2023年人工智能的論文(案例17篇)

格式:DOC 上傳日期:2023-10-29 00:00:03
2023年人工智能的論文(案例17篇)
時間:2023-10-29 00:00:03     小編:書香墨

充實(shí)自己的頭腦,才能在競爭激烈的社會中立于不敗之地。善于總結(jié)的人通常注重細(xì)節(jié)、關(guān)注前人的經(jīng)驗(yàn),并勇于創(chuàng)新??偨Y(jié)與我們的日常生活息息相關(guān),通過范文的閱讀,我們可以更好地理解總結(jié)的目的和意義。

人工智能的論文篇一

隨著數(shù)字智能技術(shù)的不斷進(jìn)步,人工智能技術(shù)在電氣自動化控制系統(tǒng)中的應(yīng)用也日益廣泛。因此,在電氣自動化控制系統(tǒng)中,為提高生產(chǎn)力水平、方便人們?nèi)粘I?,需要加大對人工智能技術(shù)的應(yīng)用研究,實(shí)現(xiàn)自動化體系的升級和發(fā)展需要。本文主要以人工智能技術(shù)的應(yīng)用理論和現(xiàn)狀入手,具體介紹了電氣自動化控制中人工智能技術(shù)的應(yīng)用對策,最終提高經(jīng)濟(jì)效益和社會效益。

電氣自動化是一門實(shí)踐性較強(qiáng)的應(yīng)用性科學(xué),主要研究電氣系統(tǒng)的運(yùn)行控制和研發(fā)。人類社會文明發(fā)展至今在科學(xué)技術(shù)方面的最大進(jìn)步,主要是實(shí)現(xiàn)了系統(tǒng)中機(jī)械設(shè)備運(yùn)行和控制的自動化和智能化。研究人工智能技術(shù)在電氣自動化控制中的應(yīng)用,有助于推動電氣系統(tǒng)自動化的進(jìn)一步發(fā)展,實(shí)現(xiàn)系統(tǒng)運(yùn)行的智能化,使得其更加安全穩(wěn)定,最終提高企業(yè)的生產(chǎn)效率,提高市場競爭力。

人工智能是一門新型的計(jì)算機(jī)科學(xué),介于自然科學(xué)和社會科學(xué)邊緣之間,研究對象主要是智能搜索、邏輯程序設(shè)計(jì)、自然語言問題和感知問題等。人工智能技術(shù)的本質(zhì)就是模擬人類思維進(jìn)行信息編碼的過程,主要是結(jié)構(gòu)模仿和功能模擬兩種思維模擬方式。前者模擬形式主要是對人類大腦機(jī)制進(jìn)行模擬,制造出類似人腦的機(jī)器設(shè)備;后者模擬主要是從人腦的功能角度出發(fā),對人類大腦思維功能進(jìn)行模擬。較為成功的典型事件就是現(xiàn)代的電子信息計(jì)算機(jī),順利地模擬人類大腦思維進(jìn)行信息編碼。

人工智能不是人的智能,更不是對人的智力功能的超越,其不同于人類大腦運(yùn)行的顯著特征主要有四個方面:是機(jī)械的無意識的物理過程;無社會性;不具備人類意識的創(chuàng)造力;功能是在人類大腦思維之后產(chǎn)生的。應(yīng)用人工智能技術(shù)在電氣自動化控制系統(tǒng)中,可以極大地節(jié)省人力資源,降低成本。同時,不控制目標(biāo)模型就可以提高操作的準(zhǔn)確度,降低誤差。此外,這樣還能保證產(chǎn)品的規(guī)范,提高性能。

近年來,人工智能技術(shù)得到了公眾的高度重視,大多數(shù)的專業(yè)性高校和科研單位都對其在電氣自動化系統(tǒng)中的應(yīng)用開展了眾多工作,現(xiàn)下的人工智能技術(shù)主要應(yīng)用在電氣設(shè)備的設(shè)計(jì)、事故及故障診斷和電氣控制過程中的監(jiān)控預(yù)警等工作。首先,在電氣自動化系統(tǒng)中電氣設(shè)備的設(shè)計(jì)方面,設(shè)備的結(jié)構(gòu)設(shè)計(jì)較為繁瑣復(fù)雜,涉及面較廣,要求操作設(shè)計(jì)人員具備較多的實(shí)踐經(jīng)驗(yàn)。其次,在事故及故障診斷方面,人工智能技術(shù)可以利用模糊邏輯和神經(jīng)網(wǎng)絡(luò)等發(fā)揮優(yōu)勢,做好預(yù)警監(jiān)控工作。最后,在電氣控制過程中應(yīng)用人工智能技術(shù),主要依靠神經(jīng)網(wǎng)絡(luò)、模糊控制和專家系統(tǒng)三種方式,其中模糊控制應(yīng)用較為普遍,以ai控制為主。

根據(jù)上部分分析的人工智能技術(shù)在電氣自動化控制系統(tǒng)的應(yīng)用現(xiàn)狀,可知為實(shí)現(xiàn)電氣自動化控制系統(tǒng)運(yùn)行的高效性、提高人工智能技術(shù)的應(yīng)用性,對策主要有以下三個方面:應(yīng)用于電氣設(shè)備設(shè)計(jì)、應(yīng)用于事故及故障診斷和應(yīng)用于電氣控制過程。

3.1 應(yīng)用于電氣設(shè)備設(shè)計(jì)

