安排運(yùn)幾次,使得這兩輛車運(yùn)載煤的總質(zhì)量等于8噸?!翱梢杂昧斜淼姆椒?,把不同的方案都列出來。”“如果只用2噸的車,正好運(yùn)4次”。突出用列表法一一列舉時,需要不重復(fù),不遺漏地進(jìn)行思考,使學(xué)生感受到列表法的有序性和解決問題過程的完整性。
【設(shè)計理念】。
數(shù)學(xué)源于生活,用于生活,《數(shù)學(xué)課程標(biāo)準(zhǔn)》中也非常強(qiáng)調(diào)數(shù)學(xué)與現(xiàn)實生活的聯(lián)系。應(yīng)充分考慮現(xiàn)實生活實際,從學(xué)生常見的、能感受到的事物中選取事例,幫助學(xué)生分析并理解題意。讓學(xué)生思考解決這個問題需要知道什么?用下面兩輛車運(yùn)煤,如果每次每輛車都裝滿,怎樣安排能運(yùn)完8噸煤?大貨車的載質(zhì)量為3噸,小貨車的載質(zhì)量為2噸。由于學(xué)生是二年級,于是把難度降低,可以找到不同方案,有有序地,有無序的,有全的,有不全的,通過補(bǔ)充、交流、整理,最后達(dá)到用列表的方法有序地把不同的方案都列出來,再選擇恰好能運(yùn)走8噸的方案。實現(xiàn)培養(yǎng)學(xué)生分析解決問題的能力,經(jīng)歷和體驗用列表法一一列舉解決問題的全過程,達(dá)到“不重復(fù),不遺漏,不多余”地列舉各種方案的目的,感受這一策略的特點和價值。
【學(xué)習(xí)者特征分析】。
1.知能基礎(chǔ)(已經(jīng)掌握了哪些知識點和技能)。
學(xué)生已經(jīng)掌握表內(nèi)乘法和表內(nèi)除法,能解決簡單的數(shù)學(xué)問題。
2.學(xué)習(xí)興趣及學(xué)習(xí)動機(jī)。
學(xué)生喜歡小組合作學(xué)習(xí),喜歡利用平板電腦進(jìn)行交流。
【教學(xué)目標(biāo)與重難點】。
知識技能。
1.學(xué)會用列表的方法整理實際問題中的信息,分析數(shù)量關(guān)系,尋求解決問題的有效方法。
2.初步體會用列表的方法整理相關(guān)信息的作用。
過程方法。
1.使學(xué)生經(jīng)歷解決簡單實際問題的過程。
2.使學(xué)生進(jìn)一步積累解決問題的經(jīng)驗,增強(qiáng)解決問題的策略意識。
情感態(tài)度價值觀。
1.感受到數(shù)學(xué)與生活的密切聯(lián)系,體驗到生活中處處有數(shù)學(xué)。
2.獲得解決問題的成功經(jīng)驗。
3.培養(yǎng)學(xué)生的愛國意識。
教學(xué)重點:用列表的方法整理各種可能的方案。
教學(xué)難點:分析數(shù)量關(guān)系。
【學(xué)習(xí)策略】。
1.問題任務(wù)驅(qū)動法。
引導(dǎo)學(xué)生“提出問題---大膽猜想----驗證猜想---得出結(jié)論”,把學(xué)習(xí)的主動權(quán)交給學(xué)生,為學(xué)生營造民主、平等、寬松的學(xué)習(xí)氛圍,激發(fā)學(xué)習(xí)的主動性。學(xué)生們不僅能學(xué)習(xí)到豐富的數(shù)學(xué)知識,更重要的是他們會通過自己對事物對現(xiàn)象的探索,學(xué)習(xí)如何提出問題、如何解決問題、如何表達(dá)自己的想法、如何與同伴合作和交流,這對發(fā)展學(xué)生數(shù)學(xué)思維、提高學(xué)生的自主探究、小組合作學(xué)習(xí)的能力都會有積極的幫助。
2.創(chuàng)設(shè)情境、自主探究、合作交流。
學(xué)生在學(xué)習(xí)本課時,教師有目的的引導(dǎo)學(xué)生動手動腦學(xué)數(shù)學(xué),學(xué)生通過動手操作、記錄等活動,逐步歸納并建構(gòu)列表法解決問題的意義,而不是老師生硬地把知識強(qiáng)加給學(xué)生。整節(jié)課的教學(xué)是以小組合作學(xué)習(xí)為依托,展示研究問題的情景,幫助學(xué)生建立豐富的、生動的感性認(rèn)識,消除學(xué)生對“列表法”的神秘感和恐懼感,以此促進(jìn)三維目標(biāo)的達(dá)成。
3.信息技術(shù)與數(shù)學(xué)學(xué)科整合的方法。
本節(jié)課信息技術(shù)成為創(chuàng)設(shè)情境的工具;成為交流協(xié)作的工具;成為提供豐富資源,進(jìn)行信息加工的認(rèn)知工具;成為徹底改變學(xué)生學(xué)習(xí)方式的工具。
【教學(xué)環(huán)境及資源準(zhǔn)備】。
1.教師用的資源:自制ppt課件。
2.學(xué)生用的資源:平板電腦。
【教學(xué)過程】。
(一)、對話導(dǎo)入。
2.預(yù)設(shè):1元5角。
20。
12。
04。
3.師:是否有遺漏、是否有重復(fù)呢?
