在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。那么我們該如何寫一篇較為完美的范文呢?這里我整理了一些優(yōu)秀的范文,希望對大家有所幫助,下面我們就來了解一下吧。
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇一
等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;
項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;
通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用sn表示.
基本思路:等差數(shù)列中涉及五個量:a1 ,an,d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。
基本公式:通項公式:an = a1+(n-1)d;
通項=首項+(項數(shù)一1) ×公差;
數(shù)列和公式:sn,= (a1+ an)×n÷2;
數(shù)列和=(首項+末項)×項數(shù)÷2;
項數(shù)公式:n= (an- a1)÷d+1;
項數(shù)=(末項-首項)÷公差+1;
公差公式:d =(an-a1))÷(n-1);
公差=(末項-首項)÷(項數(shù)-1);
關(guān)鍵問題:確定已知量和未知量,確定使用的公式。
二、加法乘法原理和幾何計數(shù)
加法原理:如果完成一件任務有n類方法,在第一類方法中有m1種不同方法,在第二類方法中有m2種不同方法……,在第n類方法中有mn種不同方法,那么完成這件任務共有:m1+ m2....... +mn種不同的方法。
關(guān)鍵問題:確定工作的分類方法。
基本特征:每一種方法都可完成任務。
乘法原理:如果完成一件任務需要分成n個步驟進行,做第1步有m1種方法,不管第1步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務共有:m1×m2....... ×mn種不同的方法。
關(guān)鍵問題:確定工作的完成步驟
基本特征:每一步只能完成任務的一部分。
直線:一點在直線或空間沿一定方向或相反方向運動,形成的軌跡。
直線特點:沒有端點,沒有長度。
線段:直線上任意兩點間的距離。這兩點叫端點。
線段特點:有兩個端點,有長度。
射線:把直線的一端無限延長。
射線特點:只有一個端點;沒有長度
①數(shù)線段規(guī)律:總數(shù)=1+2+3+…+(點數(shù)一1);
②數(shù)角規(guī)律=1+2+3+…+(射線數(shù)一1);
③數(shù)長方形規(guī)律:個數(shù)=長的線段數(shù)×寬的線段數(shù):
④數(shù)長方形規(guī)律:個數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)。
數(shù)學知識點:加法乘法原理和幾何計數(shù)
三、質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):一個數(shù)除了1和它本身之外,沒有別的`約數(shù),這個數(shù)叫做質(zhì)數(shù),也叫做素數(shù)。
合數(shù):一個數(shù)除了1和它本身之外,還有別的約數(shù),這個數(shù)叫做合數(shù)。
質(zhì)因數(shù):如果某個質(zhì)數(shù)是某個數(shù)的約數(shù),那么這個質(zhì)數(shù)叫做這個數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):把一個數(shù)用質(zhì)數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個合數(shù)分解質(zhì)因數(shù)的結(jié)果是唯一的。
分解質(zhì)因數(shù)的標準表示形式:n= ,其中a1、a2、a3……an都是合數(shù)n的質(zhì)因數(shù),且a1……。
求約數(shù)個數(shù)的公式:p=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互質(zhì)數(shù):如果兩個數(shù)的最大公約數(shù)是1,這兩個數(shù)叫做互質(zhì)數(shù)。
數(shù)學復習重點大全 :質(zhì)數(shù)與合數(shù)
四、約數(shù)與倍數(shù)
約數(shù)和倍數(shù):若整數(shù)a能夠被b整除,a叫做b的倍數(shù),b就叫做a的約數(shù)。
公約數(shù):幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù);其中最大的一個,叫做這幾個數(shù)的最大公約數(shù)。
最大公約數(shù)的性質(zhì):
1、幾個數(shù)都除以它們的最大公約數(shù),所得的幾個商是互質(zhì)數(shù)
2、幾個數(shù)的最大公約數(shù)都是這幾個數(shù)的約數(shù)
3、幾個數(shù)的公約數(shù),都是這幾個數(shù)的最大公約數(shù)的約數(shù)。
4、幾個數(shù)都乘以一個自然數(shù)m,所得的積的最大公約數(shù)等于這幾個數(shù)的最大公約數(shù)乘以m。
例如:12的約數(shù)有1、2、3、4、6、12;
18的約數(shù)有:1、2、3、6、9、18;
那么12和18的公約數(shù)有:1、2、3、6;
那么12和18最大的公約數(shù)是:6,記作(12,18)=6;
求最大公約數(shù)基本方法:
1、分解質(zhì)因數(shù)法:先分解質(zhì)因數(shù),然后把相同的因數(shù)連乘起來。
2、短除法:先找公有的約數(shù),然后相乘。
3、輾轉(zhuǎn)相除法:每一次都用除數(shù)和余數(shù)相除,能夠整除的那個余數(shù),就是所求的最大公約數(shù)。
公倍數(shù):幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù);其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。
12的倍數(shù)有:12、24、36、48……;
18的倍數(shù)有:18、36、54、72……;
那么12和18的公倍數(shù)有:36、72、108……;
