2023年數(shù)學(xué)建模論文(優(yōu)質(zhì)12篇)

格式:DOC 上傳日期:2023-12-21 20:42:04
2023年數(shù)學(xué)建模論文(優(yōu)質(zhì)12篇)
時(shí)間:2023-12-21 20:42:04     小編:紫衣夢(mèng)

在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。那么我們?cè)撊绾螌懸黄^為完美的范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來(lái)看一看吧。

數(shù)學(xué)建模論文篇一

信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。

大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。

2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開(kāi)展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。

2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。

2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開(kāi)展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺(jué)思維深入理解背景知識(shí)、符號(hào)翻譯開(kāi)展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。

3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題。現(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。

這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。

此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。

數(shù)學(xué)建模論文篇二

3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。

選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問(wèn)題所選擇的數(shù)學(xué)模型列表:

函數(shù)建模類型實(shí)際問(wèn)題

一次函數(shù)成本、利潤(rùn)、銷售收入等

二次函數(shù)優(yōu)化問(wèn)題、用料最省問(wèn)題、造價(jià)最低、利潤(rùn)最大等

冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等

三角函數(shù)測(cè)量、交流量、力學(xué)問(wèn)題等

3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。

數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。

利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問(wèn)題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。

數(shù)學(xué)建模論文篇三

1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過(guò)運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問(wèn)題的全過(guò)程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問(wèn)題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫(huà)實(shí)際問(wèn)題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問(wèn)題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問(wèn)題的興趣和愛(ài)好。授課過(guò)程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過(guò)師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹(shù)立應(yīng)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的思想。

2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問(wèn)題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過(guò)程演算和圖形顯示等一系列過(guò)程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過(guò)程就是數(shù)學(xué)建模思想的啟發(fā)過(guò)程。但是我國(guó)的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開(kāi)設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。

3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過(guò)計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問(wèn)題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無(wú)縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來(lái)的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。

大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國(guó)現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問(wèn)題和解決問(wèn)題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開(kāi)展數(shù)學(xué)建模活動(dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過(guò)承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):

。2、開(kāi)設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過(guò)選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問(wèn)題。

3、積極組織學(xué)生開(kāi)展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過(guò)交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問(wèn)題模型、存儲(chǔ)問(wèn)題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過(guò)參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過(guò)對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽(yáng)能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車燈線光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。

4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問(wèn)題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問(wèn)題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語(yǔ)言表達(dá)的能力,逐步將學(xué)生帶入遇到問(wèn)題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。

21世紀(jì)我國(guó)進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過(guò)對(duì)美國(guó)教學(xué)改革的研究,筆者認(rèn)為我國(guó)的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問(wèn)題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過(guò)程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛(ài)好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國(guó)教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。

數(shù)學(xué)建模論文篇四

數(shù)學(xué)是在實(shí)際應(yīng)用的需求中產(chǎn)生的,要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,為了實(shí)際問(wèn)題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實(shí)際問(wèn)題之間的橋梁,數(shù)學(xué)模型是對(duì)于現(xiàn)實(shí)生活中的特定對(duì)象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個(gè)特定目的,運(yùn)用數(shù)學(xué)工具,得到的一個(gè)數(shù)學(xué)結(jié)構(gòu),用來(lái)解釋現(xiàn)實(shí)現(xiàn)象,預(yù)測(cè)未來(lái)狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語(yǔ)言描述實(shí)際現(xiàn)象的過(guò)程。

大部分的獨(dú)立院校的數(shù)學(xué)建模工作純?cè)谝欢ǖ膯?wèn)題,主要體現(xiàn)在以下幾個(gè)方面:(一)學(xué)生方面的問(wèn)題。獨(dú)立院校的大部分學(xué)生的數(shù)學(xué)功底差,對(duì)數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對(duì)自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對(duì)數(shù)學(xué)建模競(jìng)賽的興趣不大。在獨(dú)立院校中,參加數(shù)學(xué)建模競(jìng)賽的大都是低年級(jí)的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競(jìng)賽并未獲得獎(jiǎng)項(xiàng)后就不愿意再次參加。而高年級(jí)的同學(xué)忙于其他的就業(yè)、考研等壓力,無(wú)暇參加數(shù)學(xué)建模競(jìng)賽的培訓(xùn)。(二)教資方面的問(wèn)題。首先。傳統(tǒng)的教學(xué)是知識(shí)為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨(dú)立院校外聘的老師常常對(duì)獨(dú)立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識(shí)面廣,不但包括數(shù)學(xué)的各個(gè)分支,還包含了其他背景的專業(yè)知識(shí)。獨(dú)立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對(duì)于數(shù)學(xué)建模教學(xué)和競(jìng)賽的培訓(xùn)經(jīng)驗(yàn)不足,科研能力不是很強(qiáng),對(duì)數(shù)學(xué)的各個(gè)分支的把控能力不強(qiáng),對(duì)其他專業(yè)的了解不夠全面。(三)教學(xué)實(shí)施方面的問(wèn)題。大學(xué)生數(shù)學(xué)建模競(jìng)賽的目的決不僅僅是獲獎(jiǎng),更重要的是通過(guò)參加大學(xué)生數(shù)學(xué)建模競(jìng)賽活動(dòng),促進(jìn)高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨(dú)立院校數(shù)學(xué)建模教學(xué)存在很多的問(wèn)題。首先,大學(xué)數(shù)學(xué)建模教育在獨(dú)立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開(kāi)在大一和大二的跨選課,這個(gè)時(shí)候?qū)W生的數(shù)學(xué)知識(shí)結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競(jìng)賽而編寫的,對(duì)于獨(dú)立院校的學(xué)生來(lái)說(shuō),這些教材的難度系數(shù)大,涉及的知識(shí)面廣,遠(yuǎn)遠(yuǎn)超過(guò)了學(xué)生的接受能力。