師:怎樣能做到不重不漏?
生:按照一定的順序。
生:從1元考慮,最多2張,然后1張,最后0張。分別看一下還差幾張5角紙幣。
4.師:他是從1元入手考慮的,還可以從5角入手考慮,這就需要一定的策略。
在日常生活和數(shù)學(xué)學(xué)習(xí)中,為了解決實際問題,常常需要運(yùn)用各種策略。今天這堂課,我們一起運(yùn)用策略來解決一些問題!
聯(lián)系學(xué)生生活實際,引起學(xué)生的共鳴,在課始吸引學(xué)生的注意力,激發(fā)學(xué)生參與學(xué)習(xí)的熱情。創(chuàng)設(shè)了學(xué)生熟悉的付錢場景,使學(xué)生初步感知在我們生活周圍存在著“運(yùn)用策略”解決的問題,以幫助他們尋找解決問題的方法。
(二)、探究新知。
1.補(bǔ)充課外知識,滲透愛國教育。
師:車票買完了,讓我們出發(fā)吧,到達(dá)目的地,這是一個煤場。
你知道嗎?我國地大物博,煤炭資源豐富,儲量達(dá)幾億噸,非常多。這是我國煤炭分布圖,這是個城市煤炭資源占有量的餅狀圖。在很久以前,人們親自到煤洞挖煤,隨著科技的發(fā)展,現(xiàn)在人們用機(jī)器來挖煤。
2.師:煤挖出來之后,需要運(yùn)煤,看一看在運(yùn)煤過程中,有哪些問題在等著我們。
師:你發(fā)現(xiàn)了哪些數(shù)學(xué)信息?要解決的數(shù)學(xué)問題是什么?
如果你是調(diào)度員,由你來安排發(fā)車你需要什么?
生:需要車。
師:還需要知道有多少噸煤。
生:還需要知道車一次能運(yùn)多少。
師:也就是載質(zhì)量。
師:方案可能有一種,也可能有多種,為了讓大家一目了然,我們記錄在表格里。
資源準(zhǔn)備ppt要求:同桌合作:
(1).思考:怎樣派車能把8噸煤運(yùn)完?
(2).把你們的想法記錄在表格里。
師出示表頭。
小組合作:列表法解決問題。(平板電腦)。
資源準(zhǔn)備ppt要求:資源共享:
(1).小組內(nèi)交流每個人的方案。
(2).瀏覽別人的方案補(bǔ)充在自己表格里。
(3).怎樣做到不重不漏?
3.匯報。
4.探索方法。
師:我們可以從哪入手考慮?
生:從載質(zhì)量2噸的車入手考慮。
師:如果用“載質(zhì)量2噸”的車子裝煤,最多運(yùn)幾次?
生:在不用“載質(zhì)量3噸”的車子裝煤時,次數(shù)最多,最多8÷2=4(次),剛好裝完。
師:運(yùn)煤噸數(shù)是多少?
生:2x4=8(噸)。
師:這種運(yùn)煤方案可行不可行?
生:可行。
師:通過這個計算,我們知道“載質(zhì)量2噸”的車子只可能運(yùn)0-4次,如果安排這樣的車運(yùn)3次,那么,“載質(zhì)量3噸的車”應(yīng)該運(yùn)幾次才能把煤運(yùn)完呢?也就是我們需要根據(jù)2噸的車來調(diào)整3噸的車。
師:哪種方案更好?