那么12和18最小的公倍數(shù)是36,記作[12,18]=36;
最小公倍數(shù)的性質(zhì):
1、兩個數(shù)的任意公倍數(shù)都是它們最小公倍數(shù)的倍數(shù)。
2、兩個數(shù)最大公約數(shù)與最小公倍數(shù)的乘積等于這兩個數(shù)的乘積。
求最小公倍數(shù)基本方法:1、短除法求最小公倍數(shù);2、分解質(zhì)因數(shù)的方法。
數(shù)學復習重點大全 :約數(shù)與倍數(shù)
五、數(shù)的整除
一、基本概念和符號:
1、整除:如果一個整數(shù)a,除以一個自然數(shù)b,得到一個整數(shù)商c,而且沒有余數(shù),那么叫做a能被b整除或b能整除a,記作b|a。
六、整除判斷方法:
1. 能被2、5整除:末位上的數(shù)字能被2、5整除。
2. 能被4、25整除:末兩位的數(shù)字所組成的數(shù)能被4、25整除。
3. 能被8、125整除:末三位的數(shù)字所組成的數(shù)能被8、125整除。
4. 能被3、9整除:各個數(shù)位上數(shù)字的和能被3、9整除。
5. 能被7整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成數(shù)之差能被7整除
②逐次去掉最后一位數(shù)字并減去末位數(shù)字的2倍后能被7整除。
6. 能被11整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被11整除。
②奇數(shù)位上的數(shù)字和與偶數(shù)位數(shù)的數(shù)字和的差能被11整除。
③逐次去掉最后一位數(shù)字并減去末位數(shù)字后能被11整除。
7. 能被13整除:
①末三位上數(shù)字所組成的數(shù)與末三位以前的數(shù)字所組成的數(shù)之差能被13整除。
②逐次去掉最后一位數(shù)字并減去末位數(shù)字的9倍后能被13整除
三、整除的性質(zhì):
1. 如果a、b能被c整除,那么(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數(shù),那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍數(shù)整除。
七、余數(shù)問題
余數(shù)的性質(zhì):
①余數(shù)小于除數(shù)。
②若a、b除以c的余數(shù)相同,則c|a-b或c|b-a。
③a與b的和除以c的余數(shù)等于a除以c的余數(shù)加上b除以c的余數(shù)的和除以c的余數(shù)。
余數(shù)、同余與周期
一、同余的定義:
①若兩個整數(shù)a、b除以m的余數(shù)相同,則稱a、b對于模m同余。
二、同余的性質(zhì):
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
三、關(guān)于乘方的預備知識:
①若a=a×b,則ma=ma×b=(ma)b
②若b=c+d則mb=mc+d=mc×md
四、被3、9、11除后的余數(shù)特征:
五、費爾馬小定理:如果p是質(zhì)數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1(mod p)。
數(shù)學復習重點大全 :余數(shù)問題
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇二
當命題“若p則q”為真時,可表示為p=q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=q”等價的逆否命題是“非q=非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
(3)定義與充要條件
數(shù)學中,只有a是b的充要條件時,才用a去定義b,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇三
必修一:1、集合與函數(shù)的概念 (這部分知識抽象,較難理解)2、基本的初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應用 (比較抽象,較難理解)
2、直線方程:高考時不單獨命題,易和圓錐曲線結(jié)合命題
3、圓方程:
必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數(shù)結(jié)合求最值、解集。
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇四
掌握每一個公式定理
做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經(jīng)具備了一定的理解力。
做課后練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。
進行專題訓練提高數(shù)學成績
1.做高中數(shù)學題的時候千萬不能怕難題!有很多人數(shù)學分數(shù)提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數(shù),看到稍微長一點的復雜一點的敘述,甚至看到21、22就已經(jīng)開始退卻了。這部分的分數(shù),如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數(shù)學這門學科太多,就算讓它打腫了又怎樣,后面一點一點的強大起來,總有那么一天你去打它的臉。
2.錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去采擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什么記什么,那只能說明你這節(jié)課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。
3如何學好高中數(shù)學
1. 先看筆記后做作業(yè)。 有的高中學生感到。老師講過的,自己已經(jīng)聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。
2. 做題之后加強反思。 學生一定要明確,現(xiàn)在正坐著的題,一定不是考試的題目。而是要運用現(xiàn)在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思??偨Y(jié)一下自己的收獲。要總結(jié)出,這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構(gòu)建起一個內(nèi)容與方法的科學的網(wǎng)絡系統(tǒng)。