(一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開(kāi)設(shè)有利于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)具體解決實(shí)際問(wèn)題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識(shí)到數(shù)學(xué)的意義和價(jià)值。獨(dú)立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動(dòng)手能力強(qiáng)。學(xué)??梢栽诙嚅_(kāi)展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時(shí)多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識(shí)的培養(yǎng)和傳輸,而忽視的是實(shí)際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識(shí)。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識(shí),卻不知道如何應(yīng)用到實(shí)際問(wèn)題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模跨選課及數(shù)學(xué)建模培訓(xùn)班,對(duì)培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實(shí)際問(wèn)題的能力起到了很好的作用。由于學(xué)校開(kāi)設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時(shí)較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過(guò)程中,教師應(yīng)有意識(shí)地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點(diǎn),將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對(duì)專業(yè)知識(shí)的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識(shí)的結(jié)合,不僅可以讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的重要作用,在專業(yè)知識(shí)學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣,增強(qiáng)數(shù)學(xué)學(xué)習(xí)的凝聚力,同時(shí)加深對(duì)專業(yè)知識(shí)的理解。通過(guò)專業(yè)知識(shí)作為背景,學(xué)生更愿意嘗試問(wèn)題的研究。在學(xué)習(xí)中遇到的專業(yè)問(wèn)題也可以嘗試用數(shù)學(xué)建模的思想進(jìn)行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進(jìn)行數(shù)學(xué)建模教育。大體說(shuō)來(lái)獨(dú)立院校的數(shù)學(xué)建模課程的開(kāi)設(shè)應(yīng)該分成兩個(gè)階段:(1)第一階段:大學(xué)一年級(jí),在這個(gè)階段,大部分學(xué)生對(duì)數(shù)學(xué)建模沒(méi)有了解,這時(shí)候適合開(kāi)設(shè)一些數(shù)學(xué)建模的講座和活動(dòng),讓學(xué)生了解數(shù)學(xué)建模。同時(shí),在日常的數(shù)學(xué)教學(xué)中選擇簡(jiǎn)單的應(yīng)用問(wèn)題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識(shí)進(jìn)行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級(jí)層次:大學(xué)二、三年級(jí)。在這個(gè)階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個(gè)時(shí)候應(yīng)該開(kāi)設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問(wèn)題,讓學(xué)生自己去采集有用的信息,學(xué)會(huì)提出模型的假設(shè),對(duì)數(shù)據(jù)和信息需進(jìn)行整理、分析和判斷,并模型進(jìn)行分析和評(píng)價(jià),最終完成科技論文。

(一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過(guò)程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達(dá)到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實(shí)際問(wèn)題的能力和豐富的數(shù)學(xué)建模實(shí)踐經(jīng)驗(yàn)。而獨(dú)立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實(shí)踐經(jīng)驗(yàn)。這就對(duì)獨(dú)立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進(jìn)行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會(huì)議、到名校去做訪問(wèn)學(xué)者等等。同時(shí)可以多請(qǐng)著名的數(shù)學(xué)專家教授來(lái)到校園做建模學(xué)術(shù)報(bào)告,使師生拓寬視野,增長(zhǎng)知識(shí),了解建模的新趨勢(shì)、新動(dòng)態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對(duì)象和教學(xué)環(huán)境對(duì)自己的教學(xué)工作作出計(jì)劃、實(shí)施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢(shì),符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨(dú)立院校的學(xué)生的基礎(chǔ)薄弱,無(wú)法接收這些模型。在教學(xué)過(guò)程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過(guò)具體的建模實(shí)例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對(duì)問(wèn)題的新的理解和對(duì)魔性的認(rèn)識(shí),嘗試提出新的模型。(三)豐富建?;顒?dòng)。全面開(kāi)展數(shù)學(xué)建?;顒?dòng)是數(shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識(shí)相互結(jié)合,又可以普及建模知識(shí)與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識(shí)分析和解決實(shí)際問(wèn)題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)校可以定期的開(kāi)展數(shù)學(xué)建模宣傳活動(dòng),擴(kuò)大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請(qǐng)有經(jīng)驗(yàn)的專家和獲獎(jiǎng)學(xué)生開(kāi)展建模講座,提高對(duì)數(shù)學(xué)建模的重視,積極的組織建?;顒?dòng)。實(shí)踐證明,只有根據(jù)獨(dú)立院校的自身特點(diǎn)和培養(yǎng)目標(biāo),對(duì)數(shù)學(xué)建模課程的教學(xué)不斷進(jìn)行改革,才能解決獨(dú)立院校數(shù)學(xué)建模課程教學(xué)的問(wèn)題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。

[1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國(guó)大學(xué)教育.20xx.

[2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競(jìng)賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.

[3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報(bào).20xx:162.

作者:李雙單位:湖北文理學(xué)院理工學(xué)院

數(shù)學(xué)建模論文篇五

摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從初中數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。

關(guān)鍵詞:數(shù)學(xué);建模;運(yùn)用

數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高初中數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學(xué)是初中學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),初中數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于初中數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓初中數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。初中數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的.將數(shù)學(xué)建模運(yùn)用在初中數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)初中數(shù)學(xué)教師都值得思考的問(wèn)題。

一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)

數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是初中數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。

二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題

對(duì)于初中生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)初中生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。

三、選擇合適的題目作為建模案例

在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到初中數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。

四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模

在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于初中數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。

數(shù)學(xué)建模論文篇六

一、在高等數(shù)學(xué)教學(xué)中運(yùn)用數(shù)學(xué)建模思想的重要性

(1)將教材中的數(shù)學(xué)知識(shí)運(yùn)用現(xiàn)實(shí)生活中的對(duì)象進(jìn)行還原,讓學(xué)生樹(shù)立數(shù)學(xué)知識(shí)來(lái)源于現(xiàn)實(shí)生活的思想觀念。

(2)數(shù)學(xué)建模思想要求學(xué)生能夠通過(guò)運(yùn)用相應(yīng)的數(shù)學(xué)工具和數(shù)學(xué)語(yǔ)言,對(duì)現(xiàn)實(shí)生活中的特定對(duì)象的信息、數(shù)據(jù)或者現(xiàn)象進(jìn)行簡(jiǎn)化,對(duì)抽象的數(shù)學(xué)對(duì)象進(jìn)行翻譯和歸納,將所求解的數(shù)學(xué)問(wèn)題中的數(shù)量關(guān)系運(yùn)用數(shù)學(xué)關(guān)系式、數(shù)學(xué)圖形或者數(shù)學(xué)表格等形式進(jìn)行表達(dá),這種方式有利于培養(yǎng)、鍛煉學(xué)生的數(shù)學(xué)表達(dá)能力。

(3)在運(yùn)用數(shù)學(xué)建模思想獲得實(shí)際的答案后,需要運(yùn)用現(xiàn)實(shí)生活對(duì)象的相關(guān)信息對(duì)其進(jìn)行檢驗(yàn),對(duì)計(jì)算結(jié)果的準(zhǔn)確性進(jìn)行檢驗(yàn)和確定。該流程能夠培養(yǎng)學(xué)生運(yùn)用合理的數(shù)學(xué)方法對(duì)數(shù)學(xué)問(wèn)題進(jìn)行主動(dòng)性、客觀性以及辯證性的分析,最后得到最有效的解決問(wèn)題的方法。

二、高等數(shù)學(xué)教學(xué)中數(shù)學(xué)建模能力的培養(yǎng)策略

1.教師要具備數(shù)學(xué)建模思想意識(shí)

在對(duì)高等數(shù)學(xué)進(jìn)行教學(xué)的過(guò)程中,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模思想,首先教師要具備足夠的數(shù)學(xué)建模意識(shí)。教師在進(jìn)行高等數(shù)學(xué)教學(xué)之前,首先,要對(duì)所講數(shù)學(xué)內(nèi)容的相關(guān)實(shí)例進(jìn)行查找,有意識(shí)的實(shí)現(xiàn)高等數(shù)學(xué)內(nèi)容和各個(gè)不同領(lǐng)域之間的聯(lián)系;其次,教師要實(shí)現(xiàn)高等數(shù)學(xué)教學(xué)內(nèi)容與教學(xué)要求的轉(zhuǎn)變,及時(shí)的更新自身的教學(xué)觀念和教學(xué)思想。例如,教師細(xì)心發(fā)現(xiàn)現(xiàn)實(shí)生活中的小事,然后運(yùn)用這些小事建造相應(yīng)的數(shù)學(xué)模型,這樣不僅有利于營(yíng)造活躍的課堂環(huán)境,而且還有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