生:方案1和4更好,恰好運(yùn)完8噸煤。
派車方案載質(zhì)量2噸(次)載質(zhì)量3噸(次)運(yùn)煤噸數(shù)(噸)。
1408√。
2319。
32210。
4128√。
5039。
師:還可以從哪入手考慮?
生:從“載質(zhì)量3噸”的車子入手考慮。
6、回顧與反思。
(1)我們在列舉的時候應(yīng)注意什么?(按照一定的順序)。
(2)如果可能的方案無限多,適合用列舉的方案嗎?(不適合,在能列舉出所有方案的情況下選擇用列表法列舉)。
(3)檢驗一下方案1和方案4是不是恰好可以運(yùn)完8噸煤。
引導(dǎo)學(xué)生在具體的教學(xué)情境中,通過親自動手列表,完成填表的過渡。讓學(xué)生在課堂中充分發(fā)揮主動作用,積極主動參與活動,培養(yǎng)數(shù)學(xué)興趣,提高解決問題的基本技能。
(三)、鞏固練習(xí)。
1.自主選擇不同任務(wù)(平板電腦)二選一。
任務(wù)一:
(1)用列表法,先填寫表頭。
(2)學(xué)生在小組內(nèi)討論,用列表法把各種可能的方案列出來然后選擇合適的方案。
(3)匯報交流結(jié)果,集體訂正。
任務(wù)二:第33頁“做一做”。
(1)用列表法,先填寫表頭。
(2)找全所有付錢方案。
(3)標(biāo)注可行方案。
師:由題中我們獲得了哪些信息?要求怎么付錢,就是求30元里面有幾個5元和幾個2元,同時需考慮到5元和2元的張數(shù)各自只有6張,即最多只能取6張5元或2元。
2.生生互評。
選擇自己沒有完成的任務(wù),給予評價。
3.匯報交流結(jié)果,集體訂正。
把枯燥的練習(xí)融入生動有趣的活動場景中,前后呼應(yīng),促使學(xué)生始終以積極飽滿的熱情參與學(xué)習(xí)。在活動中練習(xí),在練習(xí)中鞏固,在交流中開闊思維,培養(yǎng)能力。
(四)、課堂小結(jié)。
今天我們學(xué)習(xí)了解決問題的策略,在題中的條件和問題比較多的情況下,我們可以用列表的方法來列舉出所有可能的方案,然后選擇符合條件的解決問題的方案。
鴿巢問題單元教學(xué)設(shè)計篇十六
教學(xué)目標(biāo):
1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理,會運(yùn)用鴿巢原理解決一些簡單的實際問題。
2、通過操作、觀察、比較、列舉、假設(shè)、推理等活動發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3、使學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,初步形成模型思想。
教學(xué)重點:經(jīng)歷鴿巢原理的探究過程,初步了解鴿巢原理。
教學(xué)難點:理解鴿巢原理,并對一些簡單的實際問題加以模型化。
教學(xué)過程:
一、創(chuàng)設(shè)情境、導(dǎo)入新課。
1、師:同學(xué)們,你們玩過撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)。
2、師:大家猜對了嗎?其實這里面藏著一個非常有趣的數(shù)學(xué)問題,叫做“鴿巢問題”。今天我們就一起來研究它。
二、合作探究、發(fā)現(xiàn)規(guī)律。
師:研究一個數(shù)學(xué)問題,我們通常從簡單一點的情況開始入手研究。請看大屏幕。(生齊讀題目)。
1、教學(xué)例1:把4支鉛筆放進(jìn)3個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(ppt)總有:一定有至少:最少。
師:這個結(jié)論正確嗎?我們要動手來驗證一下。
探究之前,老師有幾個要求。(一生讀要求)。
(3)匯報展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)。
第一張作品:誰看懂他是怎么擺的?(一生匯報,發(fā)現(xiàn)重復(fù)的擺法)。
第二張作品:他是怎么擺的?這4種擺法有沒有重復(fù)的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
師:我們要證明的是總有一個筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報:第一種擺法中哪個筆筒滿足要求?只要發(fā)現(xiàn)有一個筆筒里至少有2支鉛筆就行了。)。
總結(jié):把4支鉛筆放進(jìn)3個筆筒中一共只有四種情況,在每一種情況中,都一定有一個筆筒中至少有2支鉛筆。看來這個結(jié)論是正確的。
師:像這樣把所有情況一一列舉出來的方法,數(shù)學(xué)上叫做“枚舉法”。(板書)。
(4)通過比較,引出“假設(shè)法”
引導(dǎo)學(xué)生說出:假設(shè)先在每個筆筒里放1支,還剩下1支,這時無論放到哪個筆筒,那個筆筒里就有2支鉛筆了。(ppt演示)。
(5)初步建?!骄?。
師:先在每個筆筒里放1支,這種分法實際上是怎么分的?
