初二數(shù)學(xué)教案勾股定理(專業(yè)16篇)

格式:DOC 上傳日期:2023-12-07 14:00:15
初二數(shù)學(xué)教案勾股定理(專業(yè)16篇)
時間:2023-12-07 14:00:15     小編:文軒

編寫教案是一項需要教師具備較為扎實的課程知識和教學(xué)經(jīng)驗的工作。教案的編寫要注重多種教學(xué)手段的合理運用。以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。

初二數(shù)學(xué)教案勾股定理篇一

勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。

本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

一、知識與技能。

1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

2、應(yīng)用勾股定理解決簡單的實際問題。

3學(xué)會簡單的合情推理與數(shù)學(xué)說理。

二、過程與方法。

引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。

三、情感與態(tài)度目標(biāo)。

通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

四、重點與難點。

一、創(chuàng)設(shè)情景,揭示課題。

1、教師展示圖片并介紹第一情景。

以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

2、教師展示圖片并介紹第二情景。

畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協(xié)作,探究問題。

1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

3、你能得到什么結(jié)論嗎?

三、得出命題。

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

第一種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的直角三角形圍在外面形成的。因為邊長為的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式,化簡得。

第二種方法:邊長為的正方形可以看作是由4個直角邊分別為、,斜邊為的。

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為的正方形“小洞”。

因為邊長為的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式,化簡得。

這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

六、歸納總結(jié)。

2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

七、討論交流。

讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

初二數(shù)學(xué)教案勾股定理篇二

一、學(xué)情分析:

知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時可通過與分?jǐn)?shù)的乘除法法則進行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運算和結(jié)果的化簡奠定基礎(chǔ)。

能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。

二、教學(xué)目標(biāo):

知識目標(biāo):1、分式的乘除運算法則。

2、會進行簡單的分式的乘除法運算。

能力目標(biāo):1、類比分?jǐn)?shù)的乘除運算法則,探索分式的乘除運算法則。

2、能解決一些與分式有關(guān)的簡單的實際問題。

情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識和能力。

2、培養(yǎng)學(xué)生的創(chuàng)新意識和應(yīng)用意識。

三、教學(xué)重點、難點。

重點:分式乘除法的法則及應(yīng)用。

難點:分子、分母是多項式的分式的乘除法的運算。

三、教學(xué)過程:

第一環(huán)節(jié)復(fù)習(xí)舊知識。

復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,

活動目的:

復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。

第二環(huán)節(jié)引入新課。

活動內(nèi)容。

你能總結(jié)分式乘除法的法則嗎?與同伴交流。

分式的乘除法的法則:。

兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。

兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.

活動目的:

讓學(xué)生觀察運算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。

第三環(huán)節(jié)知識運用。

活動內(nèi)容。

例題1:。

(1)(2)例題2。

(1)(2)活動目的:

通過例題講解,使學(xué)生會根據(jù)法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關(guān)的簡單的實際問題,增強學(xué)生代數(shù)推理的能力與應(yīng)用意識。需要給學(xué)生強調(diào)的是分式運算的結(jié)果通常要化成最簡分式或整式,對于這一點,很多學(xué)生在開始學(xué)習(xí)分式計算時往往沒有注意到結(jié)果要化簡。

第四環(huán)節(jié)走進中考。

(2012.漳州)第五環(huán)節(jié)課時小結(jié)。

活動內(nèi)容:

1.分式的乘除法的法則。

2.分式運算的結(jié)果通常要化成最簡分式或整式.

3.學(xué)會類比的數(shù)學(xué)方法。

第六環(huán)節(jié)當(dāng)堂檢測。

初二數(shù)學(xué)教案勾股定理篇三

從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

(二)重點與難點。

為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。

初二數(shù)學(xué)教案勾股定理篇四

理解并掌握勾股定理的逆定理,會應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

【過程與方法】。

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

【情感、態(tài)度與價值觀】。

體會事物之間的聯(lián)系,感受幾何的魅力。

【重點】勾股定理的逆定理及其證明。

【難點】勾股定理的逆定理的證明。

(一)導(dǎo)入新課。

復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。

提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。

出示古埃及人利用等長的3、4、5個繩結(jié)間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。

(二)講解新知。

請學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗明確。

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學(xué)生計算驗證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。

學(xué)生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長的三角形檢驗是否為直角三角形。

初二數(shù)學(xué)教案勾股定理篇五

在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

1、創(chuàng)設(shè)情境。

師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。

設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。

觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進神奇的數(shù)學(xué)世界。

追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論。

問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

師生活動:學(xué)生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。

初二數(shù)學(xué)教案勾股定理篇六

1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。

2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學(xué)生的合情推理能力。

3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。

初二數(shù)學(xué)教案勾股定理篇七

學(xué)會觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。

2、過程與方法。

(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。

3、情感態(tài)度與價值觀。

(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。

(2)在解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性。

教學(xué)重點:

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。

教學(xué)難點:

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題。

教學(xué)準(zhǔn)備:

多媒體。

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。

情景:

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。

學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算。

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。

教材23頁。

李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。

(1)你能替他想辦法完成任務(wù)嗎?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨立完成)。

2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。

第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。

內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?