根據(jù)諸多電氣工程的實(shí)踐證明,只有具備各相關(guān)專業(yè)的學(xué)科知識和技藝才能真正實(shí)現(xiàn)電氣自動化控制系統(tǒng)的高效性,使其穩(wěn)定運(yùn)行。在電氣設(shè)備的設(shè)計(jì)中應(yīng)用人工智能技術(shù),可以簡化工作,降低人力成本。因此,企業(yè)擁有一批素質(zhì)高的設(shè)計(jì)團(tuán)隊(duì),這是電氣自動化控制系統(tǒng)實(shí)現(xiàn)高效性的關(guān)鍵之一。此外,企業(yè)需要采取先進(jìn)的人工智能技術(shù)進(jìn)行電氣設(shè)備的設(shè)計(jì)工作,尤其是結(jié)構(gòu)設(shè)計(jì)工作。具體來說,人工智能技術(shù)在進(jìn)行電氣設(shè)備設(shè)計(jì)時主要是采用遺傳算法升級計(jì)算機(jī)系統(tǒng),全面提高產(chǎn)品的研發(fā)、設(shè)計(jì)和生產(chǎn),優(yōu)化設(shè)計(jì)產(chǎn)品。

3.2 應(yīng)用于事故及故障診斷

電氣故障診斷,指的是對電氣自動化控制系統(tǒng)中機(jī)械設(shè)備的先關(guān)信息進(jìn)行確定,判斷技術(shù)和運(yùn)行狀況是否正常,如果出現(xiàn)異常,可以及時確定故障的具體內(nèi)容和性質(zhì)部位,找出故障原因并提出解決對策。而在電氣設(shè)備運(yùn)行時,不確定因素較多,使得系統(tǒng)容易出現(xiàn)各種類型的故障和事故,如果無法及時確定故障的性質(zhì)和部位,將會給員工的人身安全帶來威脅,企業(yè)也會承受較大的經(jīng)濟(jì)損失。因此,及時判斷分析事故并做好故障診斷工作,是一項(xiàng)至關(guān)重要的工作。可以在傳統(tǒng)的電氣控制系統(tǒng)中,采取一些新型的.人工智能技術(shù)進(jìn)行診斷。比如說,在診斷變壓器的故障中,我們可以引入人工智能技術(shù)進(jìn)行診斷,在節(jié)省人力物力的同時保證診斷的精確性,也可以在對發(fā)動機(jī)和發(fā)電機(jī)等電氣機(jī)械設(shè)備進(jìn)行事故診斷時引入人工智能技術(shù),提高精確度,以達(dá)到良好的工作效果,實(shí)現(xiàn)企業(yè)的經(jīng)濟(jì)效益。

3.3 應(yīng)用于電氣控制過程

人工智能技術(shù)在電氣自動化控制系統(tǒng)中起著關(guān)鍵性作用,是電氣行業(yè)中的重要部分。實(shí)現(xiàn)電氣自動化控制的人工智能化,有助于降低工作成本,提高工作效率,實(shí)現(xiàn)資源優(yōu)化和最佳配置。在傳統(tǒng)的電氣自動化控制過程中,由于過程的繁瑣復(fù)雜操作人員容易出現(xiàn)錯誤,而采取人工智能化技術(shù)則可以避免這些人為錯誤。人工智能技術(shù)主要采取神經(jīng)系統(tǒng)的控制、專家系統(tǒng)的高效控制和模糊控制。現(xiàn)在最常用的技術(shù)方式是模糊控制,通過模糊控制借助直流電和交流電的傳動最終實(shí)現(xiàn)電氣自動化控制系統(tǒng)的智能化控制。模糊控制可以具體分為surgeno和mamdan兩種表現(xiàn)形式,前者是后者的特殊情況,兩者均用來調(diào)速控制。

在電氣領(lǐng)域里,人工智能技術(shù)可以運(yùn)用到日常操作中。我們可以利用家庭電腦實(shí)現(xiàn)對電氣自動化控制系統(tǒng)的遠(yuǎn)程操作控制。具體來說,是通過采用人工智能技術(shù)預(yù)先設(shè)計(jì)好的既定程序控制操作過程,實(shí)現(xiàn)設(shè)備智能化,及時掌控全局。

綜上所述,電氣自動化控制中的人工智能技術(shù)的應(yīng)用研究,既能實(shí)現(xiàn)工作效率的提高,還能降低運(yùn)行成本,更好地實(shí)現(xiàn)電氣系統(tǒng)的自動化智能化控制。此外,隨著科學(xué)技術(shù)的飛速發(fā)展,人工智能技術(shù)在電氣自動化控制中的應(yīng)用面臨著巨大的機(jī)遇和挑戰(zhàn),需要學(xué)者們不斷研究和完善,使其得到更好的應(yīng)用。

人工智能的論文篇二

(一)人工智能的發(fā)展

1950年,艾倫,麥席森,圖靈發(fā)表了一篇劃時代之作《制作機(jī)器會思考嗎?》里面提出了測試機(jī)器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。約翰,麥卡錫在1956年的達(dá)特茅斯學(xué)術(shù)會議上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深藍(lán)”電腦擊敗了人類的世界國際象棋冠軍更是人工智能技術(shù)的一個完美表現(xiàn)。2017年7月,國務(wù)院印發(fā)了《新一代人工智能發(fā)展規(guī)劃》,這是我國首個面向2030年的人工智能技術(shù)的戰(zhàn)略發(fā)展藍(lán)圖,也表現(xiàn)出我國對發(fā)展人工智能技術(shù)的重視與支持,同時,人工智能人選“2017年度中國媒體十大流行語”。

人工智能是計(jì)算機(jī)科學(xué)的一個分支,可以對人的意識、思維的信息過程的模擬,人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。該領(lǐng)域的研究包括機(jī)器人、語言識別、圖像識別、自然語言處理和專家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容器”。

