教案應(yīng)結(jié)合教材內(nèi)容和學(xué)生實際情況,使教學(xué)更貼近學(xué)生生活。編寫教案前應(yīng)充分了解教材和教學(xué)大綱的要求。下面是一些教案范文以及教師對教案編寫的心得體會,供大家參考和借鑒。
函數(shù)的應(yīng)用教案篇一
使學(xué)生對反比例函數(shù)和反比例函數(shù)的圖象意義加深理解。
一、新授:
1、實例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
答:p=600,p是s的反比例函數(shù)。
(2)、當(dāng)木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r()之間的函數(shù)關(guān)系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的.表達(dá)式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點,其中點a的坐標(biāo)為(3,23)。
(1)分別寫出這兩個函數(shù)的表達(dá)式;。
(2)你能求出點b的坐標(biāo)嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習(xí):
p145~1461、2、3、4、5。
作業(yè):p146習(xí)題5.41、2。
函數(shù)的應(yīng)用教案篇二
教學(xué)目標(biāo):在復(fù)習(xí)指數(shù)函數(shù)與對數(shù)函數(shù)的特性之后,通過圖像對比使學(xué)生較快的學(xué)會不求值比較指數(shù)函數(shù)與對數(shù)函數(shù)值的大小及提高對復(fù)合型函數(shù)的定義域與值域的解題技巧。
難點:指導(dǎo)學(xué)生如何根據(jù)上述特性解決復(fù)合型函數(shù)的定義域與值域的問題。
教學(xué)方法:多媒體授課。
學(xué)法指導(dǎo):借助列表與圖像法。
教具:多媒體教學(xué)設(shè)備。
教學(xué)過程:
函數(shù)的應(yīng)用教案篇三
知識網(wǎng)絡(luò)。
學(xué)習(xí)要求。
1.了解解實際應(yīng)用題的一般步驟;。
2.初步學(xué)會根據(jù)已知條件建立函數(shù)關(guān)系式的方法;。
3.滲透建模思想,初步具有建模的'能力.
自學(xué)評價。
1.數(shù)學(xué)模型就是把實際問題用數(shù)學(xué)語言抽象概括,再從數(shù)學(xué)角度來反映或近似地反映實際問題,得出關(guān)于實際問題的數(shù)學(xué)描述.
2.數(shù)學(xué)建模就是把實際問題加以抽象概括。
建立相應(yīng)的數(shù)學(xué)模型的過程,是數(shù)學(xué)地解決問題的關(guān)鍵.
3.實際應(yīng)用問題建立函數(shù)關(guān)系式后一般都要考察定義域.
【精典范例】。
例1.寫出等腰三角形頂角(單位:度)與底角的函數(shù)關(guān)系.
例2.某計算機集團公司生產(chǎn)某種型號計算機的固定成本為萬元,生產(chǎn)每臺計算機的可變成本為元,每臺計算機的售價為元.分別寫出總成本(萬元)、單位成本(萬元)、銷售收入(萬元)以及利潤(萬元)關(guān)于總產(chǎn)量(臺)的函數(shù)關(guān)系式.
分析:銷售利潤銷售收入成本,其中成本(固定成本可變成本).