3. 主動復習總結(jié)提高。 進行章節(jié)總結(jié)是非常重要的。初中時是教師替學生做總結(jié),做得細致,深刻,完整。高中是自己給自己做總結(jié),老師不但不給做,而且是講到哪,考到哪,不留復習時間,也沒有明確指出做總結(jié)的時間。
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇五
1.函數(shù)的奇偶性。
(1)若f(x)是偶函數(shù),那么f(x)=f(-x)。
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性。
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。
2.復合函數(shù)的有關(guān)問題。
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調(diào)性由“同增異減”判定。
3.函數(shù)圖像(或方程曲線的對稱性)。
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上。
(2)證明圖像c1與c2的對稱性,即證明c1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然。
(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲線c1:f(x,y)=0關(guān)于點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0。
(5)若函數(shù)y=f(x)對x∈r時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱。
4.函數(shù)的周期性。
(1)y=f(x)對x∈r時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數(shù)。
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù)。
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù)。
(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù)。
5.判斷對應是否為映射時,抓住兩點。
(1)a中元素必須都有象且。
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象。
6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
7.對于反函數(shù),應掌握以下一些結(jié)論。
(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。
(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù)。
(4)周期函數(shù)不存在反函數(shù)。
(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性。
(6)y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為a,值域為b,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a)。
8.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合。
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系。
9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題。
10.恒成立問題的處理方法。
(1)分離參數(shù)法。
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。
高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇六
上課要認真聽課,要多做筆記,記完筆記一定要課下找時間看,多加復習,看不懂的找同學或者是老師幫忙。當別人在玩的時候,你抽出時間來看筆記堅持一段時間,你會發(fā)現(xiàn)成績有了明顯的提高。
課下要提前預習提前做好準備,找出難點和重點,上課老師講的時候要認真的聽講抓住課堂上的時間是最重要的,如果你課堂上不認真聽,課下要付出5倍的力量和時間才能抓回來。
課上聽了只是一部分,課下還要勤加練習,多做練習題。當別人在玩的時候,你抽出時間來做些題,鞏固知識,不會的題思考之后再去問,有助于提高學習效率。
考試完之后,要總結(jié)錯題,要把錯題整理到一個錯題本上思考如何做錯,總結(jié)為何做錯,今后要怎么做才能不會做錯。總結(jié)完不能扔在一邊,而要常看,常復習。并寫上錯的原因,方便看的時候一目了然提高自己的學習效率。
課下找學習好的圍在一起做練習題,討論問題,遇到不會的問題,就多問,會了的話就多練,不會的就問,有利于知識的提高。
p高中數(shù)學考試前必備知識點高中數(shù)學考前必看知識點篇七
1、在熟悉的生活情境中初步認識負數(shù),能正確的讀、寫正數(shù)和負數(shù),知道0既不是正數(shù)也不是負數(shù)。
2、初步學會用負數(shù)表示一些日常生活中的實際問題,體驗數(shù)學與生活的密切聯(lián)系。
3、能借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
4、像-16、-500、-3/8、-0.4…這樣的數(shù)叫做負數(shù)。-3/8讀作負八分之三。16,200,3/8,6.3…這樣的數(shù)叫做正數(shù)。正數(shù)前面可以加“+”號,也可以省去“+”號。+6.3讀作正六點三。0既不是正數(shù),也不是負數(shù)。
6、如果2000表示存入2000元,那么-500表示支出了500元。向東走3m記作+3,向西4m記作-4。