(二)人工智能的意義

人工智能在會計(jì)、審計(jì)、稅務(wù)等行業(yè)的廣泛運(yùn)用,使得傳統(tǒng)、簡單、重復(fù)性的基礎(chǔ)會計(jì)工作崗位將面臨被智能化取代,人工智能已成為促進(jìn)會計(jì)行業(yè)轉(zhuǎn)型發(fā)展的重要推手。近三年來,德勤、普華永道、安永、畢馬威4大國際會計(jì)師事務(wù)所通過利用財務(wù)機(jī)器人進(jìn)行會計(jì)、審計(jì)等工作,使得數(shù)據(jù)的準(zhǔn)確性、工作效率、管理決策水平等明顯提升,由此可見,人工智能早已潛移默化的影響到了會計(jì)工作的方方面面。

(一)會計(jì)工作效率提高了。人工智能技術(shù)與財務(wù)管理系統(tǒng)的對接,實(shí)現(xiàn)了系統(tǒng)自動識別票據(jù)、生成會計(jì)記賬憑證、記錄明細(xì)賬戶以及生成總賬和各類報表。作業(yè)過程中系統(tǒng)按時間順序記錄每筆業(yè)務(wù),對每一筆賬務(wù)進(jìn)行核實(shí)和驗(yàn)證。財務(wù)機(jī)器人還實(shí)現(xiàn)了信息的語音、掃描錄入,財務(wù)軟件可自動生成證、帳、表,這將更加高效準(zhǔn)確地完成基礎(chǔ)會計(jì)核算工作,提高此項(xiàng)工作的效率,會計(jì)人員因此節(jié)省了大量用于基礎(chǔ)核算工作的時間,從而能將更多的精力投入在企業(yè)內(nèi)部管理型的工作上,同時又提高了管理工作的效率。

(二)會計(jì)信息質(zhì)量提高了。受自身能力、專業(yè)素質(zhì)以及外部環(huán)境等因素的影響,會計(jì)信息數(shù)據(jù)的滯后性和人為失誤在所難免。人工智能將會計(jì)模型和方法程序化,它既減少了人為失誤又極大地提升了數(shù)據(jù)處理能力,工作重心逐漸轉(zhuǎn)向數(shù)據(jù)的挖掘、分析等重要環(huán)節(jié)和高附加值工作中,同時,會計(jì)檔案由紙質(zhì)變成電子檔案更便于信息系統(tǒng)的管理、流程化的管理和監(jiān)控,避免了人工作業(yè)的失誤以及造假的可能,數(shù)據(jù)信息和記錄的真實(shí)性和精準(zhǔn)度得到保證。

(三)會計(jì)職能重心轉(zhuǎn)移了。人工智能雖然可以替人做一些簡單、繁冗、重復(fù)性的基礎(chǔ)會計(jì)工作,但并不能完全替代會計(jì)人員,隨著人工智能與會計(jì)信息系統(tǒng)的不斷結(jié)合,從事簡單記賬工作的初級會計(jì)人員將會越來越少,而中高級會計(jì)人員將會集中于行業(yè)中涉及分析、預(yù)測和統(tǒng)籌的領(lǐng)域。因而會計(jì)職能的重心將向預(yù)測、決策、規(guī)劃、控制、評價等目前人工智能無法取代的管理會計(jì)的職能轉(zhuǎn)移。

(四)會計(jì)人員從業(yè)壓力加大了。隨著人工智能被引入到會計(jì)行業(yè)中,一方面,簡單的會計(jì)核算工作將被智能化財務(wù)軟件逐步替代,普通核算類型工作的崗位勢必減少,基層會計(jì)人員面臨失業(yè)的壓力:另一方面,由于財務(wù)軟件能夠高效完成基礎(chǔ)財務(wù)工作,企業(yè)更需要財會人員發(fā)揮管理會計(jì)的職能,會計(jì)從業(yè)人員需要將工作重心轉(zhuǎn)移到?jīng)Q策分析和經(jīng)營管理上,使其有從財務(wù)會計(jì)到管理會計(jì)轉(zhuǎn)型的壓力。

人工智能的發(fā)展與應(yīng)用是社會經(jīng)濟(jì)發(fā)展過程中的必然產(chǎn)物,它的到來就像一把雙刃劍,雖然可以對會計(jì)行業(yè)整體工作效率與工作方式帶來提升,但是人工智是不能完全代替會計(jì)人員的工作的。比如,智能化的設(shè)備無法完全替代充滿人情味的服務(wù)。李開復(fù)也指出,社交能力強(qiáng)、應(yīng)變能力強(qiáng)、協(xié)商能力強(qiáng)的人,永遠(yuǎn)不會被人工智能取代。人類的感情,想象、創(chuàng)造等特質(zhì)也是人工智能所無法企及的。所以,對于會計(jì)從業(yè)人員而言,人工智能只是一種行業(yè)對于自身的探索以及進(jìn)步,順應(yīng)這種變化,會計(jì)人員應(yīng)當(dāng)認(rèn)清挑戰(zhàn),抓住機(jī)遇。

一方面,會計(jì)從業(yè)人員應(yīng)調(diào)整好心態(tài),快速適應(yīng)行業(yè)的變革,重新找回自己的價值。努力提升自己的專業(yè)分析能力和管理能力,成為人工智能代替不了的高級會計(jì)工作者。比如:財務(wù)戰(zhàn)略制定,納稅籌劃,風(fēng)險控制,合理避稅、財務(wù)分析等。同時,向復(fù)合型人才發(fā)展。正如任正非所說,稱職的cfo應(yīng)隨時可以接任ceo。會計(jì)人員應(yīng)當(dāng)開闊眼界,放大格局,不能只著眼于本職工作,還應(yīng)該了解工作其他崗位的工作內(nèi)容,比如銷售類、生產(chǎn)類等部門的業(yè)務(wù),提高自己的企業(yè)價值以及行業(yè)地位,做一名復(fù)合型人才。