生:平均分(師板書)。
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來的1支不管放進(jìn)哪個筆筒里,總有一個筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個筆筒里,這樣就不能保證一下子找到最少的情況了)。
師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
板書:4÷3=1……11+1=2。
師:現(xiàn)在我們把題目改一改,結(jié)果會怎樣呢?
ppt出示:把5支筆放進(jìn)4個筆筒里,不管怎么放,總有一個筆筒里至少有幾支筆?(引導(dǎo)學(xué)生說清楚理由)。
師:為什么大家都選擇用假設(shè)法來分析?(假設(shè)法更直接、簡單)。
通過這些問題,你有什么發(fā)現(xiàn)?
交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個筆筒里至少放進(jìn)2支筆。
過渡語:師:如果多出來的數(shù)量不是1,結(jié)果會怎樣呢?
2、出示:5只鴿子飛進(jìn)了3個鴿籠,總有一個鴿籠里至少飛進(jìn)了幾只鴿子呢?
(1)同桌討論交流、指名匯報。
先讓一生說出5÷3=1……21+2=3的結(jié)果,再問:有不同的意見嗎?
再讓一生說出5÷3=1……21+1=2。
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
(3)明確:再次平均分,才能保證“至少”的情況。
3、教學(xué)例2。
(1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問題就叫做“鴿巢問題”,也叫“抽屜問題”。它最早是由德國數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個問題之后決定繼續(xù)深入研究下去。出示例2。
(2)獨(dú)立思考后指名匯報。
師板書:7÷3=2……12+1=3。
(3)如果有8本書會怎樣?10本書呢?
指名回答,師相機(jī)板書:8÷3=2……22+1=3。
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……13+1=4。
(4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律。
歸納總結(jié):總有一個抽屜里至少可以放“商+1”本書。(板書:商+1)。
三、鞏固應(yīng)用。
師:利用鴿巢問題中這個原理可以解釋生活中很多有趣的問題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書。
四、全課小結(jié):
通過這節(jié)課的學(xué)習(xí),你有什么收獲或感想?
鴿巢問題單元教學(xué)設(shè)計篇十七
1.在操作、觀察、比較的過程中初步了解抽屜原理,并運(yùn)用抽屜原理的知識解決簡單的實際問題。
重點難點 經(jīng)歷抽屜原理的.探究過程,并對抽屜原理的問題模式化
學(xué)生筆記(教師點撥) 學(xué) 案 內(nèi) 容
(1)自學(xué)例1
把4枝鉛筆放進(jìn)3個文具盒中,可以怎么放?有幾種情況?
(1) 學(xué)生思考各種放法。
(2) 第一種放法: 第二種放法:
第三種放法: 第四種放法:
教學(xué)過程:
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
1、提出問題。
不管怎么放,總有一個文具盒里至少放進(jìn)( )鉛筆。為什么?
如果每個文具盒只放( )鉛筆,最多放( )枝,剩下()枝還要放進(jìn)其中的一個文具盒,所以至少有()鉛筆放進(jìn)同一個文具盒。
(1) 說一說你有什么體會。
二自學(xué)例2
1、把5本書放進(jìn)2個抽屜中,不管怎么放,總有一個抽屜至少放進(jìn)幾體書?
2、擺一擺,有幾種放法。
不難得出,不管怎么放總有一個抽屜至少放進(jìn)( )本書。
3、說一說你的思維過程。
如果每個抽屜放( )本書,共放了( )本書。剩下的1本還要放進(jìn)其中一個抽屜,所以至少有1個抽屜放進(jìn)3本書。
如果一共有7本書會怎樣呢?9本呢?