2.實(shí)現(xiàn)數(shù)學(xué)建模思想和高等數(shù)學(xué)教材的互相結(jié)合

教師在講解高等數(shù)學(xué)時(shí),對(duì)其中能夠引入數(shù)學(xué)模型的章節(jié),要構(gòu)建相關(guān)的數(shù)學(xué)模型,對(duì)其提出相應(yīng)的問(wèn)題,進(jìn)行分析和處理。在該基礎(chǔ)上,提出假設(shè),實(shí)現(xiàn)數(shù)學(xué)模型的完善。教師在高等數(shù)學(xué)的教學(xué)中融入建模意識(shí),讓學(xué)生潛移默化的感受到建模思想在高等數(shù)學(xué)教學(xué)中應(yīng)用的效果。這樣有利于提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力和學(xué)習(xí)興趣。例如,在進(jìn)行教學(xué)時(shí),針對(duì)學(xué)生所學(xué)專業(yè)的特點(diǎn),選擇科學(xué)、合理的數(shù)學(xué)案例,運(yùn)用數(shù)學(xué)建模思想對(duì)其進(jìn)行相應(yīng)的加工后,作為高等數(shù)學(xué)講授的應(yīng)用例題。這樣不僅能夠讓學(xué)生發(fā)現(xiàn)數(shù)學(xué)發(fā)揮的巨大作用,而且還能夠有效的提高學(xué)生的數(shù)學(xué)解題水平。另外,數(shù)學(xué)課結(jié)束后,轉(zhuǎn)變以往的作業(yè)模式,給學(xué)生布置一些具有專業(yè)性、數(shù)學(xué)性的習(xí)題,讓學(xué)生充分利用網(wǎng)絡(luò)資源,自主建立數(shù)學(xué)模型,有效的解決問(wèn)題。

3.理清高等數(shù)學(xué)名詞的概念

教材中,導(dǎo)數(shù)和定積分是其中的比較重要的概念,因此,教師在進(jìn)行教學(xué)時(shí),要引導(dǎo)學(xué)生理清這兩個(gè)的概念。比如導(dǎo)數(shù)概念是由幾何曲線中的切線斜率引導(dǎo)出來(lái)的,定積分的概念是由局部取近似值引出的,將常量轉(zhuǎn)變?yōu)樽兞俊?/p>

4.加強(qiáng)數(shù)學(xué)應(yīng)用問(wèn)題的培養(yǎng)

高等數(shù)學(xué)中,主要有以下幾種應(yīng)用問(wèn)題:

(1)最值問(wèn)題

在高等數(shù)學(xué)教材中,最值問(wèn)題是導(dǎo)數(shù)應(yīng)用中最重要的問(wèn)題。教師在教學(xué)過(guò)程中通過(guò)對(duì)最值問(wèn)題的解題步驟進(jìn)行歸納,能夠有效地將數(shù)學(xué)建模的基本思想進(jìn)行反映。因此,在對(duì)這部分內(nèi)容進(jìn)行教學(xué)時(shí),要增加例題,加大學(xué)生的練習(xí),開(kāi)拓學(xué)生的思維,讓學(xué)生熟練掌握最值問(wèn)題的解決辦法。

(2)微分方程

在微分方程的教學(xué)中運(yùn)用數(shù)學(xué)建模思想,能夠有效地解決實(shí)際問(wèn)題。微分方程所構(gòu)建的數(shù)學(xué)模型不具有通用的規(guī)則。首先,要確定方程中的變量,對(duì)變量和變化率、微元之間的關(guān)系進(jìn)行分析,然后運(yùn)用相關(guān)的物理理論、化學(xué)理論或者工程學(xué)理論對(duì)其進(jìn)行實(shí)驗(yàn),運(yùn)用所得出的定理、規(guī)律來(lái)構(gòu)建微分方程;其次,對(duì)其進(jìn)行求解和驗(yàn)證結(jié)果。微分方程的概念主要從實(shí)際引入,堅(jiān)持由淺入深的原則,來(lái)對(duì)現(xiàn)實(shí)問(wèn)題進(jìn)行解決。例如,在對(duì)學(xué)生講解外有引力定律時(shí),讓學(xué)生對(duì)萬(wàn)有引力的提出、猜想進(jìn)行探究,了解到在其發(fā)展的整個(gè)過(guò)程中,數(shù)學(xué)發(fā)揮著十分重要的作用。

(3)定積分

微元法思想用途比較廣泛,其主要以定積分概念為基礎(chǔ),在數(shù)學(xué)中滲入定積分概念,讓學(xué)生對(duì)定積分概念的意義進(jìn)行分析和了解,這樣有利于在對(duì)實(shí)際問(wèn)題進(jìn)行解決時(shí),樹(shù)立“欲積先分”意識(shí),意識(shí)到運(yùn)用定積分是解決微元實(shí)際問(wèn)題的重要方法。教師在布置作業(yè)題時(shí),要增加該問(wèn)題的實(shí)例。

三、結(jié)語(yǔ)

總之,在高等數(shù)學(xué)中對(duì)學(xué)生的數(shù)學(xué)建模能力進(jìn)行培養(yǎng),讓學(xué)生在解題的過(guò)程中運(yùn)用數(shù)學(xué)建模思想和數(shù)學(xué)建模方法,能夠有效地激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的分析、解決問(wèn)題的能力以及提高學(xué)生數(shù)學(xué)知識(shí)的運(yùn)用能力。

數(shù)學(xué)建模論文篇七

摘要:本文以實(shí)際教學(xué)案例,具體的分析了數(shù)學(xué)建模思想在運(yùn)籌學(xué)教學(xué)中的應(yīng)用及所產(chǎn)生的應(yīng)用價(jià)值,期望能夠?yàn)閿?shù)學(xué)教學(xué)改革工作提供一定的幫助。

關(guān)鍵詞:數(shù)學(xué)建模思想;運(yùn)籌學(xué);應(yīng)用;應(yīng)用價(jià)值

運(yùn)籌學(xué)是結(jié)合各種科學(xué)技術(shù)知識(shí)有系統(tǒng)性的教學(xué)方法,有效的解決實(shí)際問(wèn)題,并且注重人力、物力、財(cái)力等有限資源的合理統(tǒng)籌安排,實(shí)現(xiàn)最有決策。近年來(lái)運(yùn)籌學(xué)廣泛的應(yīng)用于教學(xué)工作中,但是,在數(shù)學(xué)教學(xué)中,針對(duì)具體問(wèn)題,構(gòu)建數(shù)學(xué)模型仍是教學(xué)難點(diǎn)和重點(diǎn)?;诖耍疚膶?duì)數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用展開(kāi)具體的分析,期望能夠產(chǎn)生一定的積極效用。