第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。

作業(yè):1.課本習(xí)題1.5第1,2,3題.。

要求:a組(學(xué)優(yōu)生):1、2、3。

b組(中等生):1、2。

c組(后三分之一生):1。

初二數(shù)學(xué)教案勾股定理篇八

本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

初二數(shù)學(xué)教案勾股定理篇九

本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認(rèn)識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ).

二、教學(xué)任務(wù)分析。

本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題.當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.

本節(jié)課的教學(xué)目標(biāo)是:

1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.

四、教法學(xué)法。

1.教學(xué)方法。

引導(dǎo)—探究—歸納。

本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;。

(2)從學(xué)生活動出發(fā),順勢教學(xué)過程;。

(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

2.課前準(zhǔn)備。

教具:教材、電腦、多媒體課件.

學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

五、教學(xué)過程分析。

本節(jié)課設(shè)計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

初二數(shù)學(xué)教案勾股定理篇十

教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。

學(xué)生分析:

1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計,能非常簡單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

設(shè)計理念:本教案以學(xué)生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

教學(xué)目標(biāo):

1、經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學(xué)生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

2、經(jīng)歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。

3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。

4、欣賞設(shè)計圖形美。

教學(xué)準(zhǔn)備階段:

學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

老師準(zhǔn)備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

(一)引入。

同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)。

(二)實驗探究。

設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:

(討論難點:以斜邊為邊的正方形的面積找法)。

交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)。

(三)探索所得結(jié)論的正確性。

當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?

1、指導(dǎo)學(xué)生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)。

在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導(dǎo)學(xué)生進行說理:

如圖2(用補的方法說明)。

師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)。

如圖3(用割的方法去探索)。

師介紹:(出示圖片)中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前2000年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風(fēng)格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點題)。

20xx年,世界數(shù)學(xué)家大會在中國北京召開,當(dāng)時選用這個圖案作為會場主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)。

如圖4(構(gòu)造新圖形的方法去探索)。

1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。

初二數(shù)學(xué)教案勾股定理篇十一

教學(xué)目標(biāo):

1、知識與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。

2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

3、情感、態(tài)度與價值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

教學(xué)重點:

引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。

教學(xué)難點:

課前準(zhǔn)備:

多媒體ppt,相關(guān)圖片。

教學(xué)過程:

(一)情境導(dǎo)入。

1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。

初二數(shù)學(xué)教案勾股定理篇十二

例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3、

答:某數(shù)為3、

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4、

解之,得x=3、

答:某數(shù)為3、

師生共同分析:

1、本題中給出的已知量和未知量各是什么?

2、已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原來有x千克面粉,那么運出了15%x千克,由題意,得

x-15%x=42 500,

所以 x=50 000、

答:原來有 50 000千克面粉、

(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

教師應(yīng)指出:

(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿、

依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系、(這是關(guān)鍵一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥、解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴(yán)格規(guī)范書寫格式)

解:設(shè)第一小組有x個學(xué)生,依題意,得

3x+9=5x-(5-4),

解這個方程: 2x=10,

所以 x=5、

其蘋果數(shù)為 3× 5+9=24、

答:第一小組有5名同學(xué),共摘蘋果24個、

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程、

(設(shè)第一小組共摘了x個蘋果,則依題意,得 )

3、某工廠女工人占全廠總?cè)藬?shù)的 35%,男工比女工多 252人,求全廠總?cè)藬?shù)、

首先,讓學(xué)生回答如下問題:

1、本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

2、列一元一次方程解應(yīng)用題的方法和步驟是什么?

3、在運用上述方法和步驟時應(yīng)注意什么?

依據(jù)學(xué)生的回答情況,教師總結(jié)如下:

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶、

1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?

2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

初二數(shù)學(xué)教案勾股定理篇十三

1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

3.逐步掌握說理的基本方法。

1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。

2.鼓勵學(xué)生用多種方法進行說理。

1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。

教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

教學(xué)重點:平行四邊形的判別方法。

教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。

初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

一、創(chuàng)設(shè)情境,引入新課

師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

學(xué)生活動:學(xué)生按小組進行探索。

初二數(shù)學(xué)教案勾股定理篇十四

隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識的學(xué)習(xí),更重要的是體現(xiàn)知識的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動進行觀察、實驗、猜想、驗證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。

本節(jié)知識是在學(xué)生掌握了直角三角形的三個性質(zhì):直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個非常重要的性質(zhì),它揭示了一個直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實際生活中的重要作用,是進行愛國教育的重要題材!

本節(jié)課的教育對象是初二下的學(xué)生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

初二數(shù)學(xué)教案勾股定理篇十五

勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關(guān)系判斷一個三角形是否是直角三角形,在具體推算過程中,應(yīng)用兩短邊的平方和與最長邊的平方進行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯誤的結(jié)論。

初二數(shù)學(xué)教案勾股定理篇十六

本節(jié)課在教材處理上,先讓學(xué)生帶著三個問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動做了充分的準(zhǔn)備。為突破本課重、難點起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計兩課時,本節(jié)課是第一課時。教學(xué)重點定位為勾股定理的探索過程及簡單應(yīng)用。教學(xué)難點是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時進行專題訓(xùn)練。

自主探索、合作交流、引導(dǎo)點撥。

【本文地址:http://www.aiweibaby.com/zuowen/17904535.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