4. 你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
總結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個抽屜至少放進(jìn)的本數(shù)。
1. 做一做。
(1)7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進(jìn)同一個鴿舍里。為什么?
(2) 說出想法。
如果每個鴿舍只飛進(jìn)( )鴿子,最多飛回( )鴿子,剩下()鴿子還要飛進(jìn)其中的一個鴿舍或分別飛進(jìn)其中的兩個鴿舍。所以至少有2只鴿子飛進(jìn)同一個鴿舍。
2. 做一做
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。為什么?
想:每個鴿舍飛進(jìn)( )鴿子,共飛進(jìn)( )鴿子。剩下( )鴿子還要飛進(jìn)其中的1個或2個鴿舍,所以,至少有( )鴿子要飛進(jìn)同一個鴿舍里。
鴿巢問題單元教學(xué)設(shè)計篇十八
教學(xué)目標(biāo):
1、理解簡單的鴿巢問題及鴿巢問題的一般形式,引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究“鴿巢問題”。
2、體會數(shù)學(xué)知識在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識。
教學(xué)重點:了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
教學(xué)難點:運(yùn)用“鴿巢原理”解決相關(guān)的實際問題,理解數(shù)學(xué)中的優(yōu)化思想。
教學(xué)過程:
一、游戲激趣導(dǎo)入新課。
1、同學(xué)們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?
2、現(xiàn)在我們一起來玩猜花色的游戲,請5位同學(xué)到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。
3、抽后老師大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。
4、有些同學(xué)一定覺得老師只是湊巧猜對了,我們再抽一次,老師還大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對了,就給老師點掌聲。
5、如果老師再換5名同學(xué)來抽牌,我還敢確定的說至少有2張牌的花色相同,這是為什么呢?其實這里面蘊(yùn)藏著一個有趣的數(shù)學(xué)原理--抽屜原理,也叫鴿巢原理或鴿巢問題,這節(jié)課我們就一起來研究這個問題。(板書課題)。
(設(shè)計意圖:通過這個游戲激發(fā)學(xué)生學(xué)習(xí)本節(jié)課的好奇心,也使學(xué)生感受到數(shù)學(xué)和生活中的聯(lián)系,知道學(xué)習(xí)本節(jié)課的重要性。)。
二、呈現(xiàn)問題自主探究。
1、小紅在整理自己的學(xué)習(xí)用品是有這樣的發(fā)現(xiàn)(課件出示:把4支鉛筆放進(jìn)3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。)學(xué)生齊讀。
2、在這句話中你有什么不理解的嗎?學(xué)生提出不理解的詞語。
(1)不管:隨意,想想怎么放就怎么放。
(2)總有:一定有。
(3)至少:最少,最起碼。
師提問:最少2支指的是幾支呢?具體來說。
2、把整句話翻譯過來再說一遍。
(設(shè)計意圖:讓學(xué)生充分理解這句話的意思,為接下來的研究做好鋪墊。)。
2、你覺得這句話說得對嗎?給同學(xué)們1分鐘時間同學(xué)生靜靜思考一下。
3、現(xiàn)在同學(xué)用擺一擺、畫一畫、寫一寫等方法來驗證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)。
4、學(xué)生匯報驗證的方法:
生1:利用圖片來列舉出幾種放法。
教師小結(jié):非常好,我們在觀察這幾種擺法,把符合要求的筆筒用彩色筆標(biāo)出來:所以說不管怎么放總有一支筆筒里至少有2支鉛筆。
生2:利用數(shù)字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)。
我們一起圈出每種分法不少于2的數(shù)字。(表揚(yáng)生2,方法更簡單一些)。
5、同學(xué)們像剛才把所有中情況都列舉出來,這種方法就叫做列舉法或枚舉法。(板書)。
6、除了這種枚舉法,還有沒有別的方法也能證明這句話是對的。
生:先假設(shè)每個筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時無論放到哪個筆筒,哪個筆筒就是2支鉛筆了,所以我認(rèn)為是對的。
師追問:你為什么要現(xiàn)在每個筆筒里放1支呢?
生:因為一共有4支筆,平均分后每個筆筒只能分到一支。
師追問:那為什么要一開始就去平均分呢?