另一方面,人工智能技術(shù)在財會領(lǐng)域的突破離不開懂會計(jì)知識的專業(yè)人員的配合,財務(wù)人員要努力學(xué)習(xí)新技能,加強(qiáng)計(jì)算機(jī)、信息技術(shù)的知識儲備,協(xié)助人工智能會計(jì)信息系統(tǒng)的研發(fā),擔(dān)當(dāng)人工智能會計(jì)系統(tǒng)的設(shè)計(jì)者和監(jiān)督者。

參考文獻(xiàn):

[1]閏鈺.企業(yè)人工智能時代下對會計(jì)行業(yè)的思考[j].商場現(xiàn)代化.2018(1z)

[2]楊秀琴.淺議人工智能時代財務(wù)會計(jì)與管理會計(jì)的融合發(fā)展趨勢[j].現(xiàn)代商業(yè).2018(18)

[3]李牧陽,運(yùn)用給會計(jì)行業(yè)帶來的問題和思考[j],中國管理信息化.2019(42)

人工智能的論文篇三

摘要:電氣工程及其自動化的實(shí)現(xiàn),從根本上促進(jìn)我國電氣產(chǎn)業(yè)迅速發(fā)展,滿足人們的日常生活需求。但在實(shí)際的自動化發(fā)展過程中,還存在一些不足之處影響電氣工程的生產(chǎn)效率,難以滿足當(dāng)前時代的需求,基于此,作者結(jié)合自身經(jīng)驗(yàn),對電氣工程及其自動化發(fā)展的現(xiàn)狀,及其中存在的問題及解決措施進(jìn)行有效的分析,以供相關(guān)人員參考,為其提供借鑒。

關(guān)鍵詞:電氣工程;自動化;問題

引言

隨著時代不斷發(fā)展,信息技術(shù)、電氣工程自動化技術(shù)逐漸被廣泛應(yīng)用。受生產(chǎn)力水平提升的影響,人們對于電氣工程及其自動化的要求也不斷提升,以滿足時代發(fā)展,但實(shí)際上,現(xiàn)階段電氣工程及其自動化中存在諸多問題,其技術(shù)水平與社會生產(chǎn)力發(fā)展需求未能有效的相適應(yīng),難以滿足當(dāng)前社會的需求。

1我國電氣工程及其自動化現(xiàn)狀分析

電氣工程及其自動化屬于新型的技術(shù),具有較強(qiáng)的綜合性,直接影響我國工業(yè)的生產(chǎn)水平,并與人們的日常生活息息相關(guān)。現(xiàn)階段,我國電氣工程技術(shù)不斷創(chuàng)新發(fā)展,從根本上帶動電氣工程及其自動化領(lǐng)域發(fā)展,并促使其逐漸向高新技術(shù)轉(zhuǎn)化,擴(kuò)大技術(shù)的應(yīng)用范圍,從整體上促進(jìn)國民經(jīng)濟(jì)提升。實(shí)際上,電氣工程及其自動化屬于現(xiàn)代電氣信息領(lǐng)域,其涵蓋內(nèi)容非常廣泛,包括與電氣工程相關(guān)的所有工程,并在多個領(lǐng)域中進(jìn)行應(yīng)用,例如,工業(yè)領(lǐng)域、軍事領(lǐng)域、農(nóng)業(yè)領(lǐng)域等,對我國的工業(yè)與社會發(fā)展起到積極的促進(jìn)作用,同時,電氣工程及其自動化技術(shù)的創(chuàng)新與發(fā)展對于人們的日常生活方式與生產(chǎn)方式也產(chǎn)生影響,以推動國民經(jīng)濟(jì)穩(wěn)定發(fā)展[1]。

2我國電氣工程及其自動化中存在的問題

2.1電氣工程能源損耗問題

在電氣工程及其自動化的實(shí)際應(yīng)用過程中,受自身的工作性質(zhì)與設(shè)備影響,存在能源損耗問題,直接造成能源浪費(fèi),加劇現(xiàn)階段我國能源緊缺的壓力,與當(dāng)前的節(jié)能減排理念相悖,不符合可持續(xù)發(fā)展戰(zhàn)略的實(shí)施,同時提升了工業(yè)生產(chǎn)的成本支出,降低了經(jīng)濟(jì)效益。

2.2電氣系統(tǒng)的集成化不高

現(xiàn)階段,受時代發(fā)展與實(shí)際需求的影響,促使電氣工程自動化系統(tǒng)逐漸向集成化方向發(fā)展,以滿足當(dāng)前時代的要求,但由于我國電氣集成化起步較晚,當(dāng)前的集成化水平較低,處于獨(dú)立自動化階段,影響信息與資源的共享。

2.3電氣工程自動化系統(tǒng)難以統(tǒng)一

為了滿足當(dāng)前的發(fā)展需求,電氣工程要利用先進(jìn)的技術(shù),構(gòu)建完善合理的自動化系統(tǒng),以此提升工作效率,但受多種因素影響,系統(tǒng)難以進(jìn)行合理的統(tǒng)一,缺乏兼容性,降低了系統(tǒng)的工作效率。

2.4電氣工程質(zhì)量達(dá)不到要求

電氣工程的質(zhì)量直接影響其使用壽命,但受實(shí)際的工程質(zhì)量管理工作影響,以及工作人員自身的管理水平偏低、管理意識落后等因素的影響,導(dǎo)致電氣工程質(zhì)量經(jīng)常達(dá)不到實(shí)際的要求,質(zhì)量管理效率不高。

3現(xiàn)階段我國電氣工程及其自動化中存在問題的解決措施

3.1合理對電氣工程進(jìn)行節(jié)能設(shè)計(jì)

