每個人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
省賽數(shù)學(xué)建模論文一般要寫多少字篇一
為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸πW(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對學(xué)生動手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點(diǎn)有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
通過對小學(xué)階段各種數(shù)學(xué)實(shí)踐教學(xué)活動實(shí)際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點(diǎn)的深入理解,增強(qiáng)其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達(dá)到預(yù)期的效果,教師需要結(jié)合實(shí)際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計(jì)算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計(jì)算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計(jì)算中為什么每一位都要對齊,實(shí)現(xiàn)“計(jì)數(shù)單位統(tǒng)一后才能計(jì)算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點(diǎn)的理解,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
加強(qiáng)小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運(yùn)用,增強(qiáng)相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運(yùn)用各種數(shù)學(xué)知識處理實(shí)際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點(diǎn)的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時(shí),教師可以通過對多媒體教學(xué)設(shè)備的合理運(yùn)用,利用動態(tài)化的文字與圖片對其中的知識要點(diǎn)進(jìn)行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強(qiáng)化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點(diǎn)的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運(yùn)用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進(jìn)行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
總之,加強(qiáng)小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實(shí)施,有利于滿足素質(zhì)教育的更高要求,實(shí)現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計(jì)劃能夠在規(guī)定的時(shí)間內(nèi)順利地完成。與此同時(shí),結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實(shí)際發(fā)展概況,可知靈活運(yùn)用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實(shí)現(xiàn)提供可靠的保障。
[1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
[2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
省賽數(shù)學(xué)建模論文一般要寫多少字篇二
計(jì)算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實(shí)際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實(shí)的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強(qiáng)國,科教興國的戰(zhàn)略推向一個新的高度。
1.1數(shù)學(xué)建模引進(jìn)大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點(diǎn),借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實(shí)際等缺陷,已經(jīng)不能滿足時(shí)代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實(shí)踐,促進(jìn)學(xué)生的德智體美勞全面的進(jìn)步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實(shí)數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進(jìn)數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運(yùn)用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實(shí)踐的能力。再次建模結(jié)果對現(xiàn)實(shí)生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實(shí)踐,從而為科學(xué)的進(jìn)步和人才綜合水平的提高提供可能。
