最新函數(shù)的應(yīng)用教案(模板16篇)

格式:DOC 上傳日期:2023-12-05 09:44:16
最新函數(shù)的應(yīng)用教案(模板16篇)
時(shí)間:2023-12-05 09:44:16     小編:夢幻泡

教案是教師教學(xué)過程中必不可少的工具,它可以幫助教師合理安排教學(xué)內(nèi)容和教學(xué)步驟。在教案中選擇適當(dāng)?shù)慕虒W(xué)方法和教學(xué)媒體,提高教學(xué)效果和吸引學(xué)生的興趣。這些教案范例不僅注重認(rèn)知目標(biāo)的達(dá)成,還注重學(xué)生能力和情感的培養(yǎng)。

函數(shù)的應(yīng)用教案篇一

(一)教材地位:

本小節(jié)屬于《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)實(shí)驗(yàn)稿》中“數(shù)與代數(shù)”領(lǐng)域,是我們在。

學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進(jìn)入函數(shù)領(lǐng)域,通過本小節(jié)的學(xué)習(xí),讓學(xué)生感受到函數(shù)是反映現(xiàn)實(shí)生活的一種有效模型,同時(shí),本小節(jié)的學(xué)習(xí)內(nèi)容,直接關(guān)系到后續(xù)內(nèi)容的學(xué)習(xí),也可以說是后續(xù)內(nèi)容的基礎(chǔ)。

(二)教學(xué)重點(diǎn):

2、能根據(jù)問題中的已知條件確定反比例函數(shù)解析式;

3、能判斷一個(gè)函數(shù)是否為反比例函數(shù)及比例系數(shù);

4、培養(yǎng)學(xué)生的觀察、比較、概括能力。

(三)教學(xué)重學(xué):

2、能根據(jù)已知條件確定反比例函數(shù)解析式。

(四)教學(xué)難點(diǎn):

2、能根據(jù)已知條件確定反比例函數(shù)解析式。

二、分析教法與學(xué)法:

(一)教法:

(二)學(xué)法:

通過觀察、比較、發(fā)現(xiàn)、概括的方法來學(xué)習(xí)新知識(shí)。

三、分析教學(xué)過程。

(一)創(chuàng)設(shè)情境:教育大全。

1、由于學(xué)生所學(xué)過的反比例關(guān)系,一次函數(shù)等概念時(shí)間已較長,所以在創(chuàng)設(shè)情境時(shí)對(duì)這些知識(shí)加以復(fù)習(xí),以換取學(xué)生以以有知識(shí)的記憶。

2、在情境中,列舉大量實(shí)例,讓學(xué)生裝根據(jù)已知條件,列出一次函數(shù)、正比例函數(shù)、反比例函數(shù)為學(xué)生的探險(xiǎn)索創(chuàng)造條件。

(二)探索過程。

1、學(xué)生的探索能力不是很強(qiáng),因此在列出的'大量函數(shù)中,教師發(fā)揮主導(dǎo)作用,啟發(fā)學(xué)生思考。

2、通過一系列的探索,讓學(xué)生概括出反比例函數(shù)的共同特征,從而給出概念。

3、在學(xué)生得出反比例函數(shù)后,再進(jìn)行深化,給出比例系數(shù)為負(fù)數(shù)或分。

(三)小結(jié)和作業(yè):

在學(xué)生的自我小結(jié)中教師加以完善,對(duì)反比例函數(shù)有一定程度上的掌握。

函數(shù)的應(yīng)用教案篇二

這一節(jié)的重點(diǎn)就是鈉的化學(xué)性質(zhì)——與水反應(yīng),還有鈉的物理性質(zhì)——顏色。難點(diǎn)就是鈉與氧氣在充足及過量時(shí)候的反應(yīng),還有就是實(shí)驗(yàn),由于反應(yīng)速度快,難以觀察,最后就是反應(yīng)的化學(xué)方程式。

三教學(xué)理念及其方法。

對(duì)反應(yīng)速度快這個(gè)問題可以通過慢放實(shí)驗(yàn)的動(dòng)化,使學(xué)生能看清楚過程。

2涉及原子等微觀粒子的結(jié)合過程,需要很強(qiáng)的空間想象力,可以通過計(jì)算機(jī)動(dòng)畫演示,使反應(yīng)變得直觀,更容易理解。

3對(duì)于鈉與水的反應(yīng),具有一定的危險(xiǎn)性,可以通過動(dòng)畫來展示實(shí)驗(yàn)不當(dāng)造成的后果。

四教學(xué)過程。

2再以水滅火圖片給學(xué)生觀看,然后以鈉放入水中為參比,激發(fā)學(xué)生的興趣。

3再通過一些趣味性實(shí)驗(yàn)演示,能更進(jìn)一步激發(fā)學(xué)習(xí)的積極性,例如用一裝有半瓶水的塑料瓶,瓶塞上扎一黃豆大的鈉的大頭針,瓶倒置使鈉和水充分反應(yīng),取下塞子、點(diǎn)燃火柴靠近瓶口有尖銳的爆鳴聲,效果得到大大改進(jìn)。

五學(xué)法分析。

通過這節(jié)課的教學(xué)教給學(xué)生對(duì)金屬鈉的認(rèn)識(shí),掌握金屬鈉的性質(zhì),透過現(xiàn)象看本質(zhì),分析、歸納物質(zhì)的性質(zhì),培養(yǎng)學(xué)生觀察、分析問題的能力,調(diào)動(dòng)學(xué)生積極性,激發(fā)學(xué)生的學(xué)習(xí)興趣。

五總結(jié)性質(zhì),得出結(jié)論,布置作業(yè)。

列出來,這樣條理就清晰了,然后再總述一下這節(jié)所學(xué)的內(nèi)容,講述的重點(diǎn)及難點(diǎn)。最后布置2個(gè)思考題:

(1)鈉為什么保存在煤油中?

(2)把鈉投到苯和水的混合液中鈉在水和苯間跳上“水上芭蕾”,為什么?

