在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
初二下冊(cè)數(shù)學(xué)第一章講解篇一
2、對(duì)于分式概念的理解,應(yīng)把握以下幾點(diǎn):
(1)分式是兩個(gè)整式相除的商。其中分子是被除式,分母是除式,分?jǐn)?shù)線起除號(hào)和括號(hào)的作用;
(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;
(3)分母不能為零。
3、分式有意義、無意義的條件
(1)分式有意義的條件:分式的分母不等于0;
(2)分式無意義的`條件:分式的分母等于0。
4、分式的值為0的條件:
當(dāng)分式的分子等于0,而分母不等于0時(shí),分式的值為0。即,使b=0的條件是:a=0,b≠0。
5、有理式整式和分式統(tǒng)稱為有理式。整式分為單項(xiàng)式和多項(xiàng)式。分類:有理式
單項(xiàng)式:由數(shù)與字母的乘積組成的代數(shù)式;多項(xiàng)式:由幾個(gè)單項(xiàng)式的和組成的代數(shù)式。
初二下冊(cè)數(shù)學(xué)第一章講解篇二
含義:分母中含有未知數(shù)的方程叫做分式方程。
分式方程的解法:
①去分母{方程兩邊同時(shí)乘以最簡公分母(最簡公分母:①系數(shù)取最小公倍數(shù),②出現(xiàn)的字母取最高次冪,③出現(xiàn)的因式取最高次冪),將分式方程化為整式方程;若遇到互為相反數(shù)時(shí)。不要忘了改變符號(hào))
②按解整式方程的步驟(移項(xiàng),若有括號(hào)應(yīng)去括號(hào),注意變號(hào),合并同類項(xiàng),系數(shù)化為1)求出未知數(shù)的值;
③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^程中,擴(kuò)大了未知數(shù)的`取值范圍,可能產(chǎn)生增根)。
一般地驗(yàn)根,只需把整式方程的根代入最簡公分母,如果最簡公分母等于0,這個(gè)根就是增根,否則這個(gè)根就是原分式方程的根。若解出的根是增根,則原方程無解。如果分式本身約分了,也要代進(jìn)去檢驗(yàn)。
初二下冊(cè)數(shù)學(xué)第一章講解篇三
分母里含有未知數(shù)的方程叫做分式方程;注意:以前學(xué)過的,分母里不含未知數(shù)的方程是整式方程。
在解分式方程時(shí),為了去分母,方程的兩邊同乘以了含有未知數(shù)的代數(shù)式,所以可能產(chǎn)生增根,故分式方程必須驗(yàn)增根;注意:在解方程時(shí),方程的兩邊一般不要同時(shí)除以含未知數(shù)的代數(shù)式,因?yàn)榭赡軄G根。
把分式方程求出的根代入最簡公分母(或分式方程的每個(gè)分母),若值為零,求出的根是增根,這時(shí)原方程無解;若值不為零,求出的根是原方程的解;注意:由此可判斷,使分母的`值為零的未知數(shù)的值可能是原方程的增根。
列分式方程解應(yīng)用題與列整式方程解應(yīng)用題的方法一樣,但需要增加“驗(yàn)增根”的程序。
初二下冊(cè)數(shù)學(xué)第一章講解篇四
1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=(a±b)/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算。用字母表示為:a/b±c/d=(ad±cb)/bd
3.分式的乘法法則:兩個(gè)分式相乘,把分子相乘的`積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/bxc/d=ac/bd
4.分式的除法法則:
(1)兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘。a/b÷c/d=ad/bc
(2)除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/b÷c/d=a/bxd/c
初二下冊(cè)數(shù)學(xué)第一章講解篇五
1、分式的定義:如果a、b表示兩個(gè)整式,并且b中含有字母,那么式子叫做分式。
分式有意義的條件是分母不為零,分式值為零的條件分子為零且分母不為零
2、分式的基本性質(zhì):分式的分子與分母同乘或除以一個(gè)不等于0的整式,分式的值不變。
3、分式的通分和約分:關(guān)鍵先是分解因式
4、分式的運(yùn)算:
分式乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為分母。