【解】總成本與總產(chǎn)量的關(guān)系為。
單位成本與總產(chǎn)量的關(guān)系為。
銷售收入與總產(chǎn)量的關(guān)系為。
利潤與總產(chǎn)量的關(guān)系為。
函數(shù)的應(yīng)用教案篇四
這節(jié)課是在學(xué)生掌握了反比例函數(shù)的概念及其圖像與性質(zhì)的基礎(chǔ)之上而學(xué)習(xí)的,并且上學(xué)學(xué)習(xí)了正比例函數(shù)和一次函數(shù),因此學(xué)生已經(jīng)有了一定的知識準(zhǔn)備,但是由于學(xué)生的知識所限,對于例題中的信息并不了解,這樣容易造成學(xué)生在了解上的困難,所以在教學(xué)時我選用了學(xué)生所熟悉的實例進行教學(xué)。使學(xué)生從身邊事物入手,真正體會到數(shù)學(xué)知識來源于生活,有一種親切感,另外對于本節(jié)的問題,文字多,閱讀量大,所以我應(yīng)用幻燈片的形式展現(xiàn),效果要好,注意要讓學(xué)生經(jīng)歷實踐、思考、表達(dá)與交流的過程,給學(xué)生留下充足的時間來活動,不斷引導(dǎo)學(xué)生利用數(shù)學(xué)知識解決實際問題,本節(jié)課效果較好。
函數(shù)的應(yīng)用教案篇五
這一節(jié)的重點就是鈉的化學(xué)性質(zhì)——與水反應(yīng),還有鈉的物理性質(zhì)——顏色。難點就是鈉與氧氣在充足及過量時候的反應(yīng),還有就是實驗,由于反應(yīng)速度快,難以觀察,最后就是反應(yīng)的化學(xué)方程式。
三教學(xué)理念及其方法。
對反應(yīng)速度快這個問題可以通過慢放實驗的動化,使學(xué)生能看清楚過程。
2涉及原子等微觀粒子的結(jié)合過程,需要很強的空間想象力,可以通過計算機動畫演示,使反應(yīng)變得直觀,更容易理解。
3對于鈉與水的反應(yīng),具有一定的危險性,可以通過動畫來展示實驗不當(dāng)造成的后果。
四教學(xué)過程。
2再以水滅火圖片給學(xué)生觀看,然后以鈉放入水中為參比,激發(fā)學(xué)生的興趣。
3再通過一些趣味性實驗演示,能更進一步激發(fā)學(xué)習(xí)的積極性,例如用一裝有半瓶水的塑料瓶,瓶塞上扎一黃豆大的鈉的大頭針,瓶倒置使鈉和水充分反應(yīng),取下塞子、點燃火柴靠近瓶口有尖銳的爆鳴聲,效果得到大大改進。
五學(xué)法分析。
通過這節(jié)課的教學(xué)教給學(xué)生對金屬鈉的認(rèn)識,掌握金屬鈉的性質(zhì),透過現(xiàn)象看本質(zhì),分析、歸納物質(zhì)的性質(zhì),培養(yǎng)學(xué)生觀察、分析問題的能力,調(diào)動學(xué)生積極性,激發(fā)學(xué)生的學(xué)習(xí)興趣。
五總結(jié)性質(zhì),得出結(jié)論,布置作業(yè)。
列出來,這樣條理就清晰了,然后再總述一下這節(jié)所學(xué)的內(nèi)容,講述的重點及難點。最后布置2個思考題:
(1)鈉為什么保存在煤油中?
(2)把鈉投到苯和水的混合液中鈉在水和苯間跳上“水上芭蕾”,為什么?
再講一下鈉的用途。
六板書設(shè)計。
板書設(shè)計第一節(jié)鈉。
一、鈉的物理性質(zhì)。
二、鈉的化學(xué)性質(zhì)。
1鈉的原子結(jié)構(gòu)。
2鈉與氧氣反應(yīng)(條件不同,產(chǎn)物不同)。
3鈉與水反應(yīng)(重點)。
函數(shù)的應(yīng)用教案篇六
2.滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點解決問題的能力。
二、重點、難點。
2.難點:分析實際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式。
3.難點的突破方法:
用函數(shù)觀點解實際問題,一要搞清題目中的.基本數(shù)量關(guān)系,將實際問題抽象成數(shù)學(xué)問題,看看各變量間應(yīng)滿足什么樣的關(guān)系式(包括已學(xué)過的基本公式),這一步很重要;二是要分清自變量和函數(shù),以便寫出正確的函數(shù)關(guān)系式,并注意自變量的取值范圍;三要熟練掌握反比例函數(shù)的意義、圖象和性質(zhì),特別是圖象,要做到數(shù)形結(jié)合,這樣有利于分析和解決問題。教學(xué)中要讓學(xué)生領(lǐng)會這一解決實際問題的基本思路。
三、例題的意圖分析。
教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學(xué)生學(xué)會分析問題的方法。
教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。
函數(shù)的應(yīng)用教案篇七
(2)借助幾何畫板的幫助,學(xué)生能從圖的特點發(fā)現(xiàn)各個量之間的關(guān)系,能直接將實際問題抽象為三角函數(shù)模型,會用三角函數(shù)的知識和方法解決模型問題,并能利用模型解釋有關(guān)實際問題,體會三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.