再講一下鈉的用途。

六板書設(shè)計(jì)。

板書設(shè)計(jì)第一節(jié)鈉。

一、鈉的物理性質(zhì)。

二、鈉的化學(xué)性質(zhì)。

1鈉的原子結(jié)構(gòu)。

2鈉與氧氣反應(yīng)(條件不同,產(chǎn)物不同)。

3鈉與水反應(yīng)(重點(diǎn))。

函數(shù)的應(yīng)用教案篇三

教學(xué)目標(biāo):

1、繼續(xù)經(jīng)歷利用二次函數(shù)解決實(shí)際最值問題的過程。

2、會(huì)綜合運(yùn)用二次函數(shù)和其他數(shù)學(xué)知識(shí)解決如有關(guān)距離等函數(shù)最值問題。

3、發(fā)展應(yīng)用數(shù)學(xué)解決問題的能力,體會(huì)數(shù)學(xué)與生活的密切聯(lián)系和數(shù)學(xué)的應(yīng)用價(jià)值。

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):利用二次函數(shù)的知識(shí)對(duì)現(xiàn)實(shí)問題進(jìn)行數(shù)學(xué)地分析,即用數(shù)學(xué)的方式表示問題以及用數(shù)學(xué)的方法解決問題。

難點(diǎn):例2將現(xiàn)實(shí)問題數(shù)學(xué)化,情景比較復(fù)雜。

教學(xué)過程:

一、復(fù)習(xí):

1、利用二次函數(shù)的性質(zhì)解決許多生活和生產(chǎn)實(shí)際中的最大和最小值的問題,它的一般方法是:

(1)列出二次函數(shù)的解析式,列解析式時(shí),要根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍。

(2)在自變量取值范圍內(nèi),運(yùn)用公式或配方法求出二次函數(shù)的最大值和最小值。

2、上節(jié)課我們討論了用二次函數(shù)的性質(zhì)求面積的最值問題。出示上節(jié)課的引例的動(dòng)態(tài)。

圖形(在周長為8米的矩形中)(多媒體動(dòng)態(tài)顯示)。

設(shè)問:(1)對(duì)角線(l)與邊長(x)有什何關(guān)系?

(2)對(duì)角線(l)是否也有最值?如果有怎樣求?

l與x并不是二次函數(shù)關(guān)系,而被開方數(shù)卻可看成是關(guān)于x的二次函數(shù),并且有最小值。引導(dǎo)學(xué)生回憶算術(shù)平方根的性質(zhì):被開方數(shù)越大(?。﹦t它的算術(shù)平方根也越大(?。V赋觯寒?dāng)被開方數(shù)取最小值時(shí),對(duì)角線也為最小值。

二、例題講解。

多媒體動(dòng)態(tài)演示,提出思考問題:(1)兩船的距離隨著什么的變化而變化?

(2)經(jīng)過t小時(shí)后,兩船的行程是多少?兩船的距離如何用t來表示?

設(shè)經(jīng)過t小時(shí)后ab兩船分別到達(dá)a’,b’,兩船之間距離為a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(這里估計(jì)學(xué)生會(huì)聯(lián)想剛才解決類似的問題)。

因此只要求出被開方式169t2-260t+676的最小值,就可以求出兩船之間的距離s的最小值。

解:設(shè)經(jīng)過t時(shí)后,a,bab兩船分別到達(dá)a’,b’,兩船之間距離為。

s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。

=169t2-260t+676=169(t-1013)2+576(t0)。

當(dāng)t=1013時(shí),被開方式169(t-1013)2+576有最小值576。

所以當(dāng)t=1013時(shí),s最小值=576=24(km)。

答:經(jīng)過1013時(shí),兩船之間的距離最近,最近距離為24km。

練習(xí):直角三角形的兩條直角邊的和為2,求斜邊的最小值。

三、課堂小結(jié)。

應(yīng)用二次函數(shù)解決實(shí)際問題的一般步驟。

四、布置作業(yè)。

見作業(yè)本。

函數(shù)的應(yīng)用教案篇四

教學(xué)目標(biāo):使學(xué)生對(duì)反比例函數(shù)和反比例函數(shù)的圖象意義加深理解。

教學(xué)程序:

一、新授:

1、實(shí)例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?

答:p=600,p是s的反比例函數(shù)。

(2)、當(dāng)木板面積為0.2m2時(shí),壓強(qiáng)是多少?

答:p=3000pa。

(3)、如果要求壓強(qiáng)不超過6000pa,木板的面積至少要多少?

答:2。

(4)、在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象。

(5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流。

二、做一做。

1、(1)蓄電池的電壓為定值,使用此電源時(shí),電流i(a)與電阻r之間的函數(shù)關(guān)系如圖5-8所示。

(2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達(dá)式嗎?

電壓u=36v,i=60k。

r()345678910。

i(a)。

3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點(diǎn),其中點(diǎn)a的坐標(biāo)為(3,23)。

(1)分別寫出這兩個(gè)函數(shù)的表達(dá)式;。

(2)你能求出點(diǎn)b的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流;。

隨堂練習(xí):

p145~1461、2、3、4、5。

作業(yè):p146習(xí)題5.41、2。

函數(shù)的應(yīng)用教案篇五

本節(jié)課的教學(xué),我本意是通過反比例函數(shù)及其圖像相關(guān)問題的復(fù)習(xí),引出本節(jié)課所要討論的問題反比例函數(shù)的應(yīng)用,而后通過對(duì)問題1的討論切入正題,重點(diǎn)研究“數(shù)”與“形”的互相滲透,并通過這節(jié)課的學(xué)習(xí)讓學(xué)生體會(huì)“數(shù)形結(jié)合”的數(shù)學(xué)思想,利用函數(shù)圖像來解決應(yīng)用題。在教學(xué)中,我發(fā)現(xiàn)這種教學(xué)設(shè)計(jì)出現(xiàn)了以下幾個(gè)問題。

首先,目標(biāo)教學(xué)的第一環(huán)節(jié),前測激趣,但沒有達(dá)到激趣的目的,這種引課方式,在課堂反映出來顯得非常平淡,沒有新意,沒能引起學(xué)生的認(rèn)知發(fā)生沖突,激發(fā)學(xué)生的求知欲。

其次,在導(dǎo)探激勵(lì)環(huán)節(jié)中,問題設(shè)計(jì)較好,但問題的處理上操之過急,沒能讓學(xué)生切實(shí)做出函數(shù)圖像,通過問題迫使學(xué)生利用函數(shù)圖像來解決問題,達(dá)到真正看圖說話,因此就數(shù)形的內(nèi)在聯(lián)系學(xué)生體會(huì)不是很深刻。

為了一開始就能充分調(diào)動(dòng)學(xué)生的情商,激發(fā)他們的學(xué)習(xí)動(dòng)機(jī)和好奇心,激發(fā)他們的求知欲,使他們的思維進(jìn)入最佳狀態(tài),我就上面存在的問題作如下改進(jìn)。

在整個(gè)題目的處理過程,鼓勵(lì)學(xué)生畫出函數(shù)圖像,更好的認(rèn)識(shí)整個(gè)過程自變量和應(yīng)變量變化的整體情況,處理好題目中的量與自變量和應(yīng)變量的關(guān)系。

作以上改進(jìn),可以很好地讓學(xué)生體會(huì)到“數(shù)”與“形”之間的聯(lián)系,并且會(huì)根據(jù)反比例函數(shù)求應(yīng)用題。

函數(shù)的應(yīng)用教案篇六

(2)借助幾何畫板的幫助,學(xué)生能從圖的特點(diǎn)發(fā)現(xiàn)各個(gè)量之間的關(guān)系,能直接將實(shí)際問題抽象為三角函數(shù)模型,會(huì)用三角函數(shù)的知識(shí)和方法解決模型問題,并能利用模型解釋有關(guān)實(shí)際問題,體會(huì)三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型.