一、數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用——教學(xué)內(nèi)容

傳統(tǒng)的數(shù)學(xué)教學(xué)偏重理論知識(shí)的灌輸,且數(shù)學(xué)公式龐大、理論繁瑣、計(jì)算復(fù)雜,容易挫傷學(xué)生的學(xué)習(xí)興趣和積極性,因此,利用數(shù)學(xué)建模思想、運(yùn)籌學(xué),在教學(xué)內(nèi)容上穿插一些能夠比較客觀的反映學(xué)生日常生活所關(guān)心的實(shí)際問(wèn)題,如:企業(yè)產(chǎn)品加工問(wèn)題、購(gòu)買汽車問(wèn)題、運(yùn)輸問(wèn)題、選課策略問(wèn)題等,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,使得學(xué)生從解決問(wèn)題的角度出發(fā),認(rèn)真的思考如何構(gòu)建數(shù)學(xué)模型,找出相應(yīng)的解決辦法。我們舉個(gè)例子:例1:針對(duì)選課策略問(wèn)題,某所學(xué)校規(guī)定,該校運(yùn)籌學(xué)專業(yè)的學(xué)生在畢業(yè)之前必須學(xué)習(xí)和掌握3門運(yùn)籌學(xué)課程、2門數(shù)學(xué)課程以及2門計(jì)算機(jī)課程,該校關(guān)于這方面的課程編號(hào)、學(xué)分、選修課要求以及所屬類別進(jìn)行了規(guī)定,如表1。根據(jù)表1,請(qǐng)同學(xué)思考,運(yùn)籌學(xué)專業(yè)的學(xué)生畢業(yè)前最少可以學(xué)習(xí)哪些課程,而且如果希望課程少卻獲得的學(xué)分多,該如何選課。這是一個(gè)比較貼近學(xué)生生活,與學(xué)生密切相關(guān)的分配問(wèn)題,我們可以建立0—1規(guī)劃的數(shù)學(xué)模型,解決上述的問(wèn)題,而且考慮到學(xué)生希望課程少,卻獲得的學(xué)分高,我們可以引出目標(biāo)規(guī)劃問(wèn)題。另外,教師在講解多階段決策鍋中最優(yōu)化問(wèn)題時(shí),我們可以有效的引入與其相關(guān)(或者相類似)的“商人安全渡河問(wèn)題”,如:3名商人各自附帶一個(gè)隨從,并且每一只小船職能容納2人,一旦隨從人數(shù)多余商人,便采取殺人取貨這樣的數(shù)學(xué)游戲,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)到利用數(shù)學(xué)建模思想、運(yùn)籌學(xué)解決實(shí)際問(wèn)題的樂(lè)趣,促進(jìn)學(xué)生更加高效的學(xué)習(xí)運(yùn)籌學(xué)知識(shí)和技能。

二、數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用——教學(xué)方法

為了全面的提高教學(xué)水平,需要改變傳統(tǒng)影視交易理念下的灌輸教學(xué)方法,可以采取探究式教學(xué),即:利用數(shù)學(xué)建模思想、運(yùn)籌學(xué)技能,由淺入深、由直觀到抽象的傳授知識(shí),促使學(xué)生真正意義上掌握數(shù)學(xué)知識(shí)和問(wèn)題解決技能。我們舉個(gè)例子:例2:運(yùn)籌學(xué)課程緒論的引用,在教學(xué)中可以引入一個(gè)生動(dòng)形象的故事情節(jié),如:齊王和田忌賽馬,按同等次,兩人各種上、中、下三個(gè)等次的3匹馬,在比賽中,齊王的馬比田忌的馬勝一籌(三局兩勝),為了勝利,田忌采用了以下策略,田忌的上等馬與齊王的中等馬比賽、中等馬與齊王的下等馬比賽,下等馬與齊王的上等馬比賽,最終田忌以兩局勝利戰(zhàn)敗齊王,這充分的體現(xiàn)了田忌對(duì)運(yùn)籌學(xué)的運(yùn)用。齊王和田忌賽馬的故事,彰顯了數(shù)學(xué)建模思想、運(yùn)籌學(xué)中的優(yōu)化思想,并且避免了直接灌輸運(yùn)籌學(xué)知識(shí)給學(xué)生所帶來(lái)的困惑,能夠有效的激發(fā)學(xué)生的學(xué)習(xí)興趣,有利于全面的提升教學(xué)水平。另外,對(duì)運(yùn)籌學(xué)的傳授,不應(yīng)該局限于知識(shí)的傳播,更加需要注重知識(shí)的拓展與延伸,全面的培養(yǎng)學(xué)生的發(fā)散性思維,提高學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。如在運(yùn)輸問(wèn)題的運(yùn)籌學(xué)講解中,教師可以現(xiàn)提出問(wèn)題,讓學(xué)生根據(jù)已經(jīng)學(xué)習(xí)和掌握的知識(shí),自主的解決問(wèn)題,與此同時(shí),教師需要指導(dǎo)學(xué)生建立線性規(guī)劃模型,且采用單純形法進(jìn)行求解,在此基礎(chǔ)上,鼓勵(lì)支持學(xué)生分析運(yùn)輸問(wèn)題存在的線性規(guī)劃特點(diǎn),促使學(xué)生簡(jiǎn)化計(jì)算過(guò)程,提高求解效率??偟膩?lái)說(shuō),在實(shí)際教學(xué)中,教師應(yīng)該以數(shù)學(xué)建模思想為指導(dǎo),遵循啟發(fā)式原則,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣、拓展學(xué)生的學(xué)習(xí)思維,幫助學(xué)生融會(huì)貫通的掌握知識(shí)和技能,提高學(xué)生問(wèn)題解決能力,從而提高教學(xué)質(zhì)量。

三、結(jié)語(yǔ)

數(shù)學(xué)建模在運(yùn)籌中的運(yùn)用注重實(shí)踐性,在實(shí)際教學(xué)中,應(yīng)當(dāng)注重理論知識(shí)與實(shí)際問(wèn)題的聯(lián)系,并且需要加強(qiáng)運(yùn)籌學(xué)中的數(shù)學(xué)建模教學(xué)案例的引用,優(yōu)化教學(xué)內(nèi)容和教學(xué)方法,進(jìn)行深入的運(yùn)籌學(xué)課程教學(xué)改革,鍛煉培養(yǎng)學(xué)生的運(yùn)籌學(xué)思維能力以及實(shí)際問(wèn)題的解決能力,從而推動(dòng)教學(xué)水平的提升,促進(jìn)學(xué)生身心健康發(fā)展。

數(shù)學(xué)建模論文篇八

摘要:運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.