2.目標(biāo)解析。
(1)內(nèi)容解析:本節(jié)內(nèi)容是在前面學(xué)習(xí)了三角函數(shù)的概念、性質(zhì)與圖象之后,專門設(shè)置了三角函數(shù)模型的應(yīng)用,其目的是為了加強用三角函數(shù)模型來刻畫周期變化規(guī)律的實際問題,以提高學(xué)生解決實際問題的能力.根據(jù)教材的安排,本節(jié)內(nèi)容的4個例題共分兩個課時,本節(jié)課是第一課時,考慮到例1是圍繞根據(jù)圖象建立三角函數(shù)解析式,例3是將實際問題抽象出三角函數(shù)的模型問題,為系統(tǒng)展示三角函數(shù)的應(yīng)用廣泛性和真實性,選擇了例1和例3作為示例.
根據(jù)以上分析,本節(jié)課的教學(xué)重點確定為:
教學(xué)重點:用三角函數(shù)模型刻畫溫度隨時間變化的規(guī)律,用函數(shù)思想解決具有周期變化規(guī)律的實際問題;對房屋采光與樓間距的關(guān)系的探究,將實際問題抽象為三角函數(shù)的模型問題.
(2)學(xué)情診斷:本節(jié)課是三角函數(shù)的應(yīng)用,數(shù)學(xué)問題的載體都是具有實際意義與生活背景的,本節(jié)課的兩個問題是具有一定的廣泛性和真實性的,如何引導(dǎo)學(xué)生從生活中的實際來抽出三角函數(shù)的模型,以及對應(yīng)的數(shù)量關(guān)系是本節(jié)課成敗的關(guān)鍵所在.在問題1的探究中,學(xué)生已掌握了三角函數(shù)的概念與性質(zhì),理解的圖象及變換,因此在求解析式中對a、的求解應(yīng)該不是問題,但是對,b的求解就容易出錯,因為的值不唯一,b的變化是針對于整體圖象的移動,有別于前面的圖象平移,所以在處理此問題一定要重點引導(dǎo),加以區(qū)別強調(diào);為了體現(xiàn)數(shù)學(xué)的實用性,即由圖象求得解析式后,解析式有什么用,在這里我拓展了第三小題“求出十一月份的近似溫度”.在問題2的探究中,其實際問題的背景比較復(fù)雜,需要學(xué)生具備一定的綜合性知識以及理解水平,在“太陽高度角”的理解可能比較費勁,這樣我借助幾何畫板來展示形成過程,就可以迎刃而解了.
根據(jù)以上分析,本節(jié)課的教學(xué)難點確定為:
教學(xué)難點:對問題實際意義的數(shù)學(xué)解釋,從實際問題中抽象出三角函數(shù)模型.
函數(shù)的應(yīng)用教案篇八
這節(jié)課我首先讓學(xué)生思考了三個列函數(shù)關(guān)系式的實際問題,接著在學(xué)生探究這三個實際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實背景,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。通過學(xué)生的探究性活動(經(jīng)歷數(shù)學(xué)化的過程),和學(xué)生之間的合作與交流,通過分析實際問題,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當(dāng)?shù)臅r機收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的應(yīng)用教案篇九
教學(xué)目標(biāo):
1、繼續(xù)經(jīng)歷利用二次函數(shù)解決實際最值問題的過程。
2、會綜合運用二次函數(shù)和其他數(shù)學(xué)知識解決如有關(guān)距離等函數(shù)最值問題。
3、發(fā)展應(yīng)用數(shù)學(xué)解決問題的能力,體會數(shù)學(xué)與生活的密切聯(lián)系和數(shù)學(xué)的應(yīng)用價值。
教學(xué)重點和難點:
重點:利用二次函數(shù)的知識對現(xiàn)實問題進行數(shù)學(xué)地分析,即用數(shù)學(xué)的方式表示問題以及用數(shù)學(xué)的方法解決問題。
難點:例2將現(xiàn)實問題數(shù)學(xué)化,情景比較復(fù)雜。
教學(xué)過程:
一、復(fù)習(xí):
1、利用二次函數(shù)的性質(zhì)解決許多生活和生產(chǎn)實際中的最大和最小值的問題,它的一般方法是:
(1)列出二次函數(shù)的解析式,列解析式時,要根據(jù)自變量的實際意義,確定自變量的取值范圍。
(2)在自變量取值范圍內(nèi),運用公式或配方法求出二次函數(shù)的最大值和最小值。
2、上節(jié)課我們討論了用二次函數(shù)的性質(zhì)求面積的最值問題。出示上節(jié)課的引例的動態(tài)。
圖形(在周長為8米的矩形中)(多媒體動態(tài)顯示)。
設(shè)問:(1)對角線(l)與邊長(x)有什何關(guān)系?