2.目標(biāo)解析。

(1)內(nèi)容解析:本節(jié)內(nèi)容是在前面學(xué)習(xí)了三角函數(shù)的概念、性質(zhì)與圖象之后,專門設(shè)置了三角函數(shù)模型的應(yīng)用,其目的是為了加強(qiáng)用三角函數(shù)模型來刻畫周期變化規(guī)律的實(shí)際問題,以提高學(xué)生解決實(shí)際問題的能力.根據(jù)教材的安排,本節(jié)內(nèi)容的4個(gè)例題共分兩個(gè)課時(shí),本節(jié)課是第一課時(shí),考慮到例1是圍繞根據(jù)圖象建立三角函數(shù)解析式,例3是將實(shí)際問題抽象出三角函數(shù)的模型問題,為系統(tǒng)展示三角函數(shù)的應(yīng)用廣泛性和真實(shí)性,選擇了例1和例3作為示例.

根據(jù)以上分析,本節(jié)課的教學(xué)重點(diǎn)確定為:

教學(xué)重點(diǎn):用三角函數(shù)模型刻畫溫度隨時(shí)間變化的規(guī)律,用函數(shù)思想解決具有周期變化規(guī)律的實(shí)際問題;對(duì)房屋采光與樓間距的關(guān)系的探究,將實(shí)際問題抽象為三角函數(shù)的模型問題.

(2)學(xué)情診斷:本節(jié)課是三角函數(shù)的應(yīng)用,數(shù)學(xué)問題的載體都是具有實(shí)際意義與生活背景的,本節(jié)課的兩個(gè)問題是具有一定的廣泛性和真實(shí)性的,如何引導(dǎo)學(xué)生從生活中的實(shí)際來抽出三角函數(shù)的模型,以及對(duì)應(yīng)的數(shù)量關(guān)系是本節(jié)課成敗的關(guān)鍵所在.在問題1的探究中,學(xué)生已掌握了三角函數(shù)的概念與性質(zhì),理解的圖象及變換,因此在求解析式中對(duì)a、的求解應(yīng)該不是問題,但是對(duì),b的求解就容易出錯(cuò),因?yàn)榈闹挡晃ㄒ唬琤的變化是針對(duì)于整體圖象的移動(dòng),有別于前面的圖象平移,所以在處理此問題一定要重點(diǎn)引導(dǎo),加以區(qū)別強(qiáng)調(diào);為了體現(xiàn)數(shù)學(xué)的實(shí)用性,即由圖象求得解析式后,解析式有什么用,在這里我拓展了第三小題“求出十一月份的近似溫度”.在問題2的探究中,其實(shí)際問題的背景比較復(fù)雜,需要學(xué)生具備一定的綜合性知識(shí)以及理解水平,在“太陽高度角”的理解可能比較費(fèi)勁,這樣我借助幾何畫板來展示形成過程,就可以迎刃而解了.

根據(jù)以上分析,本節(jié)課的教學(xué)難點(diǎn)確定為:

教學(xué)難點(diǎn):對(duì)問題實(shí)際意義的數(shù)學(xué)解釋,從實(shí)際問題中抽象出三角函數(shù)模型.

函數(shù)的應(yīng)用教案篇七

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.體會(huì)方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。

啟發(fā)引導(dǎo) 合作交流

課件

計(jì)算機(jī)、實(shí)物投影。

檢查預(yù)習(xí) 引出課題

1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.

教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。

學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。

這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。

函數(shù)的應(yīng)用教案篇八

近期,我參加了一次關(guān)于函數(shù)應(yīng)用的實(shí)訓(xùn)課程,通過實(shí)際操作和理論學(xué)習(xí),我深刻認(rèn)識(shí)到了函數(shù)在編程中的重要性和應(yīng)用價(jià)值,并獲得了許多寶貴的經(jīng)驗(yàn)和心得體會(huì)。

首先,函數(shù)的靈活運(yùn)用使編程變得高效而優(yōu)雅。在實(shí)訓(xùn)中,我們學(xué)習(xí)了不同類型的函數(shù),并學(xué)會(huì)了如何根據(jù)需求合理運(yùn)用它們。無論是封裝復(fù)雜操作的大型函數(shù),還是根據(jù)特定規(guī)則進(jìn)行數(shù)據(jù)處理的小型函數(shù),它們極大地提高了我們的編程效率。通過函數(shù)的模塊化設(shè)計(jì),我們能夠更加容易地調(diào)試代碼和進(jìn)行功能擴(kuò)展。在實(shí)踐中,我意識(shí)到,一個(gè)函數(shù)的設(shè)計(jì)應(yīng)該盡量短小且單一,這樣不僅使其易讀易懂,也方便后續(xù)的維護(hù)與修改。

其次,函數(shù)應(yīng)用的巧妙運(yùn)用使程序更加具有可復(fù)用性。在實(shí)際的編程過程中,我們經(jīng)常會(huì)遇到相似的問題,而函數(shù)的應(yīng)用能夠避免重復(fù)的代碼編寫。通過合理抽象和封裝,我們可以將一段常用的功能代碼寫成一個(gè)函數(shù),并在不同的場景下重復(fù)利用。在實(shí)訓(xùn)中,我嘗試過將一些公共的功能模塊寫成通用函數(shù),比如文件讀寫、網(wǎng)絡(luò)請求等,這樣可以節(jié)約不少時(shí)間,并且在后續(xù)的開發(fā)過程中也會(huì)變得更加便捷。

再次,函數(shù)應(yīng)用培養(yǎng)了我們的思維能力和邏輯思維。在實(shí)訓(xùn)課程中,我們需要根據(jù)需求,設(shè)計(jì)函數(shù)的輸入?yún)?shù)和輸出結(jié)果,根據(jù)不同的場景用不同的函數(shù)組合和調(diào)用。這就要求我們具備良好的邏輯思維能力和編程思維。編寫一個(gè)函數(shù)之前,我會(huì)先進(jìn)行需求分析和邏輯架構(gòu)的設(shè)計(jì),這樣可以在一開始就避免一些不必要的麻煩。在實(shí)踐過程中,我意識(shí)到函數(shù)的好壞不僅取決于代碼的質(zhì)量,還要考慮其運(yùn)行效率和可擴(kuò)展性。因此,我們在編程過程中需要注重思考和反思,以提高自己的編程能力。

最后,實(shí)訓(xùn)過程中的合作與交流讓我領(lǐng)悟到了團(tuán)隊(duì)合作的重要性。在實(shí)訓(xùn)中,我們往往需要與其他同學(xué)合作完成一個(gè)完整的項(xiàng)目。而函數(shù)的應(yīng)用能夠使項(xiàng)目更好地分工和協(xié)作。每個(gè)人負(fù)責(zé)相應(yīng)的函數(shù)編寫,然后將其整合到一起,最終形成一個(gè)完整的項(xiàng)目。通過與他人的合作,我意識(shí)到程序員不是一個(gè)人孤軍奮戰(zhàn)的,而是需要和他人緊密合作的。在合作過程中,我們不僅可以互相學(xué)習(xí)和借鑒,還可以共同解決問題,并培養(yǎng)自己的團(tuán)隊(duì)意識(shí)和溝通能力。