在當(dāng)前的時代背景下,工作人員應(yīng)重視電氣工程的能源損耗問題,利用先進(jìn)的技術(shù)手段,降低能源消耗,以滿足當(dāng)前可持續(xù)發(fā)展戰(zhàn)略,緩解我國能源與資源緊缺問題。例如,利用合理的技術(shù)手段,優(yōu)化電氣工程的節(jié)能設(shè)計(jì),從根本上降低能源的不必要浪費(fèi),降低成本的支出。在實(shí)際的節(jié)能設(shè)計(jì)優(yōu)化過程中,工作人員應(yīng)結(jié)合實(shí)際情況,以工作最基本要求為基礎(chǔ),對非重點(diǎn)環(huán)節(jié)進(jìn)行有效的改良,如,對現(xiàn)階段的變壓器進(jìn)行改良,選擇繞組阻值較小的供電系統(tǒng)變壓器,以此來降低變壓器的能源損耗,從而減少不必要的損失浪費(fèi),達(dá)到節(jié)能的目的,促使我國電氣工程實(shí)現(xiàn)可持續(xù)發(fā)展。

3.2從整體上提升電氣工程自動化系統(tǒng)的集成化水平

提升工作人員自身的專業(yè)水平與能力,利用工作人員的專業(yè)技術(shù),建立完善的系統(tǒng)平臺,并充分發(fā)揮其創(chuàng)新意識與主觀意識,從根本上滿足實(shí)際的集成化需求,具體來說,主要從以下兩方面入手:一方面,完善電氣工程系統(tǒng)的兼容性,保證系統(tǒng)軟硬件在交換過程中具有統(tǒng)一的接口,從而實(shí)現(xiàn)信息數(shù)據(jù)的共享;另一方面,提升各功能與系統(tǒng)之間的鏈接效率,從整體上降低電氣工程自動化系統(tǒng)的運(yùn)行成本,從而促使減少設(shè)計(jì)成本的支出,以滿足當(dāng)前時代的需求。

3.3構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動化系統(tǒng)

構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動化系統(tǒng)是電氣工程未來發(fā)展的主要方向與趨勢,以此來提升電氣工程的整體質(zhì)量。具體來說,主要包含以下幾方面:首先,積極引進(jìn)先進(jìn)的技術(shù),以先進(jìn)的電氣自動化技術(shù)為基礎(chǔ),構(gòu)建完善的系統(tǒng),從而提升整體的管理水平;其次,引進(jìn)先進(jìn)的設(shè)計(jì)理念,完善現(xiàn)階段電氣自動化系統(tǒng),改善其中的不合理之處,并針對現(xiàn)階段的企業(yè)不同需求進(jìn)行個性化開發(fā);最后,實(shí)現(xiàn)信息資源的有效共享,促進(jìn)我國電氣工程領(lǐng)域穩(wěn)定發(fā)展,跟上時代發(fā)展的步伐[2]。

3.4重視對電氣工程的質(zhì)量管理

重視對電氣工程的質(zhì)量管理,可以從根本上提升電氣工程質(zhì)量與使用壽命,并保證工程使用安全。具體來說,可以從以下幾方面入手:首先,加強(qiáng)工作管理人員對電氣工程質(zhì)量管理的重視力度,認(rèn)識到管理的重要性,以此來保證工程質(zhì)量;其次,加強(qiáng)現(xiàn)階段工作人員自身的專業(yè)水平與能力,通過定期的培訓(xùn),強(qiáng)化工作人員的專業(yè)水平與技術(shù)理念,利用其良好的綜合素養(yǎng),提升質(zhì)量管理效率;然后,加強(qiáng)對電氣工程施工材料的管理,保證材料的質(zhì)量,從而提升電氣工程的質(zhì)量;最后,重視對各個施工環(huán)節(jié)的質(zhì)量管理,通過合理的監(jiān)督與管理,保證施工的規(guī)范性,并以其整體質(zhì)量為基礎(chǔ),適當(dāng)對施工進(jìn)度進(jìn)行合理的調(diào)整,以此來保證施工的整體進(jìn)度。

4結(jié)論

綜上所述,電氣工程及其自動化中存在的問題,直接影響電氣工程的整體質(zhì)量與效率,因此,工作人員應(yīng)積極引進(jìn)先進(jìn)的技術(shù)與設(shè)備,通過不斷的革新與發(fā)展,合理的進(jìn)行資源節(jié)約,降低成本的支出,以此來獲取可觀的經(jīng)濟(jì)效益。同時,加強(qiáng)對電氣工程的研究力度,不斷提升其技術(shù)水平,從而推動我國電氣工程及其自動化領(lǐng)域穩(wěn)定發(fā)展。

參考文獻(xiàn):

[1]宋海南.電氣工程及其自動化中存在的問題及解決措施[j].南方農(nóng)機(jī),20xx,47(11):134+148.

[2]閆海東,程世偉.淺析電氣工程及其自動化中存在的問題及解決措施[j].科技創(chuàng)新與應(yīng)用,20xx(06):69.