(2)對角線(l)是否也有最值?如果有怎樣求?
l與x并不是二次函數(shù)關(guān)系,而被開方數(shù)卻可看成是關(guān)于x的二次函數(shù),并且有最小值。引導(dǎo)學(xué)生回憶算術(shù)平方根的性質(zhì):被開方數(shù)越大(?。﹦t它的算術(shù)平方根也越大(小)。指出:當(dāng)被開方數(shù)取最小值時,對角線也為最小值。
二、例題講解。
多媒體動態(tài)演示,提出思考問題:(1)兩船的距離隨著什么的變化而變化?
(2)經(jīng)過t小時后,兩船的行程是多少?兩船的距離如何用t來表示?
設(shè)經(jīng)過t小時后ab兩船分別到達(dá)a’,b’,兩船之間距離為a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(這里估計學(xué)生會聯(lián)想剛才解決類似的問題)。
因此只要求出被開方式169t2-260t+676的最小值,就可以求出兩船之間的距離s的最小值。
解:設(shè)經(jīng)過t時后,a,bab兩船分別到達(dá)a’,b’,兩船之間距離為。
s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。
=169t2-260t+676=169(t-1013)2+576(t0)。
當(dāng)t=1013時,被開方式169(t-1013)2+576有最小值576。
所以當(dāng)t=1013時,s最小值=576=24(km)。
答:經(jīng)過1013時,兩船之間的距離最近,最近距離為24km。
練習(xí):直角三角形的兩條直角邊的和為2,求斜邊的最小值。
三、課堂小結(jié)。
應(yīng)用二次函數(shù)解決實際問題的一般步驟。
四、布置作業(yè)。
見作業(yè)本。
函數(shù)的應(yīng)用教案篇十
本節(jié)課是在學(xué)習(xí)學(xué)習(xí)了第一章函數(shù)的應(yīng)用和三角函數(shù)的性質(zhì)和圖象的基礎(chǔ)上來習(xí)三角函數(shù)模型的簡單應(yīng)用,學(xué)生已經(jīng)有了數(shù)學(xué)建摸的基本思想和方法,應(yīng)用三角函數(shù)的基本知識來解決實際問題對學(xué)生來說應(yīng)該順理成章,所以對本節(jié)的學(xué)習(xí)應(yīng)讓學(xué)生能夠多參與多思考,培養(yǎng)他們的分析解決問題的能力,提高應(yīng)用所學(xué)知識的能力。
函數(shù)的應(yīng)用教案篇十一
教學(xué)目標(biāo):使學(xué)生對反比例函數(shù)和反比例函數(shù)的圖象意義加深理解。
教學(xué)程序:
一、新授:
1、實例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
答:p=600,p是s的反比例函數(shù)。
(2)、當(dāng)木板面積為0.2m2時,壓強是多少?
答:p=3000pa。
(3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
答:2。
(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。
(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
二、做一做。
1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r之間的函數(shù)關(guān)系如圖5-8所示。
(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?