總結(jié)起來,函數(shù)應(yīng)用實(shí)訓(xùn)給了我寶貴的經(jīng)驗(yàn)和收獲。我從中深刻體會(huì)到了函數(shù)在編程中的重要性和應(yīng)用價(jià)值,學(xué)會(huì)了靈活運(yùn)用函數(shù)提高效率,培養(yǎng)了思維能力和邏輯思維,并懂得了團(tuán)隊(duì)合作的重要性。通過這次實(shí)訓(xùn),我對(duì)函數(shù)的應(yīng)用有了更深入的理解,并且在今后的編程實(shí)踐中,我將更加注重函數(shù)的合理設(shè)計(jì)和運(yùn)用,以提高自己的編程水平和工作效率。

函數(shù)的應(yīng)用教案篇九

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如的圖象.

2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.

3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是指數(shù)函數(shù).

(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

教學(xué)重點(diǎn)和難點(diǎn)。

重點(diǎn)是理解指數(shù)函數(shù)的定義,把握圖象和性質(zhì).

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí).

教學(xué)用具。

投影儀。

教學(xué)方法。

啟發(fā)討論研究式。

教學(xué)過程。

一.引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)-------指數(shù)函數(shù).

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要.比如我們看下面的問題:。

由學(xué)生回答:與之間的關(guān)系式,可以表示為.

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系.

由學(xué)生回答:.

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為指數(shù)函數(shù).

1.定義:形如的函數(shù)稱為指數(shù)函數(shù).(板書)。

教師在給出定義之后再對(duì)定義作幾點(diǎn)說明.

2.幾點(diǎn)說明(板書)。

(1)關(guān)于對(duì)的規(guī)定:。

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會(huì)有什么問題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在.

若對(duì)于都無意義,若則無論取何值,它總是1,對(duì)它沒有研究的必要.為了避免上述各種情況的.發(fā)生,所以規(guī)定且.

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù).此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以指數(shù)函數(shù)的定義域?yàn)?擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值.

(3)關(guān)于是否是指數(shù)函數(shù)的判斷(板書)。

剛才分別認(rèn)識(shí)了指數(shù)函數(shù)中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是指數(shù)函數(shù),請看下面函數(shù)是否是指數(shù)函數(shù).

(1),(2),(3)。

(4),(5).

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是指數(shù)函數(shù),其中(3)可以寫成,也是指數(shù)圖象.

最后提醒學(xué)生指數(shù)函數(shù)的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì).

3.歸納性質(zhì)。

作圖的用什么方法.用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答.

函數(shù)。

1.定義域:。

2.值域:。

3.奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4.截距:在軸上沒有,在軸上為1.

對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用.(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明.對(duì)于單調(diào)性,我建議找一些特殊點(diǎn).,先看一看,再下定論.對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù).(圖象位于軸上方,且與軸不相交.)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了.取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少.

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù).連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線.

二.圖象與性質(zhì)(板書)。

1.圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法.

2.草圖:。

當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例.

此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單.即=與圖象之間關(guān)于軸對(duì)稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件.讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象.

最后問學(xué)生是否需要再畫.(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征.教師可列一個(gè)表,如下:。

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿.

填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好.為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì).

3.性質(zhì).

(1)無論為何值,指數(shù)函數(shù)都有定義域?yàn)?值域?yàn)?都過點(diǎn).

(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù).

(3)時(shí),,時(shí),.

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì).

三.簡單應(yīng)用(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題.首先我們來看下面的問題.

例1.比較下列各組數(shù)的大小。

(1)與;(2)與;。

(3)與1.(板書)。

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同.再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想指數(shù)函數(shù),提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小.然后以第(1)題為例,給出解答過程.

解:在上是增函數(shù),且。

(板書)。

教師最后再強(qiáng)調(diào)過程必須寫清三句話:。

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性.

(2)自變量的大小比較.

(3)函數(shù)值的大小比較.

后兩個(gè)題的過程略.要求學(xué)生仿照第(1)題敘述過程.

例2.比較下列各組數(shù)的大小。

(1)與;(2)與;。

(3)與.(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法.引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決.(教師可提示學(xué)生指數(shù)函數(shù)的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學(xué)生說出1,1,.

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0.

三.鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大小(板書)。

(1)與(2)與;。

(3)與;(4)與.解答過程略。

四.小結(jié)。

3.簡單應(yīng)用。

函數(shù)的應(yīng)用教案篇十

1、使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。

(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如x的圖象。

2、x通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3、通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。

(1)x是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)x本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)x在x和x時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點(diǎn)差異,諸如x,x等都不是。

(2)對(duì)底數(shù)x的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。

2。x通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。x通過對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握圖象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

投影儀

啟發(fā)討論研究式

一、x引入新課

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。

1、6、(板書)

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:

由學(xué)生回答:x與x之間的關(guān)系式,可以表示為x。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。

由學(xué)生回答:x。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

x的概念(板書)

1、定義:形如x的函數(shù)稱為。(板書)

教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。

2、幾點(diǎn)說明x(板書)

(1)x關(guān)于對(duì)x的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若x會(huì)有什么問題?如x,此時(shí)x,x等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若x對(duì)于x都無意義,若x則x無論x取何值,它總是1,對(duì)它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。

(2)關(guān)于的定義域x(板書)

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),x也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的"性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)閤。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書)

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。

(4)x,x

(5)x。

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

3、歸納性質(zhì)

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)

1、定義域x:

2、值域:

3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)

4、截距:在x軸上沒有,在x軸上為1。

對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故x的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(當(dāng)x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。

二、圖象與性質(zhì)(板書)

1、圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2、草圖:

當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取x為例。

此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對(duì)稱,而此時(shí)x的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到x的圖象。

最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如x的圖象一起比較,再找共性)

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個(gè)x的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì)。

3、性質(zhì)。

(1)無論x為何值,x都有定義域?yàn)閤,值域?yàn)閤,都過點(diǎn)x。

(2)x時(shí),x在定義域內(nèi)為增函數(shù),x時(shí),x為減函數(shù)。

(3)x時(shí),x,x x時(shí),x。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三、簡單應(yīng)用x (板書)

1、利用單調(diào)性比大小。x(板書)

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1、x比較下列各組數(shù)的大小

(1)x與x;x(2)x與x;

(3)x與1x。(板書)

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解:x在x上是增函數(shù),且

教師最后再強(qiáng)調(diào)過程必須寫清三句話:

(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)x自變量的大小比較。

(3)x函數(shù)值的大小比較。

后兩個(gè)題的過程略。要求學(xué)生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小

(1)x與x;x(2)x與x ;