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨(dú)的數(shù)學(xué)家變成經(jīng)濟(jì)學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進(jìn)步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運(yùn)用數(shù)學(xué)科學(xué)去分析和解決實(shí)際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運(yùn)用數(shù)學(xué)的思維和方法,利用現(xiàn)代計(jì)算機(jī)科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時(shí)代的進(jìn)步,是時(shí)代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運(yùn)用數(shù)學(xué)科學(xué)解決現(xiàn)實(shí)問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進(jìn)步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時(shí)間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計(jì)算機(jī)科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時(shí)代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點(diǎn)內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計(jì)算機(jī)學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進(jìn)步發(fā)展的方向和原動力。
[1]李進(jìn)華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
省賽數(shù)學(xué)建模論文一般要寫多少字篇三
摘要:數(shù)學(xué)作為很多學(xué)科的計(jì)算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點(diǎn)的基礎(chǔ)上,從計(jì)算機(jī)軟件、實(shí)際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進(jìn)行了分析,最后從分析問題、建立模型、校驗(yàn)?zāi)P腿齻€階段,對數(shù)學(xué)建模的方法,進(jìn)行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實(shí)際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實(shí)際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進(jìn),很多理論都無法付諸實(shí)踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實(shí)際問題,成為了很多專家和學(xué)者研究的問題。通過實(shí)際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實(shí)際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實(shí)際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達(dá)方式,這樣才能夠通過數(shù)學(xué)計(jì)算,來解決一些實(shí)際問題,從某種意義上來說,計(jì)算機(jī)就是由若干個數(shù)學(xué)模型組成的,計(jì)算機(jī)軟件之所以能夠解決實(shí)際問題,就是根據(jù)實(shí)際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計(jì)算機(jī)來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時(shí)候,由于實(shí)際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實(shí)際問題,但是受到當(dāng)時(shí)技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進(jìn)行計(jì)數(shù)等,隨著經(jīng)濟(jì)和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實(shí)際問題,也成為了人們研究的重點(diǎn),在市場經(jīng)濟(jì)的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計(jì)算機(jī)就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進(jìn)制相結(jié)合,這樣就能夠讓計(jì)算機(jī)來處理實(shí)際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計(jì)算機(jī)出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計(jì)算機(jī)軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實(shí)際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實(shí)際問題,利用特定的數(shù)學(xué)符號進(jìn)行描述,這樣實(shí)際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計(jì)算方法來解決。
1.2數(shù)學(xué)建模思想的特點(diǎn)