電壓u=36v,i=60k。
r()345678910。
i(a)。
3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點,其中點a的坐標(biāo)為(3,23)。
(1)分別寫出這兩個函數(shù)的表達(dá)式;。
(2)你能求出點b的坐標(biāo)嗎?你是怎樣求的?與同伴進行交流;。
隨堂練習(xí):
p145~1461、2、3、4、5。
作業(yè):p146習(xí)題5.41、2。
函數(shù)的應(yīng)用教案篇十二
本節(jié)課的教學(xué),我本意是通過反比例函數(shù)及其圖像相關(guān)問題的復(fù)習(xí),引出本節(jié)課所要討論的問題反比例函數(shù)的應(yīng)用,而后通過對問題1的討論切入正題,重點研究“數(shù)”與“形”的互相滲透,并通過這節(jié)課的學(xué)習(xí)讓學(xué)生體會“數(shù)形結(jié)合”的數(shù)學(xué)思想,利用函數(shù)圖像來解決應(yīng)用題。在教學(xué)中,我發(fā)現(xiàn)這種教學(xué)設(shè)計出現(xiàn)了以下幾個問題。
首先,目標(biāo)教學(xué)的第一環(huán)節(jié),前測激趣,但沒有達(dá)到激趣的目的,這種引課方式,在課堂反映出來顯得非常平淡,沒有新意,沒能引起學(xué)生的認(rèn)知發(fā)生沖突,激發(fā)學(xué)生的求知欲。
其次,在導(dǎo)探激勵環(huán)節(jié)中,問題設(shè)計較好,但問題的處理上操之過急,沒能讓學(xué)生切實做出函數(shù)圖像,通過問題迫使學(xué)生利用函數(shù)圖像來解決問題,達(dá)到真正看圖說話,因此就數(shù)形的內(nèi)在聯(lián)系學(xué)生體會不是很深刻。
為了一開始就能充分調(diào)動學(xué)生的情商,激發(fā)他們的學(xué)習(xí)動機和好奇心,激發(fā)他們的求知欲,使他們的思維進入最佳狀態(tài),我就上面存在的問題作如下改進。
在整個題目的處理過程,鼓勵學(xué)生畫出函數(shù)圖像,更好的認(rèn)識整個過程自變量和應(yīng)變量變化的整體情況,處理好題目中的量與自變量和應(yīng)變量的關(guān)系。
作以上改進,可以很好地讓學(xué)生體會到“數(shù)”與“形”之間的聯(lián)系,并且會根據(jù)反比例函數(shù)求應(yīng)用題。
函數(shù)的應(yīng)用教案篇十三
學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識判別計算得到的數(shù)據(jù)的正確性。
學(xué)生能夠使用函數(shù)(sum,average,max,min等)計算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會新函數(shù)的使用。并且能夠根據(jù)實際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ嬎愕臄?shù)據(jù)結(jié)果合理利用。
學(xué)生自主學(xué)習(xí)意識得到提高,在任務(wù)的完成過程中體會到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護的重要性及艱巨性。
sum函數(shù)的插入和使用。
函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。
任務(wù)驅(qū)動,觀察分析,通過實踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。
excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計表格一張。
1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。
2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進行教學(xué)。
3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識計算各省各類廢棄物的總量。
函數(shù)名表示函數(shù)的計算關(guān)系。
=sum(起始單元格:結(jié)束單元格)。
4、問:求某一種廢棄物的全國總量用公式法和自動求和哪個方便?
注意參數(shù)的正確性。
1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進行計算。
在公式中計算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。
2、使用函數(shù)sum計算各廢棄物的全國總計。(強調(diào)計算范圍的正確性)。
3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。
函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個統(tǒng)計函數(shù),統(tǒng)計出該表格中比去年同期增長%的平均數(shù)。
(參數(shù)的格式要嚴(yán)格;符號要用英文符號,以避免出錯。)。
有的同學(xué)開始瞪眼睛了,不大好用吧?
因為這種方法要求我們對函數(shù)的使用比較熟悉,如果我們對需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對話框來輸入函數(shù)。
用相同任務(wù)演示操作過程。
4、引出max和min函數(shù)。
探索任務(wù):利用提示應(yīng)用max和min函數(shù)計算各廢棄物的最大和最小值。
5、引出countif函數(shù)。
探索任務(wù):利用countif函數(shù)按要求計算并體會函數(shù)的不同格式。
1、教師小結(jié)比較。
2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。
四、???????。
1、廢棄物數(shù)量大危害大,各個省都在想各種辦法進行處理,把對環(huán)境的污染降到最低。
2、研究任務(wù):運用表格數(shù)據(jù),計算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個數(shù),并對應(yīng)計算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。
1、分析存在問題,表揚練習(xí)完成比較好的同學(xué),強調(diào)鼓勵大家探究學(xué)習(xí)的精神。
2、把結(jié)果進行記錄,上繳或在課后進行分析比較,寫出一小論文。
1、讓學(xué)生體會到固體廢棄物數(shù)量的巨大。
2、處理真實數(shù)據(jù)引發(fā)學(xué)生興趣。
通過比較得到兩種方法的優(yōu)劣。
學(xué)生的計算結(jié)果在現(xiàn)實中的運用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。
通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。
實際數(shù)據(jù),引發(fā)思考。
學(xué)生應(yīng)用課堂所學(xué)知識。
學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護知識得到加強。
觀看投影。
學(xué)生用公式法和自動求和兩種方法計算各省廢棄物總量。
回答可用自動求和。
動手操作。
計算各類廢氣物的全國各省平均。
練習(xí)。
練習(xí)。
用自己計算所得數(shù)據(jù)對現(xiàn)實進行分析。
應(yīng)用所學(xué)知識。
練習(xí)并記錄數(shù)據(jù)。
函數(shù)的應(yīng)用教案篇十四
難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學(xué)方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學(xué)過程。
(幻燈片見附件)。
1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的應(yīng)用教案篇十五
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
啟發(fā)引導(dǎo) 合作交流
課件
計算機、實物投影。
檢查預(yù)習(xí) 引出課題
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
函數(shù)的應(yīng)用教案篇十六
1.能從二倍角的正弦、余弦、正切公式導(dǎo)出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識.并培養(yǎng)學(xué)生綜合分析能力.