(3)x與x。(板書)

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)

最后由學(xué)生說出x1,1。

解決后由教師小結(jié)比較大小的方法

(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)

(2)x搭橋比較法:x用特殊的數(shù)1或0。

四、鞏固練習(xí)

練習(xí):比較下列各組數(shù)的大?。ò鍟?/p>

(1)x與x x(2)x與x;

(3)x與x;x(4)x與x。解答過程略

五、小結(jié)

1、的概念

2、的圖象和性質(zhì)

3、簡單應(yīng)用

六、板書設(shè)計(jì)

函數(shù)的應(yīng)用教案篇十一

微分方程指的是,聯(lián)系著自變量,未知函數(shù)及它的導(dǎo)數(shù)的關(guān)系式子。

微分方程是高等數(shù)學(xué)的重要內(nèi)容之一,是一門與實(shí)際聯(lián)系較密切的一個(gè)內(nèi)容。

在自然科學(xué)和技術(shù)科學(xué)領(lǐng)域中,例如化學(xué),生物學(xué),自動(dòng)控制,電子技術(shù)等等,都提出了大量的微分方程問題。

在實(shí)際教學(xué)過程中應(yīng)注重實(shí)際應(yīng)用例子或應(yīng)用背景,使學(xué)生對(duì)所學(xué)微分方程內(nèi)容有具體地,形象地認(rèn)識(shí),從而激發(fā)他們強(qiáng)大的學(xué)習(xí)興趣。

1.1生態(tài)系統(tǒng)中的弱肉強(qiáng)食問題。

在這里考慮兩個(gè)種群的系統(tǒng),一種以另一種為食,比如鯊魚(捕食者)與食用魚(被捕食者),這種系統(tǒng)稱為“被食者—捕食者”系統(tǒng)。

volterra提出:記食用魚數(shù)量為,鯊魚數(shù)量為,因?yàn)榇蠛5馁Y源很豐富,可以認(rèn)為如果,則將以自然生長率增長,即。

但是鯊魚以食用魚為食,致使食用魚的增長率降低,設(shè)降低程度與鯊魚數(shù)量成正比,于是相對(duì)增長率為。

常數(shù),反映了鯊魚掠取食用魚的能力。

如果沒有食用魚,鯊魚無法生存,設(shè)鯊魚的自然死亡率為,則。

食用魚為鯊魚提供了食物,致使鯊魚死亡率降低,即食用魚為鯊魚提供了增長的條件。

設(shè)增長率與食用魚的數(shù)量成正比,于是鯊魚的相對(duì)增長率為。

常數(shù)0,反映了食用魚對(duì)鯊魚的供養(yǎng)能力。

所以最終建立的模型為:

這就是一個(gè)非線性的微分方程。

1.2雪球融化問題。

有一個(gè)雪球,假設(shè)它是一個(gè)半徑為r的球體,融化時(shí)體積v的變化率與雪球的表面積成正比,比例常數(shù)為0,則可建立如下模型:

1.3冷卻(加熱)問題。

牛頓冷卻定律具體表述是,物體的溫度隨時(shí)間的變化率跟環(huán)境的的溫差成正比。

記t為物體的溫度,為周圍環(huán)境的溫度,則物體溫度隨時(shí)。

2結(jié)語。

文中通過舉生態(tài)系統(tǒng)中弱肉強(qiáng)食問題,雪球融化及物理學(xué)中冷卻定律問題為例給出了微分方程在實(shí)際中的應(yīng)用。

在講解高等數(shù)學(xué)微分方程這一章內(nèi)容時(shí)經(jīng)常舉些應(yīng)用例子,能引起學(xué)生對(duì)微分方程的學(xué)習(xí)興趣,能使學(xué)生易于理解和掌握其基本概念及理論,達(dá)到事半功倍之效。

參考文獻(xiàn)。

[1]王嘉謀,石林.高等數(shù)學(xué)[m].北京:高等教育出版社,.

[2]王高雄,周之銘,朱思銘,等.常微分方程[m].2版.北京:科學(xué)出版社,.

[3]齊歡.數(shù)學(xué)建模方法[m].武漢:華中理工大學(xué)出版社,.

微分方程在數(shù)學(xué)建模中的應(yīng)用【2】。

在許多實(shí)際問題中,當(dāng)直接導(dǎo)出變量之間的函數(shù)關(guān)系較為困難,但導(dǎo)出包含未知函數(shù)的導(dǎo)數(shù)或微分的關(guān)系式較為容易時(shí),可用建立微分方程模型的方法來研究該問題。

本文主要從交通紅綠燈模型和市場價(jià)格模型來論述微分方程在數(shù)學(xué)建模中的應(yīng)用。

數(shù)學(xué)建模是數(shù)學(xué)方法解決各種實(shí)際問題的橋梁,隨著計(jì)算機(jī)技術(shù)的快速發(fā)展,數(shù)學(xué)的應(yīng)用日益廣泛,數(shù)學(xué)建模的作用越來越重要,而且已經(jīng)應(yīng)用到各個(gè)領(lǐng)域。

用微分方程解決實(shí)際問題的關(guān)鍵是建立實(shí)際問題的數(shù)學(xué)模型——微分方程。

這首先要根據(jù)實(shí)際問題所提供的條件,選擇確定模型的變量,再根據(jù)有關(guān)學(xué)科,如物理、化學(xué)、生物、經(jīng)濟(jì)等學(xué)科理論,找到這些變量遵循的規(guī)律,用微分方程的形式將其表示出來。

一、交通紅綠燈模型。

在十字路口的交通管理中,亮紅燈之前,要亮一段時(shí)間的黃燈,這是為了讓那些正行駛在十字路口的人注意,告訴他們紅燈即將亮起,假如你能夠停住,應(yīng)當(dāng)馬上剎車,以免沖紅燈違反交通規(guī)則。

這里我們不妨想一下:黃燈應(yīng)當(dāng)亮多久才比較合適?