如何解決實(shí)際問題,從有人類文明開始,就成為了人們研究的重點(diǎn),隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實(shí)際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計(jì)算的工具,由此可以看出數(shù)學(xué)的重要性,進(jìn)入到信息時(shí)代后,計(jì)算機(jī)得到了普及應(yīng)用,無論是日常生活中還是工作中,計(jì)算機(jī)都有非常重要的應(yīng)用,而在信息時(shí)代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨(dú)立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實(shí)際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進(jìn)行考驗(yàn),而大賽的題目,很多都是一些實(shí)際問題,對于比賽的結(jié)果,每個參賽隊(duì)伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實(shí)際的問題,可以建立多個數(shù)學(xué)模型進(jìn)行解決,但是執(zhí)行的效率具有一定的差異,如有些計(jì)算的步驟較少,而有些計(jì)算的過程比較簡單,而如何評價(jià)一個模型的效率,必須從各個方面進(jìn)行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計(jì)算機(jī)軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計(jì)算機(jī)之所以能夠解決實(shí)際問題,很大程度上依賴與計(jì)算機(jī)軟件,而計(jì)算機(jī)軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進(jìn)行需求的分析,這其實(shí)就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進(jìn)行分析,在了解到問題之后,就要通過計(jì)算機(jī)語言,對問題進(jìn)行描述,而計(jì)算機(jī)語言是人與計(jì)算機(jī)進(jìn)行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進(jìn)制的方式,這樣計(jì)算機(jī)才能夠進(jìn)行具體的計(jì)算。由此可以看出,計(jì)算機(jī)就是依靠數(shù)學(xué)來解決實(shí)際問題,而每個計(jì)算機(jī)軟件,都可以認(rèn)為是一個數(shù)學(xué)模型,如在早期的計(jì)算機(jī)程序設(shè)計(jì)中,受到當(dāng)時(shí)計(jì)算機(jī)技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計(jì)算機(jī)語言,這樣計(jì)算機(jī)就可以解決實(shí)際的問題,由于計(jì)算機(jī)能夠自行計(jì)算的特點(diǎn),只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計(jì)算。
2.2數(shù)學(xué)建模思想直接解決實(shí)際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊(duì)員選擇,學(xué)生可以根據(jù)自己的實(shí)際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實(shí)際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認(rèn)為,數(shù)學(xué)與實(shí)踐的距離很遠(yuǎn),學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實(shí)踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時(shí)間封,閉發(fā)展,與西方發(fā)達(dá)國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時(shí)間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實(shí)際問題,相比之下,發(fā)達(dá)國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運(yùn)營中,需要進(jìn)行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進(jìn)行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展
從本質(zhì)上來說,數(shù)學(xué)是在實(shí)際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時(shí)技術(shù)水平的限制,雖然人們已經(jīng)懂得去計(jì)算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠(yuǎn)遠(yuǎn)超過了實(shí)際應(yīng)用的范圍,同時(shí)隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計(jì)算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計(jì)算機(jī)的出現(xiàn),對數(shù)學(xué)的應(yīng)用達(dá)到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計(jì)算的機(jī)器,在計(jì)算機(jī)出現(xiàn)的早期,受到性能和體積上的限制,只能進(jìn)行一些簡單的數(shù)學(xué)計(jì)算,還不能解決實(shí)際的問題,但是計(jì)算機(jī)語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計(jì)算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實(shí)就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計(jì)算機(jī)等電子設(shè)備的方式,來解決實(shí)際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實(shí)際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實(shí)際問題時(shí),首先要對問題進(jìn)行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進(jìn)行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實(shí)際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟(jì)和