教案是教師在備課過程中編寫的一種教學(xué)計劃。教案的編寫應(yīng)該緊密結(jié)合學(xué)科知識和學(xué)生的實(shí)際情況,注重培養(yǎng)學(xué)生的創(chuàng)新能力和實(shí)踐能力。這些教案范文覆蓋了各個學(xué)科和年級的教學(xué)內(nèi)容,適用于不同階段的教學(xué)。
n次根式教案篇一
2、學(xué)生演板13頁“練習(xí)2、3”。
四、知識梳理、師生共議。
1、談收獲:
(2)怎樣合并被開方數(shù)相同的二次根式呢?
(3)二次根式進(jìn)行加減運(yùn)算時應(yīng)注意什么問題?
2、說不足:。
五、作業(yè)訓(xùn)練、鞏固提高。
1、必做題:課本15頁的“習(xí)題2、3”;。
n次根式教案篇二
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計運(yùn)算結(jié)果,明確運(yùn)算方向.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
n次根式教案篇三
新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對推論進(jìn)行評價。從而營造一個接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。
n次根式教案篇四
2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式,數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2。
最簡二次根式的定義。
一個二次根式化成最簡二次根式的方法。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的'因數(shù)或因式,初中數(shù)學(xué)教案《數(shù)學(xué)教案-最簡二次根式 教學(xué)設(shè)計示例2》。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
n次根式教案篇五
認(rèn)真閱讀課本14頁內(nèi)容,完成下列任務(wù):
1、完成14頁“例3、4”,先做再對照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問題?
(時間7分鐘若有困難,與同伴討論)。
三、自主檢測、同伴互查。
1、師生共同解決“學(xué)法”問題;。
2、學(xué)生演板14頁“練習(xí)1、2”。
四、知識梳理、師生共議。
1、談收獲:
(1)二次根式進(jìn)行混合運(yùn)算時運(yùn)用了哪些知識?
(2)二次根式進(jìn)行混合運(yùn)算時應(yīng)注意哪些問題?
n次根式教案篇六
本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的'知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。
n次根式教案篇七
知識與技能目標(biāo):理解和掌握二次根式加減的方法.
過程與方法目標(biāo):先提出問題,分析問題,在分析問題中,滲透對二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗,用它來指導(dǎo)根式的計算和化簡.
情感與價值目標(biāo):通過本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計算和化簡的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問題的能力.
重難點(diǎn)關(guān)鍵
1.重點(diǎn):二次根式化簡為最簡根式.
2.難點(diǎn)關(guān)鍵:會判定是否是最簡二次根式.
教法:
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類項進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長補(bǔ)短,體驗學(xué)習(xí)活動中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識;利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題與13頁“練習(xí)1”;
2、學(xué)生演板13頁“練習(xí)2、3”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?
(2)怎樣合并被開方數(shù)相同的二次根式呢?
(3)二次根式進(jìn)行加減運(yùn)算時應(yīng)注意什么問題?
2、說不足:。
五、作業(yè)訓(xùn)練、鞏固提高
1、必做題:課本15頁的“習(xí)題2、3”;
1.揭示學(xué)法、自主學(xué)習(xí)
認(rèn)真閱讀課本14頁內(nèi)容,完成下列任務(wù):
1、完成14頁“例3、4”,先做再對照:
(1)平方差公式__________,完全平方公式__________.
(2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問題?
(時間7分鐘若有困難,與同伴討論)
三、自主檢測、同伴互查
1、師生共同解決“學(xué)法”問題;
2、學(xué)生演板14頁“練習(xí)1、2”。
四、知識梳理、師生共議
1、談收獲:
(1)二次根式進(jìn)行混合運(yùn)算時運(yùn)用了哪些知識?
(2)二次根式進(jìn)行混合運(yùn)算時應(yīng)注意哪些問題?
n次根式教案篇八
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
重點(diǎn):(1)二次根的意義;
難點(diǎn):確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合。
(一)復(fù)習(xí)提問。
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算:
通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的`概念。
觀察上面幾個式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。
(二)引入新課。
我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次。
根式指的是某種式子的外在形態(tài)。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時,下列各式中哪些是二次根式?