停車線的確定,要確定停車線位置應(yīng)當(dāng)考慮到兩點(diǎn):一是駕駛員看到黃燈并決定停車需要一段反應(yīng)時(shí)間,在這段時(shí)間里,駕駛員尚未剎車。

二是駕駛員剎車后,車還需要繼續(xù)行駛一段距離,我們把這段距離稱為剎車距離。

駕駛員的反應(yīng)時(shí)間(實(shí)際為平均反應(yīng)時(shí)間)較易得到,可以根據(jù)經(jīng)驗(yàn)或者統(tǒng)計(jì)數(shù)據(jù)求出,交通部門對(duì)駕駛員也有一個(gè)統(tǒng)一的要求(在考駕照時(shí)都必須經(jīng)過測試)。

例如,不失一般性,我們可以假設(shè)它為1秒,(反應(yīng)時(shí)間的長短并不影響到計(jì)算方法)。

停車時(shí),駕駛員踩動(dòng)剎車踏板產(chǎn)生一種摩擦力,該摩擦力使汽車減速并最終停下。

設(shè)汽車質(zhì)量為m,剎車摩擦系數(shù)為f,x(t)為剎車后在t時(shí)刻內(nèi)行駛的距離,更久剎車規(guī)律,可假設(shè)剎車制動(dòng)力為fmg(g為重力加速度)。

由牛頓第二定律,剎車過程中車輛應(yīng)滿足下列運(yùn)動(dòng)方程:

md2xdt2=-fmg。

x(0)=0,dxdtt=0=v0。

(1)。

在方程(1)兩邊同除以并積分一次,并注意到當(dāng)t=0時(shí)dxdt=v0,得到。

dxdt=-fgt+v0。

(2)。

剎車時(shí)間t2可這樣求得,當(dāng)t=t2時(shí),dxdt=0,故。

t2=v0fg。

將(2)再積分一次,得。

x(t)=-12fgt2+v0t。

將t2=v0fg代入,即可求得停車距離為。

x(t2)=1v202fg。

據(jù)此可知,停車線到路口的距離應(yīng)為:

l=v0t1+12v20fg。

等式右邊的第一項(xiàng)為反應(yīng)時(shí)間里駛過的路程,第二項(xiàng)為剎車距離。

黃燈時(shí)間的計(jì)算,現(xiàn)在我們可以來確定黃燈究竟應(yīng)當(dāng)亮多久了。

在黃燈轉(zhuǎn)為紅燈的這段時(shí)間里,應(yīng)當(dāng)能保證已經(jīng)過線的車輛順利地通過街口,記街道的寬度為d(d很容易測得),平均車身長度為,這些車輛應(yīng)通過的路程最長可達(dá)到l+d+l,因而,為保證過線的車輛全部順利通過,黃燈持續(xù)時(shí)間至少應(yīng)當(dāng)為:

t=l+d+lv0。

二、市場價(jià)格調(diào)整模型。

對(duì)于純粹的市場經(jīng)濟(jì)來說,商品市場價(jià)格取決于市場供需之間的關(guān)系,市場價(jià)格能促使商品的供給與需求相等這樣的價(jià)格稱為(靜態(tài))均衡價(jià)格。

也就是說,如果不考慮商品價(jià)格形成的動(dòng)態(tài)過程,那么商品的市場價(jià)格應(yīng)能保證市場的供需平衡,但是,實(shí)際的市場價(jià)格不會(huì)恰好等于均衡價(jià)格,而且價(jià)格也不會(huì)是靜態(tài)的,應(yīng)是隨時(shí)間不斷變化的動(dòng)態(tài)過程。

dpdt=k[d(p)-](k0)。

(3)。

在d(p)和確定情況下,可解出價(jià)格與t的函數(shù)關(guān)系,這就是商品的價(jià)格調(diào)整模型。

某種商品的價(jià)格變化主要服從市場供求關(guān)系。

函數(shù)的應(yīng)用教案篇十二

學(xué)生能理解函數(shù)的概念,掌握常見的函數(shù)(sum,average,max,min等)。學(xué)生能夠根據(jù)所學(xué)函數(shù)知識(shí)判別計(jì)算得到的數(shù)據(jù)的正確性。

學(xué)生能夠使用函數(shù)(sum,average,max,min等)計(jì)算所給數(shù)據(jù)的和、平均值、最大最小值。學(xué)生通過自主探究學(xué)會(huì)新函數(shù)的使用。并且能夠根據(jù)實(shí)際工作生活中的需求選擇和正確使用函數(shù),并能夠?qū)τ?jì)算的數(shù)據(jù)結(jié)果合理利用。

學(xué)生自主學(xué)習(xí)意識(shí)得到提高,在任務(wù)的完成過程中體會(huì)到成功的喜悅,并在具體的任務(wù)中感受環(huán)境保護(hù)的重要性及艱巨性。

sum函數(shù)的插入和使用。

函數(shù)的格式、函數(shù)參數(shù)正確使用以及修改。

任務(wù)驅(qū)動(dòng),觀察分析,通過實(shí)踐掌握,發(fā)現(xiàn)問題,協(xié)作學(xué)習(xí)。

excel文件《2000年全國各省固體廢棄物情況》、統(tǒng)計(jì)表格一張。

1、展示投影片,創(chuàng)設(shè)數(shù)據(jù)處理環(huán)境。

2、以環(huán)境污染中的固體廢棄物數(shù)據(jù)為素材來進(jìn)行教學(xué)。

3、展示《2000年全國各省固體廢棄物情況》工作簿中的《固體廢棄物數(shù)量狀況》工作表,要求根據(jù)已學(xué)知識(shí)計(jì)算各省各類廢棄物的總量。

函數(shù)名表示函數(shù)的計(jì)算關(guān)系。

=sum(起始單元格:結(jié)束單元格)。

4、問:求某一種廢棄物的全國總量用公式法和自動(dòng)求和哪個(gè)方便?

注意參數(shù)的正確性。

1、簡單描述函數(shù):函數(shù)是一些預(yù)定義了的計(jì)算關(guān)系,可將參數(shù)按特定的順序或結(jié)構(gòu)進(jìn)行計(jì)算。

在公式中計(jì)算關(guān)系是我們自己定義的,而函數(shù)給我們提供了大量的已定義好的計(jì)算關(guān)系,我們只需要根據(jù)不同的處理目的去選擇、提供參數(shù)去套用就可以了。

2、使用函數(shù)sum計(jì)算各廢棄物的全國總計(jì)。(強(qiáng)調(diào)計(jì)算范圍的正確性)。

3、通過介紹average函數(shù)學(xué)習(xí)函數(shù)的輸入。

函數(shù)的輸入與一般的公式?jīng)]有什么不同,用戶可以直接在“=”后鍵入函數(shù)及其參數(shù)。例如我們選定一個(gè)單元格后,直接鍵入“=average(d3:d13)”就可以在該單元格中創(chuàng)建一個(gè)統(tǒng)計(jì)函數(shù),統(tǒng)計(jì)出該表格中比去年同期增長%的平均數(shù)。

(參數(shù)的格式要嚴(yán)格;符號(hào)要用英文符號(hào),以避免出錯(cuò)。)。

有的同學(xué)開始瞪眼睛了,不大好用吧?