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時(shí)對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實(shí)際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨(dú)特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實(shí)際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實(shí)際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準(zhǔn)備環(huán)節(jié),要想利用數(shù)學(xué)來解決實(shí)際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計(jì)算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達(dá)式,通常情況下,在分析問題時(shí),都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達(dá)式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實(shí)際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達(dá)國家相比,實(shí)踐的機(jī)會還比較少。
3.3數(shù)學(xué)模型的校驗(yàn)
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實(shí)際問題,具體的執(zhí)行效率如何,都需要進(jìn)行校驗(yàn),因此檢驗(yàn)是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗(yàn)都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進(jìn)行完善,這樣才能夠保證嚴(yán)謹(jǐn)性,在實(shí)際校驗(yàn)的過程中,要對數(shù)學(xué)模型的每個部分進(jìn)行驗(yàn)證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實(shí)際問題。除了檢驗(yàn)?zāi)P偷臏?zhǔn)確外,校驗(yàn)還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計(jì)算的整個過程,這時(shí)就可以對具體的細(xì)節(jié)進(jìn)行優(yōu)化,如哪部分可以減少計(jì)算的步驟,或者簡化計(jì)算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗(yàn)工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計(jì)算機(jī)技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計(jì)算機(jī)的出現(xiàn),在很大程度上改變了處理事情的方式,利用計(jì)算機(jī)軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計(jì)算機(jī)的出現(xiàn),省略了中間的計(jì)算過程,因此計(jì)算機(jī)軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
省賽數(shù)學(xué)建模論文一般要寫多少字篇四
摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問題解決中的重要作用。
關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟(jì);應(yīng)用
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟(jì)形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
一、數(shù)學(xué)建模
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個方面,運(yùn)用數(shù)學(xué)的語言和方法進(jìn)行問題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗(yàn)證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實(shí)際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對象的特性,對復(fù)雜問題進(jìn)行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問題數(shù)學(xué)模型的建立
經(jīng)濟(jì)類問題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評估、最優(yōu)產(chǎn)量計(jì)算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟(jì)問題的建模計(jì)算實(shí)際上是一個從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對實(shí)際經(jīng)濟(jì)問題和情況有一個較為深入的認(rèn)識,然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例
四、結(jié)語
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
省賽數(shù)學(xué)建模論文一般要寫多少字篇五
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動手實(shí)踐能力.
數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐
省賽數(shù)學(xué)建模論文一般要寫多少字篇六