關(guān)鍵詞:數(shù)學(xué)建模;運(yùn)籌學(xué);教學(xué)實(shí)踐

1運(yùn)籌學(xué)教學(xué)中融入數(shù)學(xué)建模思想的必要性

2數(shù)學(xué)建模思想融入運(yùn)籌學(xué)的教學(xué)改革

3運(yùn)籌學(xué)教學(xué)中融入數(shù)學(xué)建模思想的教學(xué)改革成效

4結(jié)束語(yǔ)

數(shù)學(xué)建模論文篇九

(2)每部分內(nèi)容都應(yīng)寫些什么

(3)汲取他寫作與處理問(wèn)題的成功之處,以便將這些優(yōu)點(diǎn)運(yùn)用于我以后的論文寫作中

所以,在下面的學(xué)習(xí)心得中將主要涉及以上4個(gè)方面的內(nèi)容。

問(wèn)題重述:(略)

問(wèn)題背景:

交待問(wèn)題背景,說(shuō)明處理此問(wèn)題的意義和必要性。

優(yōu)點(diǎn):敘述詳盡,條理清楚,論證充分

缺點(diǎn):前兩段過(guò)于冗長(zhǎng),可作適當(dāng)刪節(jié)

問(wèn)題分析:

優(yōu)點(diǎn):條理比較清晰,論述符合邏輯,表達(dá)清楚

缺點(diǎn):似乎不夠詳細(xì),尤其是第3段有些過(guò)于概括。

模型的假設(shè)與約定:

共有8條比較合理的假設(shè)

優(yōu)點(diǎn):假設(shè)有依據(jù),合情合理。比如第3條對(duì)上座率的假設(shè),參考了上屆奧運(yùn)會(huì)的情況并充分考慮了我國(guó)國(guó)情,客觀真實(shí)。第8條假設(shè)用了分塊規(guī)劃和割補(bǔ)的方法,估計(jì)面積形狀比較合理,而且達(dá)到了充分花劍問(wèn)題的作用。

缺點(diǎn):有些假設(shè)闡述不太清楚也存在不合理之處,第4條假設(shè)中面積在50-100之間,下面的假設(shè)應(yīng)該是介于50-100之間的數(shù),假設(shè)為最小的50平方米,有失1般性。第6條假設(shè)中,假設(shè)ms最大營(yíng)業(yè)額為20萬(wàn),沒(méi)有說(shuō)明是多長(zhǎng)時(shí)間內(nèi)的,而且此處沒(méi)有對(duì)下文提到的lms作以說(shuō)明。

符號(hào)說(shuō)明及名詞定義

優(yōu)點(diǎn):比較詳細(xì)清楚,考慮周全,而且較合理地將定性指標(biāo)數(shù)量化。

缺點(diǎn):有些地方?jīng)]有標(biāo)注量綱,比如a和b的量綱不明確。

模型建立與求解

6.1問(wèn)題1:

對(duì)所給數(shù)據(jù)驚醒處理和統(tǒng)計(jì),得出規(guī)律,找到聯(lián)系。

優(yōu)點(diǎn):統(tǒng)計(jì)方法合理,所統(tǒng)計(jì)數(shù)據(jù)對(duì)解決問(wèn)題確實(shí)必不可少,而且用圖表和條形圖的方式反映不同量的變化趨勢(shì),圖文并茂,敘述清楚而且簡(jiǎn)明扼要,除了對(duì)數(shù)據(jù)統(tǒng)計(jì)情況進(jìn)行報(bào)告以外,還就他們之間相關(guān)量之間的關(guān)系進(jìn)行了詳細(xì)闡述,使數(shù)據(jù)統(tǒng)計(jì)更具實(shí)效性。

6.2問(wèn)題2:

6.2.1最短路的確定

為確定最短路徑又提出了1系列假設(shè)并闡述了理由,在這些假設(shè)下規(guī)定了最短路徑

優(yōu)點(diǎn):假設(shè)有根據(jù),理由合情合理

缺點(diǎn):第4條中假設(shè)觀眾消費(fèi)是單向的,雖然簡(jiǎn)化了問(wèn)題但有失1般性,事實(shí)上觀眾往返經(jīng)過(guò)商業(yè)區(qū)消費(fèi)的概率是相差比較大的,我認(rèn)為應(yīng)改為假設(shè)觀眾在往返過(guò)程中消費(fèi)且僅消費(fèi)1次。

6.2.2計(jì)算人流量的追蹤模型

給出計(jì)算人流量的方法,并計(jì)算了各區(qū)人流量,并對(duì)計(jì)算結(jié)果進(jìn)行了分析。

優(yōu)點(diǎn):分情況討論,并且取了兩個(gè)典型的具有代表性的例子進(jìn)行了具體闡述,沒(méi)有全部羅列所有數(shù)據(jù)的計(jì)算過(guò)程,使文章清晰簡(jiǎn)明,不至于繁冗拖沓,這在以后我們寫論文是極其值得借鑒。對(duì)結(jié)果的分析有針對(duì)性,合情合理而且用條形圖直觀地反映了人流量的數(shù)值和各地區(qū)間的差異。

缺點(diǎn):分析還不夠詳細(xì),考慮因素還不夠周到。

6.3問(wèn)題3

進(jìn)1步對(duì)問(wèn)題作以簡(jiǎn)化,將問(wèn)題的解決最終歸結(jié)為1個(gè)焦點(diǎn),并對(duì)解決這個(gè)問(wèn)題所需確定的因素進(jìn)行了討論,最后得出結(jié)論。

6.3.1商區(qū)消費(fèi)額的確定

闡述了為什么要計(jì)算這個(gè)量,計(jì)算這個(gè)量對(duì)解決問(wèn)題有什么至關(guān)重要的作用并且采用了huff模型并且結(jié)合本問(wèn)題的具體情況來(lái)求解數(shù)據(jù)。

優(yōu)點(diǎn):論證充分合理且模型和經(jīng)濟(jì)學(xué)知識(shí)應(yīng)用恰當(dāng),所得數(shù)據(jù)有效可信,考慮周到而不繁雜,抓住了事物的主要矛盾,而且對(duì)huff模型的解釋較為充分。

6.3.2各個(gè)商區(qū)ms數(shù)量的概略確定

優(yōu)點(diǎn):簡(jiǎn)潔明了,論述合理。

6.3.3

引入了1個(gè)重要的確定數(shù)量的參數(shù),且對(duì)解決問(wèn)題方法的合理性及此數(shù)據(jù)對(duì)問(wèn)題的解的影響及行了數(shù)值分析和理論論證,提出了改進(jìn)方案,得出結(jié)果,并對(duì)結(jié)果進(jìn)行分析。

優(yōu)點(diǎn):條理清晰,邏輯嚴(yán)謹(jǐn),論證充分,詳盡而不冗長(zhǎng),使本篇論文的精華部分。分析合理且充分考慮到了實(shí)際情況使結(jié)果更具可信性。