因?yàn)檫@種方法要求我們對(duì)函數(shù)的使用比較熟悉,如果我們對(duì)需要使用的函數(shù)名稱、參數(shù)格式等不是非常有把握,則建議使用“插入函數(shù)”對(duì)話框來輸入函數(shù)。

用相同任務(wù)演示操作過程。

4、引出max和min函數(shù)。

探索任務(wù):利用提示應(yīng)用max和min函數(shù)計(jì)算各廢棄物的最大和最小值。

5、引出countif函數(shù)。

探索任務(wù):利用countif函數(shù)按要求計(jì)算并體會(huì)函數(shù)的不同格式。

1、教師小結(jié)比較。

2、根據(jù)得到的數(shù)據(jù)引發(fā)出怎樣的思考。

四、???????。

1、廢棄物數(shù)量大危害大,各個(gè)省都在想各種辦法進(jìn)行處理,把對(duì)環(huán)境的污染降到最低。

2、研究任務(wù):運(yùn)用表格數(shù)據(jù),計(jì)算各省廢棄物處理率的最大,最小值,以及廢棄物處理率大于90%,小于70%的省份個(gè)數(shù),并對(duì)應(yīng)計(jì)算各省處理的廢棄物量和剩余的廢棄物量及全國總數(shù)。

1、分析存在問題,表揚(yáng)練習(xí)完成比較好的同學(xué),強(qiáng)調(diào)鼓勵(lì)大家探究學(xué)習(xí)的精神。

2、把結(jié)果進(jìn)行記錄,上繳或在課后進(jìn)行分析比較,寫出一小論文。

1、讓學(xué)生體會(huì)到固體廢棄物數(shù)量的巨大。

2、處理真實(shí)數(shù)據(jù)引發(fā)學(xué)生興趣。

通過比較得到兩種方法的優(yōu)劣。

學(xué)生的計(jì)算結(jié)果在現(xiàn)實(shí)中的運(yùn)用,真正體現(xiàn)信息技術(shù)課是收集,分析數(shù)據(jù),的工具。

通過類比學(xué)習(xí),提高學(xué)生的自學(xué)能力和分析問題能力。

實(shí)際數(shù)據(jù),引發(fā)思考。

學(xué)生應(yīng)用課堂所學(xué)知識(shí)。

學(xué)生帶著任務(wù)離開教室,課程之間整合,學(xué)生環(huán)境保護(hù)知識(shí)得到加強(qiáng)。

觀看投影。

學(xué)生用公式法和自動(dòng)求和兩種方法計(jì)算各省廢棄物總量。

回答可用自動(dòng)求和。

動(dòng)手操作。

計(jì)算各類廢氣物的全國各省平均。

練習(xí)。

練習(xí)。

用自己計(jì)算所得數(shù)據(jù)對(duì)現(xiàn)實(shí)進(jìn)行分析。

應(yīng)用所學(xué)知識(shí)。

練習(xí)并記錄數(shù)據(jù)。

函數(shù)的應(yīng)用教案篇十三

2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。

過程與方法目標(biāo)

1、經(jīng)歷對(duì)一次函數(shù)性質(zhì)的探索過程,增強(qiáng)學(xué)生數(shù)形結(jié)合的意識(shí),培養(yǎng)學(xué)生識(shí)圖能力;

2、經(jīng)歷對(duì)一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達(dá)能力。

情感與態(tài)度目標(biāo)

經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動(dòng)中發(fā)展學(xué)生的合作意識(shí)和能力。

本節(jié)通過對(duì)一次函數(shù)圖像的研究,對(duì)一次函數(shù)的單調(diào)性作了探討;對(duì)一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的認(rèn)識(shí)情況,循序漸進(jìn),逐層深入,對(duì)教材內(nèi)容可作適當(dāng)增加,但不宜太難。

教學(xué)重點(diǎn):結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。

教學(xué)難點(diǎn):一次函數(shù)性質(zhì)的應(yīng)用。

學(xué)生已經(jīng)對(duì)一次函數(shù)的圖像有了一定的認(rèn)識(shí),在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計(jì),引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。

(一)做一做

在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。

(二)議一議

上述四個(gè)函數(shù)中,隨著x值的增大,y的值分別如何變化?

學(xué)生:有的在增大,有的在減小。

學(xué)生討論:y=2x+6和y=5x這兩個(gè)一次函數(shù)在增大;y=2x1和y=x+6在減??;影響這個(gè)變化的是x前面的系數(shù)k的符號(hào):當(dāng)k為正數(shù)時(shí),y隨x的增大而增大;當(dāng)k為負(fù)數(shù)時(shí),y隨x的增大而減小。

師:當(dāng)k0時(shí),一次函數(shù)的圖象經(jīng)過哪些象限?

當(dāng)k0時(shí),一次函數(shù)的圖象經(jīng)過哪些象限?

函數(shù)的應(yīng)用教案篇十四

“函數(shù)及其圖象”這一章的重點(diǎn)是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時(shí),一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對(duì)一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對(duì)函數(shù)的研究方法有一個(gè)初步的認(rèn)識(shí)與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。教學(xué)完后,對(duì)新教材有了一些更深的認(rèn)識(shí)。

精心備課。

備課過程是一種艱苦的復(fù)雜的腦力勞動(dòng)過程,知識(shí)的發(fā)展、教育對(duì)象的變化、教學(xué)效益要求的提高,使作為一種藝術(shù)創(chuàng)造和再創(chuàng)造的備課是沒有止境的,一種最佳教學(xué)方案的設(shè)計(jì)和選擇,往往是難以完全使人滿意的。

二:教學(xué)內(nèi)容不好處理。

“一次函數(shù)的性質(zhì)”中無b對(duì)函數(shù)的圖象的影響,但題中有,要補(bǔ)講。

(2)當(dāng)k0時(shí),y隨x的增大而______,這時(shí)函數(shù)的圖象從左到右_____.

(3)當(dāng)b0時(shí),這時(shí)函數(shù)的圖象與y軸的交點(diǎn)在:

(4)當(dāng)b0時(shí),這時(shí)函數(shù)的圖象與y軸的交點(diǎn)在:

待定系數(shù)法的引入上用“彈簧的長度y(厘米)”來講的,太難,要先講書上的“做一做:“已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(-1,1)和點(diǎn)(1,-5),”

三:難度不好處理:

如我們在講一次函數(shù)的定義時(shí)(第一課時(shí))補(bǔ)充了一個(gè)例題:已知函數(shù)y=當(dāng)m取什么值時(shí),y是x的一次函數(shù)?當(dāng)m取什么值是,y是x的正比例函數(shù)?!?/p>

學(xué)生難以理解,我個(gè)人認(rèn)為太難,超出了學(xué)生的理解能力。反而對(duì)一個(gè)具體的一次函數(shù)y=-2x+3中k,b是多少強(qiáng)調(diào)的不多。

滿意之筆。

一.結(jié)合生活實(shí)例,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的激情,恰當(dāng)?shù)倪^渡,點(diǎn)燃其求知的欲望。

在本節(jié)課的引入部分采用班級(jí)里的真人真事(運(yùn)用校運(yùn)動(dòng)會(huì)的具體事例)“在此跑步過程中涉及到哪些量?”“假定每位選手各自都是勻速直線運(yùn)動(dòng)的,那速度、時(shí)間、路程之間有什么關(guān)系?”“路程是時(shí)間的一次函數(shù)嗎?”等過渡性的問句既復(fù)習(xí)回顧了上節(jié)課的知識(shí)又為一次函數(shù)圖像的概念引出作了鋪墊。