分式除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。分式乘方法則:分式乘方要把分子、分母分別乘方。
分式的加減法則:同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质剑缓笤偌訙p
混合運(yùn)算:運(yùn)算順序和以前一樣。能用運(yùn)算率簡算的可用運(yùn)算率簡算。
5、任何一個(gè)不等于零的數(shù)的零次冪等于1,即;當(dāng)n為正整數(shù)時(shí)
6、正整數(shù)指數(shù)冪運(yùn)算性質(zhì)也可以推廣到整數(shù)指數(shù)冪、(m,n是整數(shù))
(1)同底數(shù)的冪的乘法;
(2)冪的乘方;
(3)積的乘方;
(4)同底數(shù)的冪的除法:(a≠0);
(5)商的乘方;(b≠0)
7、分式方程:含分式,并且分母中含未知數(shù)的方程——分式方程。
解分式方程的過程,實(shí)質(zhì)上是將方程兩邊同乘以一個(gè)整式(最簡公分母),把分式方程轉(zhuǎn)化為整式方程。
解分式方程時(shí),方程兩邊同乘以最簡公分母時(shí),最簡公分母有可能為0,這樣就產(chǎn)生了增根,因此分式方程一定要驗(yàn)根。
解分式方程的步驟:
(1)能化簡的先化簡
(2)方程兩邊同乘以最簡公分母,化為整式方程;
(3)解整式方程;
(4)驗(yàn)根
增根應(yīng)滿足兩個(gè)條件:一是其值應(yīng)使最簡公分母為0,二是其值應(yīng)是去分母后所的整式方程的根。
分式方程檢驗(yàn)方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0,則整式方程的解是原分式方程的解;否則,這個(gè)解不是原分式方程的.解。
列方程應(yīng)用題的步驟是什么?
(1)審;
(2)設(shè);
(3)列;
(4)解;
(5)答
應(yīng)用題有幾種類型;基本公式是什么?基本上有五種:
(1)行程問題:基本公式:路程=速度×?xí)r間而行程問題中又分相遇問題、追及問題
(2)數(shù)字問題在數(shù)字問題中要掌握十進(jìn)制數(shù)的表示法
(3)工程問題基本公式:工作量=工時(shí)×工效
(4)順?biāo)嫠畣栴}v順?biāo)?v靜水+v水、v逆水=v靜水—v水
8、科學(xué)記數(shù)法:把一個(gè)數(shù)表示成的形式(其中,n是整數(shù))的記數(shù)方法叫做科學(xué)記數(shù)法、
用科學(xué)記數(shù)法表示絕對(duì)值大于10的n位整數(shù)時(shí),其中10的指數(shù)是
用科學(xué)記數(shù)法表示絕對(duì)值小于1的正小數(shù)時(shí),其中10的指數(shù)是第一個(gè)非0數(shù)字前面0的個(gè)數(shù)(包括小數(shù)點(diǎn)前面的一個(gè)0)
初二下冊(cè)數(shù)學(xué)第一章講解篇六
根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
把分式分子分母因式分解,然后約去分子與分母的.公因。
①分式的分子與分母為單項(xiàng)式時(shí)可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
②分子分母若為多項(xiàng)式,約分時(shí)先對(duì)分子分母進(jìn)行因式分解,再約分。
通過上面對(duì)數(shù)學(xué)中分式的約分知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容知識(shí)都能很好的掌握,相信同學(xué)們會(huì)學(xué)習(xí)的很好。
初二下冊(cè)數(shù)學(xué)第一章講解篇七
分式的分子與分母同乘(或除以)一個(gè)不等于0的整式,分式的值不變。
用式子表示為a/b=(a-c)/(b-c);a/b=(a-c)/(b-c)(c不等于0),其中a、b、c是整式
注意:
(1)“c是一個(gè)不等于0的整式”是分式基本性質(zhì)的一個(gè)制約條件;
(2)應(yīng)用分式的基本性質(zhì)時(shí),要深刻理解“同”的含義,避免犯只乘分子(或分母)的`錯(cuò)誤;
(3)若分式的分子或分母是多項(xiàng)式,運(yùn)用分式的基本性質(zhì)時(shí),要先用括號(hào)把分子或分母括上,再乘或除以同一整式c;
(4)分式的基本性質(zhì)是分式進(jìn)行約分、通分和符號(hào)變化的依據(jù)。
【本文地址:http://aiweibaby.com/zuowen/1860170.html】