2.掌握公式及其推導(dǎo)過程,會用公式進行化簡、求值和證明。
3.通過公式推導(dǎo),掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
二、過程與方法。
2.通過例題講解,總結(jié)方法.通過做練習(xí),鞏固所學(xué)知識.
三、情感、態(tài)度與價值觀。
1.通過公式的推導(dǎo),了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點。
2.培養(yǎng)用聯(lián)系的觀點看問題的觀點。
【教學(xué)重點與難點】:
重點:半角公式的推導(dǎo)與應(yīng)用(求值、化簡、證明)。
難點:半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運用公式時正負(fù)號的選取。
【學(xué)法與教學(xué)用具】:
1.學(xué)法:
(1)自主+探究性學(xué)習(xí):讓學(xué)生自己由和角公式導(dǎo)出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學(xué)思想,體會公式所蘊涵的和諧美,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。
(2)反饋練習(xí)法:以練習(xí)來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
2.教學(xué)方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學(xué)方法。
引導(dǎo)學(xué)生復(fù)習(xí)二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導(dǎo)學(xué)生動手推導(dǎo)出半角公式,課堂上在老師引導(dǎo)下,以學(xué)生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點得出公式的應(yīng)用,用公式來進行化簡證明和求值,老師為學(xué)生創(chuàng)設(shè)問題情景,鼓勵學(xué)生積極探究。
3.教學(xué)用具:多媒體、實物投影儀.
【授課類型】:新授課。
【課時安排】:1課時。
【教學(xué)思路】:
一、創(chuàng)設(shè)情景,揭示課題。
二、研探新知。
四、鞏固深化,反饋矯正。
五、歸納整理,整體認(rèn)識。
1.鞏固倍角公式,會推導(dǎo)半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
3.特別注意公式的三角表達(dá)形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號.
六、承上啟下,留下懸念。
七、板書設(shè)計(略)。
八、課后記:略。
函數(shù)的應(yīng)用教案篇十七
“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。教學(xué)完后,對新教材有了一些更深的認(rèn)識。
精心備課。
備課過程是一種艱苦的復(fù)雜的腦力勞動過程,知識的發(fā)展、教育對象的變化、教學(xué)效益要求的提高,使作為一種藝術(shù)創(chuàng)造和再創(chuàng)造的備課是沒有止境的,一種最佳教學(xué)方案的設(shè)計和選擇,往往是難以完全使人滿意的。
二:教學(xué)內(nèi)容不好處理。
“一次函數(shù)的性質(zhì)”中無b對函數(shù)的圖象的影響,但題中有,要補講。
(2)當(dāng)k0時,y隨x的增大而______,這時函數(shù)的圖象從左到右_____.