6.3.4lms和ms的分配情況討論

對(duì)2者關(guān)系提出了幾條假設(shè)。

優(yōu)點(diǎn):論述充分,假設(shè)合理而且用圖表反映結(jié)果,簡(jiǎn)單明了,情況考慮全面周到。

6.4問(wèn)題4

分析了方法的科學(xué)性和結(jié)果的貼近實(shí)際性

優(yōu)點(diǎn):條理清晰,分析有依據(jù),措辭嚴(yán)謹(jǐn),邏輯嚴(yán)密而且對(duì)前面所述方法進(jìn)行了分別闡述。這使得對(duì)方法科學(xué)性的論述更加充分可信。對(duì)貼近事實(shí)性的論述,理論和事實(shí)相結(jié)合,敘述數(shù)據(jù)來(lái)源,并采用舉例論證法論證結(jié)果的貼近實(shí)際性。

缺點(diǎn):結(jié)果的貼近實(shí)際性的論證中,應(yīng)詳細(xì)羅列1下數(shù)據(jù)的來(lái)源,也許更加可信。

模型的進(jìn)1步討論

優(yōu)點(diǎn):考慮全面,善于抓住主要矛盾,表述簡(jiǎn)明客觀。

模型檢驗(yàn)

與某些近似且已妥善解決的問(wèn)題進(jìn)行了比較,用事實(shí)說(shuō)明處理方案的正確性。

優(yōu)點(diǎn):采用了較好的參照對(duì)象,采用圖像對(duì)比的方法,使問(wèn)題清晰明了。

缺點(diǎn):應(yīng)該簡(jiǎn)述1下雅典奧運(yùn)會(huì)采用的方案是成功的,否則比照就失去了意義,還有由于舉辦地點(diǎn)不同,地區(qū)上的差異使這種單純與雅典奧運(yùn)會(huì)進(jìn)行得比較稍顯單薄。

模型優(yōu)缺點(diǎn)

總結(jié)模型建立并解決問(wèn)題的過(guò)程中的優(yōu)點(diǎn)和缺點(diǎn)

優(yōu)點(diǎn):簡(jiǎn)明扼要,客觀實(shí)在

附錄(略)

參考文獻(xiàn)

數(shù)學(xué)建模論文篇十

數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.

一、影響數(shù)學(xué)建模教學(xué)的成因探析

一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.

二、數(shù)學(xué)建模教學(xué)的有效原則

1.自主探索原則.

學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的能力.

2.因材施教原則.

教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。

3.可接受性原則.

數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.

三、初中數(shù)學(xué)建模教學(xué)的幾種模式

1.自學(xué)討論式.

“先學(xué)后教”改變了傳統(tǒng)教學(xué)中“師講生聽(tīng)”、“師說(shuō)生練”的模式,在教師的導(dǎo)學(xué)、導(dǎo)疑、導(dǎo)思中激發(fā)學(xué)生的學(xué)習(xí)興趣,引發(fā)學(xué)生的積極思考,讓他們?cè)诮涣髦兴枷氩粩嗯鲎?,形成新觀點(diǎn),從而自身認(rèn)知水平得到提高.教師要通過(guò)創(chuàng)設(shè)問(wèn)題情境導(dǎo)學(xué),引發(fā)學(xué)生的探究.例如,如圖,在河岸l的同側(cè)有m、n兩個(gè)村莊,現(xiàn)擬在河岸邊修一座水泵站p,要求使管道pm、pn所用的水管最短,另修一碼頭q,要求碼頭到m、n兩村的距離相等,試畫(huà)出p、q的位置.在提出問(wèn)題的基礎(chǔ)上,學(xué)生通過(guò)選點(diǎn)、測(cè)量,開(kāi)展交流討論.學(xué)生1認(rèn)為,是不是和異側(cè)相同?學(xué)生2認(rèn)為,如果m、n在直線l的異側(cè),連接mn即為最短.學(xué)生3認(rèn)為,在同側(cè)的話,可以根據(jù)軸對(duì)性的性質(zhì),將之轉(zhuǎn)移為異側(cè).學(xué)生4認(rèn)為,這有點(diǎn)像照鏡子.這樣,學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為軸對(duì)稱的知識(shí)解決,在交流中彼此分享、相互促進(jìn)、相互提高.

2.引導(dǎo)探究式.

教師提出問(wèn)題,讓學(xué)生通過(guò)觀察、探究提出自己的猜想,在推理、論證的基礎(chǔ)上獲得結(jié)論、掌握規(guī)律.例如,某景區(qū)團(tuán)體購(gòu)買公園門票價(jià)為1~50人的13元/張,50~100人的11元/張,100人以上9元/張.甲團(tuán)少于50人,乙團(tuán)人數(shù)不超過(guò)100人,兩團(tuán)共計(jì)應(yīng)付票費(fèi)1392元.若組成一個(gè)團(tuán)體購(gòu)票,應(yīng)付1080元.(1)乙團(tuán)人數(shù)是否也少于50人,為什么?(2)求甲乙兩團(tuán)各有多少人?學(xué)生猜想乙團(tuán)人數(shù)少于50人,進(jìn)而推算兩團(tuán)人數(shù)會(huì)少于100人,團(tuán)購(gòu)價(jià)應(yīng)少于1300元,與1392元矛盾,因而乙團(tuán)人數(shù)應(yīng)不少于50人,不超過(guò)100人.

3.活動(dòng)參與模式.

教師提出問(wèn)題,引發(fā)學(xué)生小組活動(dòng)探究,進(jìn)行捜集數(shù)據(jù)、整理分析,然后解決問(wèn)題.例如,某件商品的售價(jià)從原來(lái)的每件400元經(jīng)兩次調(diào)價(jià)后調(diào)至每件324元.經(jīng)調(diào)查,該商品每降價(jià)2元,即可多銷售10件,若該商場(chǎng)原來(lái)每月可銷售500件,那么經(jīng)過(guò)兩次調(diào)價(jià)后,每月可銷售該商品多少件?學(xué)生先計(jì)算每次的降價(jià)率為10%,然后根據(jù)“件數(shù)×單價(jià)=銷售額”列出方程.

總之,數(shù)學(xué)建模教學(xué),有利于學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型來(lái)解,能夠提高學(xué)生分析、解決問(wèn)題的能力。

數(shù)學(xué)建模論文篇十一

春回大地萬(wàn)物復(fù)蘇,爸爸媽媽帶我去游園;一陣陣大風(fēng)卷來(lái)漫天黃沙,吹散了我們的游興。

我們正要打到回府時(shí),看到在一條剛剛竣工的人行甬道上圍攏著許多人,只聽(tīng)到他們不住的在稱贊著什么。禁不住好奇心的誘惑,我也湊了過(guò)去。哎?這是在干什么?幾名工作人員不斷向路面沖水,可水很快就被“喝光”了,沒(méi)有任何積水現(xiàn)象。可旁邊路面上的水流的到處都是。我仔細(xì)觀察了一下,不會(huì)“喝水”的路面就是普通的水泥路。會(huì)“喝水”的路面比瀝青路面粗糙一些,“皮膚”表面顆粒大一些,有點(diǎn)兒象我們吃的“薩其瑪”。

“老爸,這叫喝水路嗎?”我的這句話逗樂(lè)了一邊的幾位工作人員。一位叔叔告訴我,這叫“透水混凝土路面”

回到家,通過(guò)查詢我知道傳統(tǒng)瀝青路面因滲水效果差給城市生態(tài)環(huán)境帶來(lái)了許多付面影響。水分難以下滲,降水很快成為地表徑流白白流走,地下水位逐年下降,干旱日益嚴(yán)重;地表溫度、濕度的調(diào)節(jié)能力差,雨水蒸發(fā)快,地面易干燥,揚(yáng)塵污染嚴(yán)重。透水路面能大大降低這些城市“熱島效應(yīng)”,因?yàn)橥杆炷谅访鎸?duì)雨水回收率達(dá)到89%,只有10%左右(此數(shù)據(jù)來(lái)自北京市市政工程研究院)的降水會(huì)被蒸發(fā)。您知道嗎?近幾年北京的地下水層每年以1米左右的速度下降,(此數(shù)據(jù)電話咨詢北京水務(wù)局宣傳處)這是一個(gè)多么可怕的數(shù)字啊!