生:平均分就可以使每個筆筒中的筆盡量少一點,如果這樣都能符合要求,其他中情況都能符合要求了。
(設(shè)計意圖:教師的追問讓學(xué)生更明確為什么要平均分,平均分的好處是什么。)。
7、這位同學(xué)的想法真是太與眾不同了,我們?yōu)樗恼疲l聽懂了他的想法,把他的想法在復(fù)述一遍。
8、想這位同學(xué)的方法就是假設(shè)法。(板書:假設(shè)法)。
9、到現(xiàn)在為止,我們可以得出結(jié)論了。
三、提升思維構(gòu)建模型。
1、剛才我們通過不同的方法驗證了這句話是正確的,現(xiàn)在老師把題目改一改,同學(xué)們看看還對不對了,為什么?(課件出示:把5支鉛筆放進(jìn)4個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。)生回答并說明理由。
2、課件繼續(xù)出示:
(1)把6個蘋果放進(jìn)5個盤子里呢?
(2)把10本書放進(jìn)9個抽屜中呢?
(3)把100只鴿子放進(jìn)99個籠子中呢?
3、我們?yōu)槭裁炊疾捎昧思僭O(shè)法來分析,而不是畫圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設(shè)法更具有一般性)。
(設(shè)計意圖:通過出示更大的數(shù),讓學(xué)生感受到用假設(shè)法的方便性,實用性,同時引出的優(yōu)化的思想。)。
4、在數(shù)學(xué)課堂上我們通常采用更便于我們解決的方法來解決問題,這是一種優(yōu)化的思想。(板書:優(yōu)化思想)。
5、引出物體數(shù)、鴿巢數(shù)、至少數(shù),學(xué)生觀察,你有什么發(fā)現(xiàn)嗎?(當(dāng)物體數(shù)比鴿巢數(shù)多1時,總有一個鴿巢里至少有2個物體。)。
6、回過頭來我們看課前老師猜測的撲克牌的游戲,誰能解釋一下是怎么回事呢?看來并不是老師神奇,而是鴿巢問題神奇啊。
7、同學(xué)們今天的發(fā)現(xiàn)是德國數(shù)學(xué)家狄利克雷最早提出的:課件介紹有關(guān)鴿巢問題的來歷。
四、解決問題練習(xí)鞏固。
通過學(xué)生的努力,我們一起研究出鴿巢問原理,現(xiàn)在老師出幾道題看同學(xué)們是否真的學(xué)會了。
1、5只鴿子飛進(jìn)了3個鴿籠,總有一個鴿籠至少飛進(jìn)了2只鴿子。為什么?
(設(shè)計意圖:習(xí)題2鍛煉學(xué)生的逆向思維,同時也為下節(jié)課的學(xué)習(xí)埋下了伏筆。)。
五、課堂總結(jié)。
板書設(shè)計:
鴿巢問題單元教學(xué)設(shè)計篇十九
教科書第68頁例1。
(一)知識與技能:通過數(shù)學(xué)活動讓學(xué)生了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。
(二)過程與方法:結(jié)合具體的實際問題,通過實驗、觀察、分析、歸納等數(shù)學(xué)活動,讓學(xué)生通過獨(dú)立思考與合作交流等活動提高解決實際問題的能力。
(三)情感態(tài)度和價值觀:在主動參與數(shù)學(xué)活動的過程中,讓學(xué)生切實體會到探索的樂趣,讓學(xué)生切實體會到數(shù)學(xué)與生活的緊密結(jié)合。
教學(xué)重點:經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。
教學(xué)難點:通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
多媒體課件。
(一)候課閱讀分享:
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
(二)激情導(dǎo)課。
好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動我們來了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。
(三)民主導(dǎo)學(xué)。
1、請同學(xué)們先來看例1。把4支鉛筆放進(jìn)3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。
請你再把題讀一次,這是為什么呢?
對總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆。或者是說,鉛筆的支數(shù)要大于或等于兩支。
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?
方法二:用“假設(shè)法”證明。
對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進(jìn)2支鉛筆。(平均分)。
方法三:列式計算。
你能用算式表示這個方法嗎?
學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個筆筒,總有一個筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計算。
3、100支鉛筆,放進(jìn)99個筆筒,總有一個筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時候用起來比較麻煩??梢杂眉僭O(shè)法和列式計算。
4、表格中通過整理,總結(jié)規(guī)律。
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時,至少數(shù)等于2“商+1”。
經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實最早發(fā)現(xiàn)這個規(guī)律的不是我們,而是德國的一個數(shù)學(xué)家“狄里克雷”。
(四)檢測導(dǎo)結(jié)。
好,我們做幾道題檢測一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?