例2x是怎樣的實(shí)數(shù)時,式子在實(shí)數(shù)范圍有意義?
解:略。
說明:這個問題實(shí)質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時,都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時,是二次根式。
(2)-3x0,x0,即x0時,是二次根式。
(3),且x0,x0,當(dāng)x0時,是二次根式。
(4),即,故x-20且x-20,x2、當(dāng)x2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,、即:只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+30,得、
(2)由,得3a-10,解得、
(3)由于x取任何實(shí)數(shù)時都有|x|0,因此,|x|+0、10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
(三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))。
1、式子叫做二次根式,實(shí)際上是一個非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式。
2、式子中,被開方數(shù)(式)必須大于等于零。
(四)練習(xí)和作業(yè)。
1、判斷下列各式是否是二次根式。
分析:(2)中,,是二次根式;(5)是二次根式。因為x是實(shí)數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義。
2、a是怎樣的實(shí)數(shù)時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?
n次根式教案篇九
本節(jié)是九年級上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問題打好基礎(chǔ)。
1、學(xué)習(xí)任務(wù)分析:
通過對數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實(shí)際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識導(dǎo)入新課。設(shè)計合作學(xué)習(xí)活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問題的過程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點(diǎn)分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對二次根式概念的理解。
案例反思:
以往對這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的`措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2、合作活動:
第一位同學(xué)——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學(xué);
第二位同學(xué)——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學(xué);
第四位同學(xué)——復(fù)查者:請你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
1、要使式子的值為實(shí)數(shù),求x的取值范圍。
2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
1、要使式子的值為實(shí)數(shù),求x的取值范圍。
2、寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3、寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時,教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者”。合作活動的安排就是對這一課程標(biāo)準(zhǔn)的體現(xiàn)。
n次根式教案篇十
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實(shí)際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實(shí)際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
教學(xué)目標(biāo)。
知識與技能。
1.知道什么是二次根式,并會用二次根式的意義解題;。
過程與方法。
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;。
情感態(tài)度價值觀。
1.經(jīng)歷將現(xiàn)實(shí)問題符號化的過程,發(fā)展應(yīng)用的意識;。
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點(diǎn)和難點(diǎn)。
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;。
難點(diǎn):確定二次根式中字母的取值范圍。
教學(xué)方法。
啟發(fā)式、講練結(jié)合。
教學(xué)媒體。
多媒體。
課時安排。
1課時。
將本文的word文檔下載到電腦,方便收藏和打印。
n次根式教案篇十一
(2)會用公式化簡二次根式。
(1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式。
教學(xué)問題診斷分析
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運(yùn)算感到困難。運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣。,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。
在教學(xué)時,通過實(shí)例運(yùn)算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:
(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡。
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡。
教學(xué)過程設(shè)計
1、復(fù)習(xí)引入,探究新知
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除。本節(jié)課先學(xué)習(xí)二次根式的乘法。
問題1什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動學(xué)生回答。
【設(shè)計意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì)。
問題2教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容。
【設(shè)計意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則。要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識。
2、觀察比較,理解法則
問題3簡單的根式運(yùn)算。
師生活動學(xué)生動手操作,教師檢驗。
問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?
師生活動學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。
【設(shè)計意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗法則的掌握情況。乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的'算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。
3、例題示范,學(xué)會應(yīng)用
例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。
師生活動提問:你是怎么理解例(1)的?
師生合作回答上述問題。對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外。
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
【設(shè)計意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡的方向。積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡。
例2計算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除
師生活動學(xué)生計算,教師檢驗。
(3)例(3)的運(yùn)算是選學(xué)內(nèi)容。讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算。本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外。
【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算。讓學(xué)生認(rèn)識到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。
教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號??梢愿鶕?jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時正確處理符號問題。
4、鞏固概念,學(xué)以致用
練習(xí):教科書第7頁練習(xí)第1題。第10頁習(xí)題16.2第1題。
【設(shè)計意圖】鞏固性練習(xí),同時檢驗乘法法則的掌握情況。
5、歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:
(1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
(3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?