下面讓我們以北京為例,

北京中型降雨量每小時(shí)2.8—8mm(電話咨詢國(guó)家氣象局),讓我們以5mm,20%蒸發(fā)率,80%回收率為例,算一下透水路面會(huì)回收多少降水。

1平方千米=1000平方米,5mm=0.005m;

1000*0.005=5立方米=5噸

以西城區(qū)為例24.7平方千米=24700平方米

降雨量:24700*0.005=123.5立方米=123.5噸:

蒸發(fā)量:123.5*20%=24.7立方米=24.7噸

回收量:123.5*80%=98.8立方米=98.8噸

20xx年北京年降雨量為480.6mm左右(此數(shù)據(jù)電話咨詢國(guó)家氣象局),如果按10%的面積鋪設(shè)透水路面來(lái)計(jì)算,將會(huì)有近646249噸的降水被重復(fù)利用或滲入地下提高地下水位。

眾所周知,我國(guó)是一個(gè)缺水大國(guó),特別是西北部地區(qū);雨天一身泥,晴天沙漫天情況嚴(yán)重。20xx年,我國(guó)北方大面積的干旱,不少地區(qū)土地因缺水呈龜裂狀;南方的暴雨造成城市內(nèi)澇給環(huán)境帶來(lái)危害、生活的不便值得我們深深的思考:經(jīng)濟(jì)的發(fā)展和城市的建設(shè)都要在環(huán)保的基礎(chǔ)上,用科學(xué)的力量與技術(shù)發(fā)展強(qiáng)大我們的祖國(guó)。

國(guó)家正在大力提倡節(jié)能減排,我們應(yīng)做的是低碳生活;人走燈滅會(huì)節(jié)約一點(diǎn)電,隨手關(guān)水能節(jié)約一點(diǎn)水,少開(kāi)一天車,少用一點(diǎn)一次性用品。一人節(jié)約一點(diǎn)兒,人人做到,十三億人又能節(jié)約多少?數(shù)學(xué)是一種沒(méi)有國(guó)界的語(yǔ)言,生活中處處有數(shù)學(xué),讓我們用數(shù)學(xué)的眼光觀察發(fā)現(xiàn)生活。

數(shù)學(xué)建模論文篇十二

到2017年,武漢市共7條軌道線建成,總里程超過(guò)250公里。路網(wǎng)布局的合理性關(guān)系到路網(wǎng)建成后的社會(huì)效益和經(jīng)濟(jì)效益。本文以武漢市軌道交通發(fā)展為例,重點(diǎn)介紹了交通流量預(yù)測(cè)模型、地鐵站選址模型、路線確定模型。

自2011年起,武漢將每年開(kāi)通一條軌道線,到2017年,共7條軌道線建成,總里程超過(guò)250公里。目前武漢7條地鐵規(guī)劃獲得國(guó)家發(fā)改委批復(fù),意味著這些線路正式拿到“準(zhǔn)生證”,可全面開(kāi)建。地下鐵道路網(wǎng)布局合理與否,將導(dǎo)致能否有效地吸引運(yùn)輸客流。而且,經(jīng)驗(yàn)證明軌道交通的建設(shè)只有在形成一定的網(wǎng)時(shí)才可以吸引更大的客戶流。路網(wǎng)規(guī)劃的好壞直接影響著后期的社會(huì)效益和經(jīng)濟(jì)效益。因此,作好地鐵路網(wǎng)的規(guī)劃工作有著長(zhǎng)遠(yuǎn)的意義。

我們把武漢市政府已經(jīng)建設(shè)成功的兩條地鐵線路設(shè)為已知,然后通過(guò)該課題研究向武漢市政府對(duì)接下來(lái)的5條地鐵線路提出自己的建議和看法。武漢市政府規(guī)劃建設(shè)地鐵7條線路。

地鐵是目前世界上主要四種城市快速軌道交通形式之一,也是應(yīng)用最為廣泛的一種。運(yùn)輸規(guī)劃學(xué)者wabersmith建議,人口超過(guò)150萬(wàn)人的城市就應(yīng)該有捷運(yùn)系統(tǒng)。地鐵被稱為“綠色交通”,其具有運(yùn)量大、速度快、污染小、能耗低以及準(zhǔn)時(shí)等優(yōu)點(diǎn),是解決城市交通需求迅速增長(zhǎng),交通堵塞嚴(yán)重等問(wèn)題的絕佳方法。

地鐵規(guī)劃的合理性研究問(wèn)題實(shí)為在節(jié)約建設(shè)成本、讓居民出行的便利最大化、覆蓋市區(qū)面積最廣的基礎(chǔ)上,選擇出理想的地鐵站點(diǎn)和地鐵線路。其核心在將地鐵規(guī)劃這一大問(wèn)題逐步轉(zhuǎn)化為在考慮交通客流量,對(duì)城區(qū)現(xiàn)有的發(fā)展和將來(lái)的規(guī)劃不會(huì)造成影響的因素下,選擇理想的地鐵站點(diǎn)和地鐵線路。

為了使復(fù)雜問(wèn)題簡(jiǎn)單化,我們可以從“點(diǎn)-線-面”這個(gè)概念出發(fā)層層深入考慮地鐵的合理規(guī)劃。

首先,在衡量地鐵規(guī)劃合理與否時(shí),我們主要考慮交通客流量這一關(guān)鍵因素,因?yàn)榻ㄔO(shè)地鐵的最終目標(biāo)就是為了舒緩客流量,方便居民的出行。我們可以通過(guò)調(diào)查問(wèn)卷的形式,采集武漢地鐵線路附近的交通現(xiàn)狀數(shù)據(jù)、調(diào)查了人們對(duì)地鐵的看法。并在這些數(shù)據(jù)的基礎(chǔ)上根據(jù)四階段法思想對(duì)交通客流量進(jìn)行預(yù)測(cè),聚類分析法預(yù)測(cè)該交通小區(qū)的生成及吸引的交通量,用重力模型法預(yù)測(cè)了該交通小區(qū)交通量的分布。從而使建立的模型具有高適用性,以給以后的問(wèn)題提供較準(zhǔn)確的數(shù)據(jù)支持。