眾所周知,高等數(shù)學(xué)是所有自然學(xué)科的基礎(chǔ),一個大學(xué)生要想在以后的工作、學(xué)習(xí)中大展宏圖,那么就一定少不了堅(jiān)實(shí)的高等數(shù)學(xué)基礎(chǔ)。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實(shí)用有效的方法已經(jīng)提出并且在逐步推廣,比如,問題驅(qū)動式的教學(xué)方法和基于pbl的教學(xué)方法等。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。該方法在筆者所教授的班級中已經(jīng)實(shí)際應(yīng)用過幾屆,學(xué)生普遍反映效果較好,任課老師也認(rèn)為該方法確實(shí)能極大地調(diào)動學(xué)生的學(xué)習(xí)積極性。
提到高等數(shù)學(xué),學(xué)生們的第一反應(yīng)往往是:各種公式塞滿黑板,各種運(yùn)算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導(dǎo)可積一個涵蓋另一個[1]。和高中數(shù)學(xué)相比,記憶的負(fù)擔(dān)輕了(實(shí)際上是知識點(diǎn)太多,記不住了),而對思維的要求卻提高了。對大學(xué)生來說,每一次的高數(shù)課,都是一次大腦的思維訓(xùn)練,時(shí)刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內(nèi)容就不知所云了。這樣的要求短時(shí)間可以達(dá)到,長久下去學(xué)生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學(xué)生,剛開始時(shí),興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應(yīng)對。怪學(xué)生嗎?誠然學(xué)生有責(zé)任,但任課老師也該負(fù)很大的責(zé)任。作為高等數(shù)學(xué)的老師我們經(jīng)常要面對學(xué)生提的這些問題:(1)我學(xué)的專業(yè)和高等數(shù)學(xué)相差甚遠(yuǎn),有可能這一輩子都不會用到高等數(shù)學(xué)的知識,那我學(xué)高等數(shù)學(xué)的目的何在?(2)老師您天天鼓吹高等數(shù)學(xué)的強(qiáng)大功能和廣泛用途,但是通過一學(xué)期的學(xué)習(xí),我發(fā)現(xiàn)除了對付考試有用,真不知高等數(shù)學(xué)可以用在何處?這些問題不及時(shí)解決,時(shí)間長了一定會影響到大學(xué)生對高等數(shù)學(xué)的學(xué)習(xí)積極性,甚至有可能會產(chǎn)生厭學(xué)的情緒和氛圍。有些極端的學(xué)生,期末考試之后,一聽到自己高等數(shù)學(xué)考過了,立馬將高等數(shù)學(xué)的課本給撕了,可想而知高等數(shù)學(xué)對其造成的壓力有多大[2]。如何解決大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)碰到的問題?如何調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性?讓學(xué)生們了解高等數(shù)學(xué)的用途,真正愿意靜下心來好好學(xué)習(xí)高等數(shù)學(xué),努力地為以后的發(fā)展打好數(shù)學(xué)基礎(chǔ)。筆者從所在學(xué)校的學(xué)生實(shí)際學(xué)習(xí)情況出發(fā),根據(jù)幾年來的教學(xué)心得和積累,打算提出一種較為實(shí)用的教學(xué)方法——利用數(shù)學(xué)建模的思想調(diào)動大學(xué)生學(xué)習(xí)高等數(shù)學(xué)的積極性。
一、以實(shí)際問題反推解決問題時(shí)我們需要的高等數(shù)學(xué)知識
有這樣一個實(shí)際問題:報(bào)童每天清晨從報(bào)社購進(jìn)報(bào)紙零售,晚上將沒賣掉的報(bào)紙退回給報(bào)社。假設(shè)報(bào)紙每份的購進(jìn)價(jià)為b元,零售價(jià)為a元,退回價(jià)為c元,自然地有abc。這就是說,報(bào)童每售出一份報(bào)紙賺a-b元,每退回一份報(bào)紙賠b-c元,報(bào)童每天如果購進(jìn)的報(bào)紙?zhí)?,那么會不夠賣,就會少賺錢;如果每天購進(jìn)的報(bào)紙?zhí)?,那么會賣不完,將要賠錢。請為報(bào)童規(guī)劃一下,他該如何確定每天購進(jìn)的報(bào)紙份數(shù),以獲得最大的收入[3]。
現(xiàn)在我們來反推該問題涉及到的高等數(shù)學(xué)的知識:首先,通過分析題目可知,問題解決的關(guān)鍵在于——如何確定每天的報(bào)紙需求量,注意每天的報(bào)紙需求量是隨機(jī)變化的?解決這個關(guān)鍵問題的知識我們早就掌握了,分別是數(shù)理統(tǒng)計(jì)中的頻率連續(xù)化、概率論中的概率密度與期望和高等數(shù)學(xué)中的定積分[4]。
二、利用高等數(shù)學(xué)的解決實(shí)際問題
f(r)[4]。如果求出了f(r),那么
g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
現(xiàn)在我們來求f(r),假定報(bào)童已經(jīng)通過自己的經(jīng)驗(yàn)和其他渠道掌握了一年(365天)中每天報(bào)紙的售出份數(shù),那么在他的銷售范圍內(nèi),每天報(bào)紙日需求量r的概率f(r)為:
f(r)=,r=(0,1,2,3,…)
其中k表示為賣出r份的天數(shù)。
g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
通過上面的分析,可知實(shí)際問題歸結(jié)為,在p(r)和a,b,c已知時(shí),求n使得g(n)最大。
=-(b-c)p(r)dr+(a-b)p(r)dr.(3)
令=0,得到=,又因?yàn)閜(r)dr+p(r)dr=1,所以p(r)dr=.(4)
在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進(jìn)的報(bào)紙份數(shù),使報(bào)童每天獲得最大的收入。
三、利用現(xiàn)實(shí)問題,讓學(xué)生學(xué)會思考,給他們提供創(chuàng)造成就感的機(jī)會