人工智能的論文篇四

隨著新型科技的持續(xù)更新,工程中逐漸應(yīng)用新科技,這也是科技朝著應(yīng)用式與開放式方向發(fā)展的開始。電子工程在傳統(tǒng)工程基礎(chǔ)上的革新,隨著人工智能化發(fā)展,逐漸轉(zhuǎn)換為信息化產(chǎn)業(yè)鏈接。這一智能化技術(shù)機(jī)械生產(chǎn)明顯減少,經(jīng)濟(jì)效益與產(chǎn)量提升,我國逐漸進(jìn)入到智能化階段。

(一)發(fā)展歷程

在機(jī)械電子工程發(fā)展初期,主要體現(xiàn)為手工制作,生產(chǎn)力水平較低,資源技術(shù)等對其發(fā)展產(chǎn)生制約。為了提升生產(chǎn)效率,逐漸朝著機(jī)械工業(yè)方向發(fā)展。

在生產(chǎn)線階段,機(jī)械工程已逐漸發(fā)展到流水線生產(chǎn),實(shí)現(xiàn)標(biāo)準(zhǔn)化大批量生產(chǎn),這一生產(chǎn)模式使勞動力得到解放,生產(chǎn)力水平大大提升,同時生產(chǎn)效率也得到提高。但是仍然存在一些不足,比如,部分生產(chǎn)仍就以進(jìn)口為主,生產(chǎn)成本較大,在市場方面缺少適應(yīng)力;靈活性較差,難以滿足不斷變化的市場需求。

在機(jī)械電子產(chǎn)業(yè)發(fā)展階段中,產(chǎn)品生產(chǎn)能夠適應(yīng)市場的需求,對于不斷變化的產(chǎn)品需求產(chǎn)業(yè)化發(fā)展能夠滿足。

(二)機(jī)械電子工程主要特征

機(jī)械電子工程是復(fù)雜綜合性學(xué)科,同各類學(xué)科之間都有著密切的聯(lián)系。機(jī)械電子工程發(fā)展要以計(jì)算機(jī)、電子以及機(jī)械為基礎(chǔ),結(jié)合其他學(xué)科做出合理、科學(xué)的設(shè)計(jì)。在設(shè)計(jì)的過程中,要求每一個模塊都能夠?qū)崿F(xiàn)有機(jī)結(jié)合,進(jìn)而使得各個模塊都能將其最大優(yōu)勢發(fā)揮出來。機(jī)械電子產(chǎn)品內(nèi)部結(jié)構(gòu)簡單明了,并不復(fù)雜,無需復(fù)雜原件的投入,這樣能在一定程度上使產(chǎn)品性能得到提升,進(jìn)而擴(kuò)大消費(fèi)市場。

人工智能是一門復(fù)雜,并且綜合性較強(qiáng)的學(xué)科,所涉及到的學(xué)科比較多。也可以說,21世紀(jì)人工智能是最偉大學(xué)科之一。人工智能實(shí)現(xiàn)了對人的智能模擬,并且能通過計(jì)算機(jī)使認(rèn)得智能化得到進(jìn)一步的延伸,人工智能這門學(xué)科有著較好的發(fā)展?jié)摿?。人工智能在發(fā)展的過程中主要經(jīng)歷下列幾個階段。

初步階段。人工智能在17世紀(jì)開始發(fā)生萌芽,法國在這一階段成功誕生世界上的第一部計(jì)算機(jī),這一計(jì)算器只是單純的能進(jìn)行加法簡單運(yùn)算,但是仍就轟動世界,進(jìn)而在世界范圍內(nèi),對這項(xiàng)技術(shù)開始進(jìn)一步研宄。在最初階段,人工智能并沒有明顯的進(jìn)展,主要是在實(shí)踐的過程中積累與總結(jié)知識,這為今后人工智能發(fā)展奠定堅(jiān)實(shí)的基礎(chǔ)。

發(fā)展初始階段。美國人在二十世紀(jì)首次提出人工智能專業(yè)用語。在這個發(fā)展階段,人工智能主要以證明與闡釋為主要體現(xiàn),在這一時期對于人工智能的研宄就是首要任務(wù)。

發(fā)展起伏階段。隨著人們對于人工智能的不斷深入研宄,人工智能也處于持續(xù)的發(fā)展階段,但是在實(shí)踐過程中發(fā)現(xiàn),要想使人工智能模仿和人類思維同步是非常困難的。大部分對于人工智能的科學(xué)研宄僅僅是停留于簡單映射層面,對于邏輯思維的研宄仍就沒有突破性進(jìn)展。不論怎么說,在發(fā)展的起伏階段,人功能智能也在發(fā)展中得到了技術(shù)創(chuàng)新,特別是在系統(tǒng)方面、計(jì)算機(jī)機(jī)器人以及語言掌握方面取得了較大的成就。

起伏階段發(fā)展以后。在這一階段,人工智能的相關(guān)研究得到了發(fā)展,尤其是第五屆國際人工智能聯(lián)合會議的召開,人工智能逐漸朝著知識層面的方向發(fā)展,大部分的人工智能研都會結(jié)合相應(yīng)的知識工程,在這個階段中,人工智能發(fā)展的高度是前所未有的,在一定程度上促進(jìn)了人工智能應(yīng)用于實(shí)際工程中。

穩(wěn)步發(fā)展階段。隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,對于人工智能研宄方向發(fā)生重大轉(zhuǎn)變,由原本的單一主體朝著集中統(tǒng)一主體的方向發(fā)展。關(guān)于人工智能在實(shí)際中的運(yùn)用以及研究,受到了互聯(lián)網(wǎng)技術(shù)的影響。網(wǎng)絡(luò)的普及與快速發(fā)展,在一定程度上促進(jìn)了信息化的發(fā)展,信息在傳送方面發(fā)生率重大性變革。在人們逐漸進(jìn)入信息化社會后,在信息有效處理方面人工智能的發(fā)展到了重要的作用,在模擬設(shè)計(jì)方面,機(jī)械電子工程的發(fā)展需要人工智能的大力支持。