(3)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
(4)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
待定系數(shù)法的引入上用“彈簧的長度y(厘米)”來講的,太難,要先講書上的“做一做:“已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,1)和點(1,-5),”
三:難度不好處理:
如我們在講一次函數(shù)的定義時(第一課時)補充了一個例題:已知函數(shù)y=當(dāng)m取什么值時,y是x的一次函數(shù)?當(dāng)m取什么值是,y是x的正比例函數(shù)。”
學(xué)生難以理解,我個人認(rèn)為太難,超出了學(xué)生的理解能力。反而對一個具體的一次函數(shù)y=-2x+3中k,b是多少強調(diào)的不多。
滿意之筆。
一.結(jié)合生活實例,充分調(diào)動學(xué)生學(xué)習(xí)的激情,恰當(dāng)?shù)倪^渡,點燃其求知的欲望。
在本節(jié)課的引入部分采用班級里的真人真事(運用校運動會的具體事例)“在此跑步過程中涉及到哪些量?”“假定每位選手各自都是勻速直線運動的,那速度、時間、路程之間有什么關(guān)系?”“路程是時間的一次函數(shù)嗎?”等過渡性的問句既復(fù)習(xí)回顧了上節(jié)課的知識又為一次函數(shù)圖像的概念引出作了鋪墊。
二.大膽對教材作大幅度調(diào)整、修改。
對知識內(nèi)容的完整性作了補充。
(附一次函數(shù)的圖象的知識要點:一次函數(shù)幾何形狀:一條直線;一次函數(shù)圖象的畫法;一次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)。)教材對“一次函數(shù)圖象的畫法”闡釋得不太完整、詳盡。學(xué)習(xí)函數(shù)的圖象需要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,一次函數(shù)圖象又是所有函數(shù)圖象中最簡單的一種,是以后學(xué)習(xí)其他復(fù)雜函數(shù)的基礎(chǔ),所以整體全面地學(xué)習(xí)一次函數(shù)的圖象能為學(xué)生以后學(xué)習(xí)其他復(fù)雜函數(shù)提供思路樣本、節(jié)省學(xué)習(xí)時間。雖然在課后的習(xí)題與作業(yè)本中都有涉及到:當(dāng)一次函數(shù)的自變量限制在某一范圍時如何畫此一次函數(shù)的圖象,但在教材中似乎沒有涉及到此類問題,對于b班的學(xué)生需要教師對此類問題做相關(guān)示范解決。(1)求y1關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)畫出上述函數(shù)的圖像。圖像還是一條直線嗎?此題為拓展知識點:當(dāng)一次函數(shù)的自變量限制在某一范圍時一次函數(shù)的圖象是一條射線或線段而特地設(shè)計的。至于如何快速地畫出射線或線段呢,讓學(xué)生討論后給出總結(jié):對于射線,取起點與另一個異于起點的任一點畫出射線;對于線段,取線段的兩個端點然后連接即可。
不足之處。
一、時間把握不準(zhǔn)。由于我在原教材的基礎(chǔ)上加寬了知識點的面,拓展了知識點的深度,個別環(huán)節(jié)還需要小組活動或?qū)W生個別上臺動手操作,而我又想將這所有的內(nèi)容在一節(jié)課內(nèi)完成,似乎太高估了自己和學(xué)生的能力。所以我想這么多內(nèi)容可以更宜分開兩節(jié)課來上。
二、部分內(nèi)容上處理出現(xiàn)失誤:初探索一次函數(shù)y=x的畫法時,我直接自己硬性規(guī)定先取這樣五個點:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而沒有先征求學(xué)生的意見,看看他們是怎么取的,也沒有解釋為什么要取這五個點(理由應(yīng)是:這五個點分布均勻,它們的坐標(biāo)較簡單,有代表性)。
在以后的教學(xué)工作中,我要再接再厲,以能更好的體現(xiàn)數(shù)學(xué)課堂教學(xué)的有效性。
函數(shù)的應(yīng)用教案篇十八
2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。
過程與方法目標(biāo)
1、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,增強學(xué)生數(shù)形結(jié)合的意識,培養(yǎng)學(xué)生識圖能力;
2、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達(dá)能力。
情感與態(tài)度目標(biāo)
經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動中發(fā)展學(xué)生的合作意識和能力。
本節(jié)通過對一次函數(shù)圖像的研究,對一次函數(shù)的單調(diào)性作了探討;對一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的認(rèn)識情況,循序漸進,逐層深入,對教材內(nèi)容可作適當(dāng)增加,但不宜太難。
教學(xué)重點:結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。
教學(xué)難點:一次函數(shù)性質(zhì)的應(yīng)用。
學(xué)生已經(jīng)對一次函數(shù)的圖像有了一定的認(rèn)識,在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計,引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。
(一)做一做
在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數(shù)中,隨著x值的增大,y的值分別如何變化?