二.大膽對(duì)教材作大幅度調(diào)整、修改。

對(duì)知識(shí)內(nèi)容的完整性作了補(bǔ)充。

(附一次函數(shù)的圖象的知識(shí)要點(diǎn):一次函數(shù)幾何形狀:一條直線;一次函數(shù)圖象的畫法;一次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo)。)教材對(duì)“一次函數(shù)圖象的畫法”闡釋得不太完整、詳盡。學(xué)習(xí)函數(shù)的圖象需要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,一次函數(shù)圖象又是所有函數(shù)圖象中最簡單的一種,是以后學(xué)習(xí)其他復(fù)雜函數(shù)的基礎(chǔ),所以整體全面地學(xué)習(xí)一次函數(shù)的圖象能為學(xué)生以后學(xué)習(xí)其他復(fù)雜函數(shù)提供思路樣本、節(jié)省學(xué)習(xí)時(shí)間。雖然在課后的習(xí)題與作業(yè)本中都有涉及到:當(dāng)一次函數(shù)的自變量限制在某一范圍時(shí)如何畫此一次函數(shù)的圖象,但在教材中似乎沒有涉及到此類問題,對(duì)于b班的學(xué)生需要教師對(duì)此類問題做相關(guān)示范解決。(1)求y1關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)畫出上述函數(shù)的圖像。圖像還是一條直線嗎?此題為拓展知識(shí)點(diǎn):當(dāng)一次函數(shù)的自變量限制在某一范圍時(shí)一次函數(shù)的圖象是一條射線或線段而特地設(shè)計(jì)的。至于如何快速地畫出射線或線段呢,讓學(xué)生討論后給出總結(jié):對(duì)于射線,取起點(diǎn)與另一個(gè)異于起點(diǎn)的任一點(diǎn)畫出射線;對(duì)于線段,取線段的兩個(gè)端點(diǎn)然后連接即可。

不足之處。

一、時(shí)間把握不準(zhǔn)。由于我在原教材的基礎(chǔ)上加寬了知識(shí)點(diǎn)的面,拓展了知識(shí)點(diǎn)的深度,個(gè)別環(huán)節(jié)還需要小組活動(dòng)或?qū)W生個(gè)別上臺(tái)動(dòng)手操作,而我又想將這所有的內(nèi)容在一節(jié)課內(nèi)完成,似乎太高估了自己和學(xué)生的能力。所以我想這么多內(nèi)容可以更宜分開兩節(jié)課來上。

二、部分內(nèi)容上處理出現(xiàn)失誤:初探索一次函數(shù)y=x的畫法時(shí),我直接自己硬性規(guī)定先取這樣五個(gè)點(diǎn):(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而沒有先征求學(xué)生的意見,看看他們是怎么取的,也沒有解釋為什么要取這五個(gè)點(diǎn)(理由應(yīng)是:這五個(gè)點(diǎn)分布均勻,它們的坐標(biāo)較簡單,有代表性)。

在以后的教學(xué)工作中,我要再接再厲,以能更好的體現(xiàn)數(shù)學(xué)課堂教學(xué)的有效性。

函數(shù)的應(yīng)用教案篇十五

難點(diǎn):其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。

三.教學(xué)方法和用具。

方法:歸納總結(jié),數(shù)形結(jié)合,分析驗(yàn)證。

用具:幻燈片,幾何畫板,黑板。

四.教學(xué)過程。

(幻燈片見附件)。

1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。

2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。

3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。

4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點(diǎn)法畫另兩種,并用幾何畫板驗(yàn)證(幻燈片5)(幾何畫板)。

5.用幾何畫板畫出這五個(gè)冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。

函數(shù)的應(yīng)用教案篇十六

讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。

:各種隱含條件的挖掘。

:引導(dǎo)發(fā)現(xiàn)法。

(一)診斷補(bǔ)償,情景引入:

(先讓學(xué)生復(fù)習(xí),然后提問,并做進(jìn)一步診斷)。

(二)問題導(dǎo)航,探究釋疑:

(三)精講提煉,揭示本質(zhì):

分析如圖,以ab的垂直平分線為y軸,以過點(diǎn)o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時(shí),涵洞所在的拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時(shí)只需拋物線上的一個(gè)點(diǎn)就能求出拋物線的函數(shù)關(guān)系式。

解由題意,得點(diǎn)b的坐標(biāo)為(0。8,-2。4),

又因?yàn)辄c(diǎn)b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。

例2、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(0,-1)、b(1,0)、c(-1,2);

(2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);

(3)已知拋物線與x軸交于點(diǎn)m(-3,0)(5,0)且與y軸交于點(diǎn)(0,-3);

(4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4。

分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個(gè)已知點(diǎn),可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(3)根據(jù)拋物線與x軸的兩個(gè)交點(diǎn)的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點(diǎn)可求出a的值;(4)根據(jù)已知拋物線的頂點(diǎn)坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時(shí)可知拋物線的對(duì)稱軸為x=3,再由與x軸兩交點(diǎn)間的距離為4,可得拋物線與x軸的兩個(gè)交點(diǎn)為(1,0)和(5,0),任選一個(gè)代入,即可求出a的值。

解這個(gè)方程組,得a=2,b=-1。

(2)因?yàn)閽佄锞€的頂點(diǎn)為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(diǎn)(0,1),可以得到解得。

(3)因?yàn)閽佄锞€與x軸交于點(diǎn)m(-3,0)、(5,0),

所以設(shè)二此函數(shù)的關(guān)系式為。

又由于拋物線與y軸交于點(diǎn)(0,3),可以得到解得。

(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。

(四)題組訓(xùn)練,拓展遷移:

1、根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式。

(1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,2)、(1,1)、(3,5);

(2)已知拋物線的頂點(diǎn)為(-1,2),且過點(diǎn)(2,1);

(3)已知拋物線與x軸交于點(diǎn)m(-1,0)、(2,0),且經(jīng)過點(diǎn)(1,2)。

2、二次函數(shù)圖象的對(duì)稱軸是x=-1,與y軸交點(diǎn)的縱坐標(biāo)是–6,且經(jīng)過點(diǎn)(2,10),求此二次函數(shù)的關(guān)系式。

(五)交流評(píng)價(jià),深化知識(shí):

確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時(shí),可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點(diǎn)坐標(biāo)可利用此式來求。

(2)頂點(diǎn)式:,給出兩點(diǎn),且其中一點(diǎn)為頂點(diǎn)時(shí)可利用此式來求。

(3)交點(diǎn)式:,給出三點(diǎn),其中兩點(diǎn)為與x軸的兩個(gè)交點(diǎn)、時(shí)可利用此式來求。

本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點(diǎn)a(-1,12)、b(2,-3),

(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸。

【本文地址:http://www.aiweibaby.com/zuowen/17391294.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