6、布置作業(yè):教科書第7頁第2、3題。習(xí)題16.2第1,6題。
五、目標(biāo)檢測設(shè)計
1、下列各式中,一定能成立的是( )
a.二次根式的乘除b.二次根式的乘除
c.二次根式的乘除d.二次根式的乘除
【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。
2、化簡二次根式的乘除______________________________。
【設(shè)計意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。
3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()
a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除
【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式。
n次根式教案篇十二
3.進(jìn)一步體驗二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價值。
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識和綜合運(yùn)用,思路比較復(fù)雜。
1.解決節(jié)前問題:
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們在解決一些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運(yùn)算。
1、:如圖,扶梯ab的坡比(be與ae的長度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc=cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)。
教學(xué)程序與策略。
完成課本p17、1,組長檢查反饋;
1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學(xué)生寫出解題過程。
1.談一談:本節(jié)課你有什么收獲?
2.運(yùn)用二次根式解決簡單的實(shí)際問題時應(yīng)注意的的問題。
1:作業(yè)本(2)。
2:課本p17頁:第4、5題選做。
n次根式教案篇十三
2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
最簡二次根式的定義。
一個二次根式化成最簡二次根式的方法。
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。
下列各式化成最簡二次根式:
n次根式教案篇十四
(1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;。
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.
教學(xué)問題診斷分析。
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.
在教學(xué)時,通過實(shí)例運(yùn)算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.
教學(xué)過程設(shè)計。
1.復(fù)習(xí)引入,探究新知。
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.
問題1 什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動 學(xué)生回答。
【設(shè)計意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì).
問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動 學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的.內(nèi)容.
【設(shè)計意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運(yùn)用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.
2.觀察比較,理解法則。
問題3 簡單的根式運(yùn)算.
師生活動 學(xué)生動手操作,教師檢驗.
問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?
師生活動學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).
【設(shè)計意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.
3.例題示范,學(xué)會應(yīng)用。
例1化簡:(1)二次根式的乘除;(2)二次根式的乘除.
師生活動 提問:你是怎么理解例(1)的?
師生合作回答上述問題.對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
【設(shè)計意圖】通過運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.
例2計算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。
師生活動 學(xué)生計算,教師檢驗.
(3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.
【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算.讓學(xué)生認(rèn)識到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.
教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時正確處理符號問題.
4.鞏固概念,學(xué)以致用。
練習(xí):教科書第7頁練習(xí)第1題.第10頁習(xí)題16.2第1題.
【設(shè)計意圖】鞏固性練習(xí),同時檢驗乘法法則的掌握情況.
5.歸納小結(jié),反思提高。
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:
(1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
(3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?
6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.
五、目標(biāo)檢測設(shè)計。
1.下列各式中,一定能成立的是()。
【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).
2.化簡二次根式的乘除______________________________。
【設(shè)計意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.
3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()。
a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除。
【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.
n次根式教案篇十五
(3)了解代數(shù)式的概念.。
(2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;
(3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點(diǎn),得出代數(shù)式的概念.。
二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
1.探究性質(zhì)1。
問題1你能解釋下列式子的含義嗎?
師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.。
n次根式教案篇十六
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實(shí)際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實(shí)際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。
1.知道什么是二次根式,并會用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
1.經(jīng)歷將現(xiàn)實(shí)問題符號化的過程,發(fā)展應(yīng)用的意識;
2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點(diǎn):確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合
多媒體
1課時
n次根式教案篇十七
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。
2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。
課本第2― 3頁
一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、 課堂教學(xué)
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點(diǎn)撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。
2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。
3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測階段
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)
三、 課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書設(shè)計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
反思:
n次根式教案篇十八
3、進(jìn)一步體驗二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價值。
本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識和綜合運(yùn)用,思路比較復(fù)雜。
1、解決節(jié)前問題:
歸納:
在日常生活和生產(chǎn)實(shí)際中,我們在解決一些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運(yùn)算。
1、:如圖,扶梯ab的坡比(be與ae的長度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc= cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)
教學(xué)程序與策略
完成課本p17、1,組長檢查反饋;
1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學(xué)生寫出解題過程。
1、談一談:本節(jié)課你有什么收獲?
2、運(yùn)用二次根式解決簡單的實(shí)際問題時應(yīng)注意的的問題
【本文地址:http://aiweibaby.com/zuowen/17438318.html】