通過上面碰到的實(shí)際問題,可以很容易地說服同學(xué)們靜下心來好好學(xué)習(xí)高等數(shù)學(xué)。因?yàn)橥ㄟ^實(shí)際問題的求解,學(xué)生們了解到了,要想解決一個實(shí)際問題(哪怕是很小的問題),也需要大量的高等數(shù)學(xué)知識的儲備;學(xué)生們也大概領(lǐng)略到了高等數(shù)學(xué)的用途與功能。這樣的教學(xué)方法簡單、直接,勝過老師課堂上反復(fù)的嘮叨與強(qiáng)調(diào)。有了這樣的一些實(shí)際問題,老師們就可以大膽地將數(shù)學(xué)建模思想引入高等數(shù)學(xué)的教學(xué)當(dāng)中,讓學(xué)生們在解決實(shí)際問題中學(xué)會思考,掌握知識,提高能力。
通過訓(xùn)練后,碰到實(shí)際問題,同學(xué)們會自然的想到我們的教學(xué)方法:(1)這些實(shí)際問題涉及到的高等數(shù)學(xué)知識?那些自己掌握了,那些還沒有弄明白,學(xué)要加強(qiáng)學(xué)習(xí)。(2)知識點(diǎn)找到后,如何建立起數(shù)學(xué)與實(shí)際問題求解之間的關(guān)系?也即如何建立數(shù)學(xué)模型。(3)除了老師給的題目,自己本專業(yè)中的實(shí)際問題,能否用高等數(shù)學(xué)的知識去解決?通過思考、分析、解決這些問題,學(xué)生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學(xué)習(xí),自然而然其學(xué)習(xí)高等數(shù)學(xué)的積極性也會大大提高了。
省賽數(shù)學(xué)建模論文一般要寫多少字篇七
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實(shí)際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運(yùn)用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進(jìn)行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
省賽數(shù)學(xué)建模論文一般要寫多少字篇八
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過設(shè)計(jì)一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
省賽數(shù)學(xué)建模論文一般要寫多少字篇九
走美杯”是“走進(jìn)美妙的數(shù)學(xué)花園”的簡稱。
“走進(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇是中國少年科學(xué)院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學(xué)家大會組委會、中國數(shù)學(xué)會、中國教育學(xué)會、中國少年科學(xué)院成功舉辦了首屆“走進(jìn)美妙的數(shù)學(xué)花園”中國少年數(shù)學(xué)論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項(xiàng)活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M(jìn)美妙的數(shù)學(xué)花園”中國青少年數(shù)學(xué)論壇活動是一項(xiàng)面對小學(xué)三年級至初中二年級學(xué)生的綜合性數(shù)學(xué)活動。通過“趣味數(shù)學(xué)解題技能展示”、“數(shù)學(xué)建模小論文答辯”、“數(shù)學(xué)益智游戲”、“團(tuán)體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學(xué)生的數(shù)學(xué)建模意識和數(shù)學(xué)應(yīng)用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學(xué)家陳省身先生兩次為同學(xué)們親筆題詞“數(shù)學(xué)好玩”和“走進(jìn)美妙的數(shù)學(xué)花園”,大大鼓舞了廣大青少年攀登數(shù)學(xué)高峰的熱情和信心,使同學(xué)們自覺地成為學(xué)習(xí)的主人,實(shí)現(xiàn)從“學(xué)數(shù)學(xué)”到“用數(shù)學(xué)”過程的轉(zhuǎn)變,從而進(jìn)一步推動我國數(shù)學(xué)文化的傳播與普及。
“走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊(duì)輔導(dǎo)員工作綱要(試行)》,向全國少年兒童推廣。
“走美”作為數(shù)學(xué)競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點(diǎn)中學(xué)選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
1、活動對象
全國各地小學(xué)三年級至初中二年級學(xué)生
2、總成績計(jì)算
總成績=筆試成績x70%+數(shù)學(xué)小論文x30%
筆試獲獎率:
一等獎5%,二等獎10%,三等獎15%。
3、筆試時(shí)間
每年3月上、中旬。
報(bào)名截止時(shí)間:每年12月底。
走美杯比賽流程
1、全國組委會下發(fā)通知,各地組委會開始組織工作
2、學(xué)生到當(dāng)?shù)亟M委會報(bào)名,填寫《報(bào)名表》
3、各地組委會將報(bào)名學(xué)生名單全部匯總至全國組委會
4、全國“走進(jìn)美妙的數(shù)學(xué)花園”趣味數(shù)學(xué)解題技能展示初賽(全國統(tǒng)一筆試)
5、學(xué)生撰寫數(shù)學(xué)建模小論文
6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書
7、獲得初賽一、二、三等獎選手有資格報(bào)名參加暑期赴英國劍橋大學(xué)數(shù)學(xué)交流活動。
8、各地按照組委會要求提交數(shù)學(xué)建模小論文
9、前各地組委會上報(bào)參加全國總論壇學(xué)生名單
10、全國總論壇和表彰活動
省賽數(shù)學(xué)建模論文一般要寫多少字篇十
摘要:本文以實(shí)際教學(xué)案例,具體的分析了數(shù)學(xué)建模思想在運(yùn)籌學(xué)教學(xué)中的應(yīng)用及所產(chǎn)生的應(yīng)用價(jià)值,期望能夠?yàn)閿?shù)學(xué)教學(xué)改革工作提供一定的幫助。
關(guān)鍵詞:數(shù)學(xué)建模思想;運(yùn)籌學(xué);應(yīng)用;應(yīng)用價(jià)值