隨著我國社會經(jīng)濟(jì)的持續(xù)發(fā)展,社會不斷的進(jìn)步,對于信息人們越來越重視。在21世紀(jì),互聯(lián)網(wǎng)技術(shù)得到快速發(fā)展,同時信息的傳遞也逐漸注入新鮮血液?;ヂ?lián)網(wǎng)應(yīng)用的普及說明人們正朝著信息時代的方向邁進(jìn),在社會逐步信息化以后,更加需要有人工智能這一技術(shù)的支持,特別是機(jī)械電子工程發(fā)展中有著重要作用,機(jī)械電子系統(tǒng)本身缺少一定的穩(wěn)定性,這樣在機(jī)械電子工程設(shè)計(jì)方面就有著較大阻礙存在。在現(xiàn)代社會中,信息的處理量持續(xù)增大,并且較為復(fù)雜,有些時候需要同時對不同類型的信息進(jìn)行處理,所以需要采取人工智能的.支持才能完成信息處理。人工智能主要包含模糊推理系統(tǒng)、神經(jīng)網(wǎng)絡(luò)系統(tǒng)這種兩種方法。神經(jīng)網(wǎng)絡(luò)系統(tǒng)傾向于對人腦結(jié)構(gòu)的綜合分析,模糊推理系統(tǒng)更加重視對于語言信號的分析與理解。隨著現(xiàn)代社會的發(fā)展,僅僅采取單一的人工智能方法,明顯已經(jīng)無法適應(yīng)目前社會中不斷變化的市場需求,所以,對于人工智能相關(guān)問題的研宂正逐漸朝著多方位、全面的人工智能方向轉(zhuǎn)變。多方位全面人工智能系統(tǒng)通過模糊推理系統(tǒng)和神經(jīng)網(wǎng)絡(luò)系統(tǒng)相互統(tǒng)一的方式,揚(yáng)長補(bǔ)短,將二者有效的結(jié)合起來,使得二者的優(yōu)勢得到最大程度的發(fā)揮。

智能同機(jī)械電子工程之間在相互影響的過程中,逐漸產(chǎn)生嶄新的行業(yè)。首先通過現(xiàn)代科技逐漸,將人工智能融入到機(jī)械電子工程中,使機(jī)械工業(yè)發(fā)展?jié)摿Φ玫匠浞滞诰?。其次隨著機(jī)械電子工程發(fā)展難度的加大,對于人工智能也就提出來新的要求,這從某種程度上來推動了人工智能發(fā)展。在將機(jī)械電子工程與人工智能有效結(jié)合的基礎(chǔ)上,促進(jìn)社會生產(chǎn)力發(fā)展,同時也能促進(jìn)有關(guān)經(jīng)濟(jì)產(chǎn)業(yè)的快速發(fā)展,這種效應(yīng)將會對整個社會產(chǎn)生一定影響,使我國經(jīng)濟(jì)得到全面發(fā)展。

人工智能的論文篇五

圖像識別技術(shù)是信息時代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類對圖像識別技術(shù)的認(rèn)識越來越深刻。圖像識別技術(shù)的過程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。文章簡單分析了圖像識別技術(shù)的引入、其技術(shù)原理以及模式識別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)和非線性降維的圖像識別技術(shù)及圖像識別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無法離開圖像識別技術(shù),研究圖像識別技術(shù)具有重大意義。

1圖像識別技術(shù)的引入

圖像識別是人工智能科技的一個重要領(lǐng)域。圖像識別的發(fā)展經(jīng)歷了三個階段:文字識別、數(shù)字圖像處理與識別、物體識別。圖像識別,顧名思義,就是對圖像做出各種處理、分析,最終識別我們所要研究的目標(biāo)。今天所指的圖像識別并不僅僅是用人類的肉眼,而是借助計(jì)算機(jī)技術(shù)進(jìn)行識別。雖然人類的識別能力很強(qiáng)大,但是對于高速發(fā)展的社會,人類自身識別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計(jì)算機(jī)的圖像識別技術(shù)。這就像人類研究生物細(xì)胞,完全靠肉眼觀察細(xì)胞是不現(xiàn)實(shí)的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測的儀器。通常一個領(lǐng)域有固有技術(shù)無法解決的需求時,就會產(chǎn)生相應(yīng)的新技術(shù)。圖像識別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息,解決人類無法識別或者識別率特別低的信息。

1.1圖像識別技術(shù)原理

其實(shí),圖像識別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計(jì)算機(jī)的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實(shí)踐中得到啟發(fā)而利用程序?qū)⑵淠M實(shí)現(xiàn)的。計(jì)算機(jī)的圖像識別技術(shù)和人類的圖像識別在原理上并沒有本質(zhì)的區(qū)別,只是機(jī)器缺少人類在感覺與視覺差上的影響罷了。人類的圖像識別也不單單是憑借整個圖像存儲在腦海中的記憶來識別的,我們識別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過各個類別所具有的特征將圖像識別出來的,只是很多時候我們沒有意識到這一點(diǎn)。當(dāng)看到一張圖片時,我們的大腦會迅速感應(yīng)到是否見過此圖片或與其相似的圖片。其實(shí)在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個迅速識別過程,這個識別的過程和搜索有些類似。在這個過程中,我們的大腦會根據(jù)存儲記憶中已經(jīng)分好的類別進(jìn)行識別,查看是否有與該圖像具有相同或類似特征的存儲記憶,從而識別出是否見過該圖像。機(jī)器的圖像識別技術(shù)也是如此,通過分類并提取重要特征而排除多余的信息來識別圖像。機(jī)器所提取出的這些特征有時會非常明顯,有時又是很普通,這在很大的程度上影響了機(jī)器識別的速率??傊?,在計(jì)算機(jī)的視覺識別中,圖像的內(nèi)容通常是用圖像特征進(jìn)行描述。

1.2模式識別

模式識別是人工智能和信息科學(xué)的重要組成部分。模式識別是指對表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個對事物或現(xiàn)象做出描述、辨認(rèn)和分類等的過程。