3、5只鴿子飛進(jìn)了3個鴿籠,總有一個鴿籠至少飛進(jìn)了2只鴿子。為什么?
(五)全課總結(jié)今天你有什么收獲呢?
(六)布置作業(yè)。
作業(yè):兩導(dǎo)兩練第70頁、71頁實踐應(yīng)用1、4題。
鴿巢問題單元教學(xué)設(shè)計篇二十
教學(xué)內(nèi)容:
課本p63頁第1題,練習(xí)十四的第1~6題。
教學(xué)目標(biāo):
1、使學(xué)生初步學(xué)會根據(jù)除法的意義解決一些簡單的實際問題。
2、使學(xué)生懂得從數(shù)學(xué)的角度提出學(xué)過的數(shù)學(xué)問題,并能夠解決問題,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識。
3、培養(yǎng)學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動的興趣,對數(shù)學(xué)有好奇心和求知欲。在交流中養(yǎng)成傾聽他人想法以及尊重他人與人進(jìn)行合作的良好習(xí)慣。
教學(xué)重點:
求一個數(shù)是另一個數(shù)的幾倍是多少的簡單問題以及涉及乘除兩步計算的實際問題。
教學(xué)難點:
用乘法口訣求商,按除數(shù)相同的規(guī)律進(jìn)行整理。
教學(xué)準(zhǔn)備:
實物投影、主題圖。
教學(xué)過程:
一、創(chuàng)設(shè)情景,引入談話。
師:同學(xué)們,我們前幾天學(xué)過了哪些知識,誰能說一下這些小朋友在干什么?
【設(shè)計意圖】:直奔主題,讓學(xué)生在最短的時間內(nèi)直接明確學(xué)習(xí)的內(nèi)容和任務(wù)。
二、合作交流,探求新知。
1、教學(xué)第63頁主題圖。
師:你看懂了什么?
引導(dǎo)學(xué)生觀察主題圖,同桌互相說一說題意。
生:咱們把除法算式有規(guī)律地排一下,還可以利用乘法口訣表的排列方式整理除法算式。
師:(1)發(fā)下一張空白的表格紙。
(2)組織學(xué)生根據(jù)45句乘法口訣寫出45道除法算式。
(3)讓學(xué)生以小組為單位按一定的規(guī)律合作整理除法算式,或者按除數(shù)相同的規(guī)律進(jìn)行整理,培養(yǎng)學(xué)生井井有條的思維習(xí)慣,按規(guī)律辦事的思想方法。
【設(shè)計意圖】:利用乘法口訣的排列方式以小組為單位按一定的規(guī)律合作整理除法算式,培養(yǎng)學(xué)生井井有條的思維習(xí)慣,按規(guī)律辦事的思想方法。
三、知識應(yīng)用,體驗成功。
1、學(xué)生做第64頁的第1題。
(1)先算出每道算式的結(jié)果,寫在對應(yīng)動物的'下面,然后再將所得7個結(jié)果按從小到大的順序排列。
(2)要求學(xué)生熟練應(yīng)用乘法口訣求商,同時學(xué)會有序地思考問題的方法。
2、游戲形式做第64頁第2題。
(1)先讓學(xué)生看清加、減、乘、除的運(yùn)算符號。
(2)使學(xué)生初步形成百以內(nèi)四則運(yùn)算的口算技能。
3、學(xué)生獨(dú)立完成第65頁第4、6題。
4、做第65頁中第5題。
(1)先讓學(xué)生看懂圖意。
(2)再讓同桌兩人為一組進(jìn)行對口令活動。
(3)使學(xué)生進(jìn)一步理解乘除法之間的關(guān)系,理解“倍”的意義。
【設(shè)計意圖】:用多種形式進(jìn)行練習(xí),提高學(xué)生的學(xué)習(xí)興趣,鞏固學(xué)生對表內(nèi)除法計算的理解與熟練。
四、回顧全課,總結(jié)提高。
這節(jié)課你有什么收獲?
五、隨堂練習(xí)。
教學(xué)反思:
【本文地址:http://aiweibaby.com/zuowen/16564975.html】