學(xué)生:有的在增大,有的在減小。
學(xué)生討論:y=2x+6和y=5x這兩個一次函數(shù)在增大;y=2x1和y=x+6在減?。挥绊戇@個變化的是x前面的系數(shù)k的符號:當(dāng)k為正數(shù)時,y隨x的增大而增大;當(dāng)k為負(fù)數(shù)時,y隨x的增大而減小。
師:當(dāng)k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
當(dāng)k0時,一次函數(shù)的圖象經(jīng)過哪些象限?
函數(shù)的應(yīng)用教案篇十九
近期,我參加了一次關(guān)于函數(shù)應(yīng)用的實訓(xùn)課程,通過實際操作和理論學(xué)習(xí),我深刻認(rèn)識到了函數(shù)在編程中的重要性和應(yīng)用價值,并獲得了許多寶貴的經(jīng)驗和心得體會。
首先,函數(shù)的靈活運用使編程變得高效而優(yōu)雅。在實訓(xùn)中,我們學(xué)習(xí)了不同類型的函數(shù),并學(xué)會了如何根據(jù)需求合理運用它們。無論是封裝復(fù)雜操作的大型函數(shù),還是根據(jù)特定規(guī)則進行數(shù)據(jù)處理的小型函數(shù),它們極大地提高了我們的編程效率。通過函數(shù)的模塊化設(shè)計,我們能夠更加容易地調(diào)試代碼和進行功能擴展。在實踐中,我意識到,一個函數(shù)的設(shè)計應(yīng)該盡量短小且單一,這樣不僅使其易讀易懂,也方便后續(xù)的維護與修改。
其次,函數(shù)應(yīng)用的巧妙運用使程序更加具有可復(fù)用性。在實際的編程過程中,我們經(jīng)常會遇到相似的問題,而函數(shù)的應(yīng)用能夠避免重復(fù)的代碼編寫。通過合理抽象和封裝,我們可以將一段常用的功能代碼寫成一個函數(shù),并在不同的場景下重復(fù)利用。在實訓(xùn)中,我嘗試過將一些公共的功能模塊寫成通用函數(shù),比如文件讀寫、網(wǎng)絡(luò)請求等,這樣可以節(jié)約不少時間,并且在后續(xù)的開發(fā)過程中也會變得更加便捷。
再次,函數(shù)應(yīng)用培養(yǎng)了我們的思維能力和邏輯思維。在實訓(xùn)課程中,我們需要根據(jù)需求,設(shè)計函數(shù)的輸入?yún)?shù)和輸出結(jié)果,根據(jù)不同的場景用不同的函數(shù)組合和調(diào)用。這就要求我們具備良好的邏輯思維能力和編程思維。編寫一個函數(shù)之前,我會先進行需求分析和邏輯架構(gòu)的設(shè)計,這樣可以在一開始就避免一些不必要的麻煩。在實踐過程中,我意識到函數(shù)的好壞不僅取決于代碼的質(zhì)量,還要考慮其運行效率和可擴展性。因此,我們在編程過程中需要注重思考和反思,以提高自己的編程能力。
最后,實訓(xùn)過程中的合作與交流讓我領(lǐng)悟到了團隊合作的重要性。在實訓(xùn)中,我們往往需要與其他同學(xué)合作完成一個完整的項目。而函數(shù)的應(yīng)用能夠使項目更好地分工和協(xié)作。每個人負(fù)責(zé)相應(yīng)的函數(shù)編寫,然后將其整合到一起,最終形成一個完整的項目。通過與他人的合作,我意識到程序員不是一個人孤軍奮戰(zhàn)的,而是需要和他人緊密合作的。在合作過程中,我們不僅可以互相學(xué)習(xí)和借鑒,還可以共同解決問題,并培養(yǎng)自己的團隊意識和溝通能力。
總結(jié)起來,函數(shù)應(yīng)用實訓(xùn)給了我寶貴的經(jīng)驗和收獲。我從中深刻體會到了函數(shù)在編程中的重要性和應(yīng)用價值,學(xué)會了靈活運用函數(shù)提高效率,培養(yǎng)了思維能力和邏輯思維,并懂得了團隊合作的重要性。通過這次實訓(xùn),我對函數(shù)的應(yīng)用有了更深入的理解,并且在今后的編程實踐中,我將更加注重函數(shù)的合理設(shè)計和運用,以提高自己的編程水平和工作效率。
【本文地址:http://www.aiweibaby.com/zuowen/17368890.html】