運(yùn)籌學(xué)是結(jié)合各種科學(xué)技術(shù)知識有系統(tǒng)性的教學(xué)方法,有效的解決實(shí)際問題,并且注重人力、物力、財(cái)力等有限資源的合理統(tǒng)籌安排,實(shí)現(xiàn)最有決策。近年來運(yùn)籌學(xué)廣泛的應(yīng)用于教學(xué)工作中,但是,在數(shù)學(xué)教學(xué)中,針對具體問題,構(gòu)建數(shù)學(xué)模型仍是教學(xué)難點(diǎn)和重點(diǎn)?;诖?,本文對數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用展開具體的分析,期望能夠產(chǎn)生一定的積極效用。
一、數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用——教學(xué)內(nèi)容
傳統(tǒng)的數(shù)學(xué)教學(xué)偏重理論知識的灌輸,且數(shù)學(xué)公式龐大、理論繁瑣、計(jì)算復(fù)雜,容易挫傷學(xué)生的學(xué)習(xí)興趣和積極性,因此,利用數(shù)學(xué)建模思想、運(yùn)籌學(xué),在教學(xué)內(nèi)容上穿插一些能夠比較客觀的反映學(xué)生日常生活所關(guān)心的實(shí)際問題,如:企業(yè)產(chǎn)品加工問題、購買汽車問題、運(yùn)輸問題、選課策略問題等,調(diào)動學(xué)生的學(xué)習(xí)興趣,使得學(xué)生從解決問題的角度出發(fā),認(rèn)真的思考如何構(gòu)建數(shù)學(xué)模型,找出相應(yīng)的解決辦法。我們舉個例子:例1:針對選課策略問題,某所學(xué)校規(guī)定,該校運(yùn)籌學(xué)專業(yè)的學(xué)生在畢業(yè)之前必須學(xué)習(xí)和掌握3門運(yùn)籌學(xué)課程、2門數(shù)學(xué)課程以及2門計(jì)算機(jī)課程,該校關(guān)于這方面的課程編號、學(xué)分、選修課要求以及所屬類別進(jìn)行了規(guī)定,如表1。根據(jù)表1,請同學(xué)思考,運(yùn)籌學(xué)專業(yè)的學(xué)生畢業(yè)前最少可以學(xué)習(xí)哪些課程,而且如果希望課程少卻獲得的學(xué)分多,該如何選課。這是一個比較貼近學(xué)生生活,與學(xué)生密切相關(guān)的分配問題,我們可以建立0—1規(guī)劃的數(shù)學(xué)模型,解決上述的問題,而且考慮到學(xué)生希望課程少,卻獲得的學(xué)分高,我們可以引出目標(biāo)規(guī)劃問題。另外,教師在講解多階段決策鍋中最優(yōu)化問題時(shí),我們可以有效的引入與其相關(guān)(或者相類似)的“商人安全渡河問題”,如:3名商人各自附帶一個隨從,并且每一只小船職能容納2人,一旦隨從人數(shù)多余商人,便采取殺人取貨這樣的數(shù)學(xué)游戲,調(diào)動學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)到利用數(shù)學(xué)建模思想、運(yùn)籌學(xué)解決實(shí)際問題的樂趣,促進(jìn)學(xué)生更加高效的學(xué)習(xí)運(yùn)籌學(xué)知識和技能。
二、數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用——教學(xué)方法
為了全面的提高教學(xué)水平,需要改變傳統(tǒng)影視交易理念下的灌輸教學(xué)方法,可以采取探究式教學(xué),即:利用數(shù)學(xué)建模思想、運(yùn)籌學(xué)技能,由淺入深、由直觀到抽象的傳授知識,促使學(xué)生真正意義上掌握數(shù)學(xué)知識和問題解決技能。我們舉個例子:例2:運(yùn)籌學(xué)課程緒論的引用,在教學(xué)中可以引入一個生動形象的故事情節(jié),如:齊王和田忌賽馬,按同等次,兩人各種上、中、下三個等次的3匹馬,在比賽中,齊王的馬比田忌的馬勝一籌(三局兩勝),為了勝利,田忌采用了以下策略,田忌的上等馬與齊王的中等馬比賽、中等馬與齊王的下等馬比賽,下等馬與齊王的上等馬比賽,最終田忌以兩局勝利戰(zhàn)敗齊王,這充分的體現(xiàn)了田忌對運(yùn)籌學(xué)的運(yùn)用。齊王和田忌賽馬的故事,彰顯了數(shù)學(xué)建模思想、運(yùn)籌學(xué)中的優(yōu)化思想,并且避免了直接灌輸運(yùn)籌學(xué)知識給學(xué)生所帶來的困惑,能夠有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,有利于全面的提升教學(xué)水平。另外,對運(yùn)籌學(xué)的傳授,不應(yīng)該局限于知識的傳播,更加需要注重知識的拓展與延伸,全面的培養(yǎng)學(xué)生的發(fā)散性思維,提高學(xué)生的創(chuàng)新意識和創(chuàng)新能力。如在運(yùn)輸問題的運(yùn)籌學(xué)講解中,教師可以現(xiàn)提出問題,讓學(xué)生根據(jù)已經(jīng)學(xué)習(xí)和掌握的知識,自主的解決問題,與此同時(shí),教師需要指導(dǎo)學(xué)生建立線性規(guī)劃模型,且采用單純形法進(jìn)行求解,在此基礎(chǔ)上,鼓勵支持學(xué)生分析運(yùn)輸問題存在的線性規(guī)劃特點(diǎn),促使學(xué)生簡化計(jì)算過程,提高求解效率??偟膩碚f,在實(shí)際教學(xué)中,教師應(yīng)該以數(shù)學(xué)建模思想為指導(dǎo),遵循啟發(fā)式原則,調(diào)動學(xué)生的學(xué)習(xí)興趣、拓展學(xué)生的學(xué)習(xí)思維,幫助學(xué)生融會貫通的掌握知識和技能,提高學(xué)生問題解決能力,從而提高教學(xué)質(zhì)量。
三、結(jié)語
數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用注重實(shí)踐性,在實(shí)際教學(xué)中,應(yīng)當(dāng)注重理論知識與實(shí)際問題的聯(lián)系,并且需要加強(qiáng)運(yùn)籌學(xué)中的數(shù)學(xué)建模教學(xué)案例的引用,優(yōu)化教學(xué)內(nèi)容和教學(xué)方法,進(jìn)行深入的運(yùn)籌學(xué)課程教學(xué)改革,鍛煉培養(yǎng)學(xué)生的運(yùn)籌學(xué)思維能力以及實(shí)際問題的解決能力,從而推動教學(xué)水平的提升,促進(jìn)學(xué)生身心健康發(fā)展。
【本文地址:http://aiweibaby.com/zuowen/16877364.html】