考慮各種因素對(duì)一個(gè)地鐵站點(diǎn)的選擇的影響,其中包括站點(diǎn)建設(shè)成本、帶動(dòng)區(qū)域的經(jīng)濟(jì)效益、站址周邊環(huán)境、施工風(fēng)險(xiǎn)、區(qū)域產(chǎn)業(yè)布局、舒緩客流度、名勝景點(diǎn)、商業(yè)圈以及站點(diǎn)換乘等相對(duì)次要關(guān)鍵因素。

我們著重來(lái)討論站點(diǎn)換乘、名勝景點(diǎn)和商業(yè)圈這三個(gè)對(duì)建立模型影響相對(duì)較大的因素。

(1)站點(diǎn)換乘。地鐵站點(diǎn)合理的銜接換乘,可以縮短乘客出行時(shí)間,增加地鐵的吸引力,吸引更多的客流通過(guò)地鐵進(jìn)行換乘。研究地鐵站點(diǎn)客流的換乘特征對(duì)于地鐵站點(diǎn)的交通銜接研究具有重要的意義,它是了解研究對(duì)象現(xiàn)狀和問(wèn)題所在的重要手段,也是客流預(yù)測(cè)和站點(diǎn)規(guī)劃設(shè)計(jì)的重要依據(jù)。地鐵站點(diǎn)客流換乘特征包括換乘方式比例、出行目的、換乘時(shí)間、客流產(chǎn)生區(qū)域、換乘設(shè)施等方面,獲得這些特征的方法是進(jìn)行站點(diǎn)客流的問(wèn)詢調(diào)查。在收集到有關(guān)數(shù)據(jù)后,我們可以將各位乘客的換乘方式以及出行目的作描述性統(tǒng)計(jì)分析和進(jìn)一步數(shù)據(jù)處理。根據(jù)所得的數(shù)據(jù),我們可以知道大多數(shù)乘客所需要的換乘方式以及出行目的,在結(jié)合擬定目標(biāo)站點(diǎn)周圍的公交站點(diǎn)情況,我們可以得到我們所需要的結(jié)論,即此處乘客換乘方式是否對(duì)在該處設(shè)置地鐵站點(diǎn)有影響。

(2)名勝景點(diǎn)和商業(yè)圈。眾所周知,武漢,中部地區(qū)最大都市及唯一的副省級(jí)城市;內(nèi)陸地區(qū)最繁華都市及國(guó)家區(qū)域中心城市;中國(guó)長(zhǎng)江中下游特大城市。世界第三大河長(zhǎng)江及其最長(zhǎng)支流漢江橫貫市區(qū),將武漢分為武昌、漢口、漢陽(yáng)三鎮(zhèn)鼎立的格局,唐朝詩(shī)人李白在此寫下“黃鶴樓中吹玉笛,江城五月落梅花”,因此武漢又稱江城。如今正以復(fù)興大武漢為目標(biāo),重新邁向國(guó)際化大都市為目標(biāo)的大武漢必然少不了歷史悠久的名勝景點(diǎn)和繁華熱鬧的商業(yè)圈。比如武漢有著名的東湖景點(diǎn),黃鶴樓以及江灘等等名勝景點(diǎn)和繁華的武廣中南商業(yè)圈。但由于我們?cè)诳紤]地鐵站點(diǎn)的時(shí)候已經(jīng)將交通人流量納入了我們的考慮范圍,而交通人流量大的區(qū)域很顯然在大多數(shù)時(shí)候是應(yīng)該包括名勝景點(diǎn)和商業(yè)圈的,所以,為了模型的簡(jiǎn)便,我們不在特地加入這兩個(gè)變量。最后,根據(jù)這些因素,建立方案評(píng)價(jià)指標(biāo)體系。通過(guò)層次分析法和熵權(quán)法的結(jié)合,得到綜合權(quán)重,最后得到對(duì)該站點(diǎn)的總的評(píng)價(jià),從而建立起地鐵站點(diǎn)選址的模型。

(3)路線確定模型(線)。我們從“線”的角度出發(fā),求出地起始站點(diǎn)與目的地站點(diǎn)間的最佳路徑。地鐵作為一項(xiàng)市政工程,首要職能將是緩解交通壓力,增加市民方便程度——將這一職能量化的一個(gè)很好的標(biāo)準(zhǔn),便是使市民出行到達(dá)目的地的時(shí)間最快,即地鐵線路程最短。將地鐵站點(diǎn)抽象為節(jié)點(diǎn),將地鐵線路抽象為連接線路各站點(diǎn)的有向邊,構(gòu)造一地鐵網(wǎng)絡(luò)有向圖,用邊上的權(quán)值反應(yīng)影響地鐵線路選擇的關(guān)鍵因素,從而將求解最佳路徑問(wèn)題轉(zhuǎn)化為求解圖中起始節(jié)點(diǎn)與目的地節(jié)點(diǎn)間的最優(yōu)路徑的問(wèn)題,建立基于點(diǎn)搜索的多目標(biāo)優(yōu)化模型,運(yùn)用dijkstra的算法篩點(diǎn)求解。

(4)總體規(guī)劃模型(面)。從各方面分析主城區(qū)交通需求,然后經(jīng)過(guò)“面”、“點(diǎn)”、“線”的層次分析,通過(guò)宏觀層次的定性論證,如考慮宏觀預(yù)算與城市發(fā)展地理趨勢(shì)因素,用面點(diǎn)線多模塊網(wǎng)絡(luò)層次分析法(ahp)規(guī)劃地鐵軌道交通線網(wǎng)預(yù)選方案,畫(huà)出各預(yù)選方案的規(guī)劃圖。最后,利用模糊數(shù)學(xué)給各總體規(guī)劃圖評(píng)分,篩選出最佳規(guī)劃。

武漢市地鐵線路的規(guī)劃一般是在對(duì)城市結(jié)構(gòu)與土地利用、城市客流需求的空間分布特點(diǎn),線路工程實(shí)施可行性以及一些可能遇到的實(shí)際社會(huì)問(wèn)題(機(jī)場(chǎng)換乘等)進(jìn)行定性與定量分析的基礎(chǔ)上,形成多個(gè)備選方案。并在此基礎(chǔ)上,對(duì)備選方案進(jìn)行必要的規(guī)劃。推薦的路網(wǎng)確定以后,可重新進(jìn)行推薦方案的客流預(yù)測(cè),進(jìn)一步對(duì)地鐵路網(wǎng)進(jìn)行綜合評(píng)價(jià)。在規(guī)劃范圍上,必須保持與城市的總體規(guī)劃相協(xié)調(diào),以城市的總體規(guī)劃為依據(jù)。由于規(guī)劃是隨著人們的認(rèn)識(shí)和經(jīng)濟(jì)水平等因素在變化的,因此在路網(wǎng)規(guī)劃編制完成以后,應(yīng)根據(jù)具體的實(shí)施情況進(jìn)行不斷地修正。

【本文地址:http://www.aiweibaby.com/zuowen/19732554.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