7、在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。0是正數(shù)和負數(shù)的分界點,所有的負數(shù)都在0的左邊,也就是負數(shù)都比0小,而正數(shù)都比0大,負數(shù)都比正數(shù)小。負號后面的數(shù)越大,這個數(shù)就越小。如:-8-6。
二、圓柱和圓錐
1、認識圓柱和圓錐,掌握它們的基本特征。認識圓柱的底面、側(cè)面和高。認識圓錐的底面和高。
2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。
3、通過觀察、設計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面,。
5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。
7、圓柱的側(cè)面積=底面周長×高即s側(cè)=ch或2πr×
8、圓柱的體積=圓柱的底面積×高,即v=sh或πr2×
(進一法:實際中,使用的材料都要比計算的結(jié)果多一些,因此,要保留數(shù)的'時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。)
9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)
11、把圓錐的側(cè)面展開得到一個扇形。
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側(cè)面積);②、壓路機壓過路面長度(求底面周長);③、水桶鐵皮(求側(cè)面積和一個底面積);④、廚師帽(求側(cè)面積和一個底面積);通風管(求側(cè)面積)。
三、比例
1、理解比例的意義和基本性質(zhì),會解比例。
2、理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3、認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。
4、了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。
5、認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
7、比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8、組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
9、比例的性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10、解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。
例如:3:x=4:8,內(nèi)項乘內(nèi)項,外項乘外項,則:4x=3×8,解得x=6。
11、正比例和反比例:
(1)、成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)
例如:①、速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。
②、圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。
③、圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。
④、y=5x,y和x成正比例,因為:y÷x=5(一定)。
⑤、每天看的頁數(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。
例如:①、路程一定,速度和時間成反比例,因為:速度×時間=路程(一定)。
②、總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。
③、長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。
④、40÷x=y,x和y成反比例,因為:x×y=40(一定)。
⑤、煤的總量一定,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。
12、圖上距離:實際距離=比例尺;
例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。
13、實際距離=圖上距離÷比例尺;
例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。
14、圖上距離=實際距離×比例尺;
例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)
四、數(shù)學廣角
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
五、總復習
1、比較系統(tǒng)地掌握有關(guān)整數(shù)、小數(shù)、分數(shù)和百分數(shù)、負數(shù)、比和比例、方程的基礎知識。能比較熟練地進行整數(shù)、小數(shù)、分數(shù)的四則運算,能進行整數(shù)、小數(shù)加、減、乘、除的估算,會使用學過的簡便算法,合理、靈活地進行計算;會解學過的方程;養(yǎng)成檢查和驗算的習慣。
2、鞏固常用計量單位的表象,掌握所學單位間的進率,能夠進行簡單的改寫。
3、掌握所學幾何形體的特征;能夠比較熟練地計算一些幾何形體的周長、面積和體積,并能應用;鞏固所學的簡單的畫圖、測量等技能;鞏固軸對稱圖形的認識,會畫一個圖形的對稱軸,鞏固圖形的平移、旋轉(zhuǎn)的認識;能用數(shù)對或根據(jù)方向和距離確定物體的位置,掌握有關(guān)比例尺的知識,并能應用。
4、掌握所學的統(tǒng)計初步知識,能夠看和繪制簡單的統(tǒng)計圖表,能夠根據(jù)數(shù)據(jù)做出簡單的判斷與預測,會求一些簡單事件的可能性,能夠解決一些計算平均數(shù)的實際問題。
5、進一步感受數(shù)學知識間的相互聯(lián)系,體會數(shù)學的作用;掌握所學的常見數(shù)量關(guān)系和解決問題的思考方法,能夠比較靈活地運用所學知識解決生活中一些簡單的實際問題。
六、統(tǒng)計
1、會綜合應用學過的統(tǒng)計知識,能從統(tǒng)計圖中準確提取統(tǒng)計信息,能夠正確解釋統(tǒng)計結(jié)果。
2、能根據(jù)統(tǒng)計圖提供的信息,做出正確的判斷或簡單預測。
【本文地址:http://aiweibaby.com/zuowen/2432696.html】