高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)3篇(通用)

格式:DOC 上傳日期:2023-03-28 13:13:33
高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)3篇(通用)
時(shí)間:2023-03-28 13:13:33     小編:zdfb

當(dāng)工作或?qū)W習(xí)進(jìn)行到一定階段或告一段落時(shí),需要回過(guò)頭來(lái)對(duì)所做的工作認(rèn)真地分析研究一下,肯定成績(jī),找出問題,歸納出經(jīng)驗(yàn)教訓(xùn),提高認(rèn)識(shí),明確方向,以便進(jìn)一步做好工作,并把這些用文字表述出來(lái),就叫做總結(jié)。相信許多人會(huì)覺得總結(jié)很難寫?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對(duì)大家能夠有所幫助。

高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)篇一

設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即導(dǎo)數(shù)第一定義

設(shè)函數(shù) y = f(x) 在點(diǎn) x0 的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時(shí),相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時(shí)極限存在,則稱函數(shù) y = f(x) 在點(diǎn) x0 處可導(dǎo),并稱這個(gè)極限值為函數(shù) y = f(x) 在點(diǎn) x0 處的導(dǎo)數(shù)記為 f(x0) ,即 導(dǎo)數(shù)第二定義

如果函數(shù) y = f(x) 在開區(qū)間 i 內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 i 內(nèi)可導(dǎo)。這時(shí)函數(shù) y = f(x) 對(duì)于區(qū)間 i 內(nèi)的每一個(gè)確定的 x 值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來(lái)函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y, f(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱導(dǎo)數(shù)。

1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟

(1)求f(x)

(2)確定f(x)在(a,b)內(nèi)符號(hào) (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f(x)

(2)f(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間

學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識(shí)點(diǎn),接下來(lái)可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)篇二

1、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和sn的關(guān)系:an=

2、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。

3、等差數(shù)列的前n項(xiàng)和公式:sn=

sn=

sn=

當(dāng)d≠0時(shí),sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),sn=na1是關(guān)于n的正比例式。

4、等比數(shù)列的通項(xiàng)公式: an= a1qn-1an= akqn-k

(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)

5、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),sn=n a1 (是關(guān)于n的正比例式);

當(dāng)q≠1時(shí),sn=

sn=

1、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍為等差數(shù)列。

2、等差數(shù)列{an}中,若m+n=p+q,則

3、等比數(shù)列{an}中,若m+n=p+q,則

4、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍為等比數(shù)列。

5、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

6、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

7、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。

8、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。

9、三個(gè)數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,a+d,a+3d

10、三個(gè)數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

高中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)篇三

1、平面的基本性質(zhì):

公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);

公理2過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面;

公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。

2、空間點(diǎn)、直線、平面之間的位置關(guān)系:

直線與直線—平行、相交、異面;

直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

平面與平面—平行、相交。

3、異面直線:

平面外一點(diǎn)a與平面一點(diǎn)b的連線和平面內(nèi)不經(jīng)過(guò)點(diǎn)b的直線是異面直線(判定);

所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

兩條直線不是異面直線,則兩條直線平行或相交(反證);

異面直線不同在任何一個(gè)平面內(nèi)。

求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

1、直線與平面平行(核心)

定義:直線和平面沒有公共點(diǎn)

判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行

2、平面與平面平行

定義:兩個(gè)平面沒有公共點(diǎn)

判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行

性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

3、常利用三角形中位線、平行四邊形對(duì)邊、已知直線作一平面找其交線

1、直線與平面垂直

定義:直線與平面內(nèi)任意一條直線都垂直

判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

性質(zhì):垂直于同一直線的兩平面平行

推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面

直線和平面所成的角:【0、90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說(shuō)成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

2、平面與平面垂直

定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

判定:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直

性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

【本文地址:http://aiweibaby.com/zuowen/1901033.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