計(jì)算機(jī)的圖像識別技術(shù)就是模擬人類的圖像識別過程。在圖像識別的過程中進(jìn)行模式識別是必不可少的。模式識別原本是人類的一項(xiàng)基本智能。但隨著計(jì)算機(jī)的發(fā)展和人工智能的興起,人類本身的模式識別已經(jīng)滿足不了生活的需要,于是人類就希望用計(jì)算機(jī)來代替或擴(kuò)展人類的部分腦力勞動。這樣計(jì)算機(jī)的模式識別就產(chǎn)生了。簡單地說,模式識別就是對數(shù)據(jù)進(jìn)行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計(jì)。模式識別主要分為三種:統(tǒng)計(jì)模式識別、句法模式識別、模糊模式識別。

2圖像識別技術(shù)的過程

既然計(jì)算機(jī)的圖像識別技術(shù)與人類的圖像識別原理相同,那它們的過程也是大同小異的。圖像識別技術(shù)的過程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。

信息的獲取是指通過傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對象的基本信息并通過某種方法將其轉(zhuǎn)變?yōu)闄C(jī)器能夠認(rèn)識的信息。

預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強(qiáng)圖像的重要特征。

特征抽取和選擇是指在模式識別中,需要進(jìn)行特征的抽取和選擇。簡單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開,就要通過這些圖像所具有的本身特征來識別,而獲取這些特征的過程就是特征抽取。在特征抽取中所得到的特征也許對此次識別并不都是有用的,這個時候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識別過程中是非常關(guān)鍵的技術(shù)之一,所以對這一步的理解是圖像識別的重點(diǎn)。

分類器設(shè)計(jì)是指通過訓(xùn)練而得到一種識別規(guī)則,通過此識別規(guī)則可以得到一種特征分類,使圖像識別技術(shù)能夠得到高識別率。分類決策是指在特征空間中對被識別對象進(jìn)行分類,從而更好地識別所研究的對象具體屬于哪一類。

3圖像識別技術(shù)的分析

隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展和科技的不斷進(jìn)步,圖像識別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識別的研究論文,在一項(xiàng)圖像識別的基準(zhǔn)測試中,電腦系統(tǒng)識別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫imagenet中的圖像識別錯誤率為5.1%,而微軟研究小組的這個深度學(xué)習(xí)系統(tǒng)可以達(dá)到4.94%的錯誤率?!睆倪@則新聞中我們可以看出圖像識別技術(shù)在圖像識別方面已經(jīng)有要超越人類的圖像識別能力的趨勢。這也說明未來圖像識別技術(shù)有更大的研究意義與潛力。而且,計(jì)算機(jī)在很多方面確實(shí)具有人類所無法超越的優(yōu)勢,也正是因?yàn)檫@樣,圖像識別技術(shù)才能為人類社會帶來更多的應(yīng)用。

3.1神經(jīng)網(wǎng)絡(luò)的圖像識別技術(shù)

神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)是一種比較新型的圖像識別技術(shù),是在傳統(tǒng)的圖像識別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說這種神經(jīng)網(wǎng)絡(luò)并不是動物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識別分類。以汽車拍照自動識別技術(shù)為例,當(dāng)汽車通過的時候,汽車自身具有的檢測設(shè)備會有所感應(yīng)。此時檢測設(shè)備就會啟用圖像采集裝置來獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計(jì)算機(jī)進(jìn)行保存以便識別。最后車牌定位模塊就會提取車牌信息,對車牌上的字符進(jìn)行識別并顯示最終的結(jié)果。在對車牌上的字符進(jìn)行識別的過程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。

3.2非線性降維的圖像識別技術(shù)

計(jì)算機(jī)的圖像識別技術(shù)是一個異常高維的識別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計(jì)算機(jī)的識別帶來了非常大的困難。想讓計(jì)算機(jī)具有高效地識別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見的線性降維方法,它們的特點(diǎn)是簡單、易于理解。但是通過線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過驗(yàn)證,這種線性的降維策略計(jì)算復(fù)雜度高而且占用相對較多的時間和空間,因此就產(chǎn)生了基于非線性降維的圖像識別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對其進(jìn)行降維,使計(jì)算機(jī)的圖像識別在盡量低的維度上進(jìn)行,這樣就提高了識別速率。例如人臉圖像識別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對計(jì)算機(jī)來說無疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過非線性降維技術(shù)來得到分布緊湊的人臉圖像,從而提高人臉識別技術(shù)的高效性。

3.3圖像識別技術(shù)的應(yīng)用及前景

計(jì)算機(jī)的圖像識別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識別系統(tǒng);公共安全方面的人臉識別技術(shù)、指紋識別技術(shù);農(nóng)業(yè)方面的種子識別技術(shù)、食品品質(zhì)檢測技術(shù);醫(yī)學(xué)方面的心電圖識別技術(shù)等。隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,圖像識別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進(jìn)。圖像是人類獲取和交換信息的主要來源,因此與圖像相關(guān)的圖像識別技術(shù)必定也是未來的研究重點(diǎn)。以后計(jì)算機(jī)的圖像識別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開圖像識別技術(shù)。

4總結(jié)

圖像識別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識別技術(shù)也在不斷地成長,隨著科技的不斷進(jìn)步,人類對圖像識別技術(shù)的認(rèn)識也會更加深刻。未來圖像識別技術(shù)將會更加強(qiáng)大,更加智能地出現(xiàn)在我們的生活中,為人類社會的更多領(lǐng)域帶來重大的應(yīng)用。在21世紀(jì)這個信息化的時代,我們無法想象離開了圖像識別技術(shù)以后我們的生活會變成什么樣。圖像識別技術(shù)是人類現(xiàn)在以及未來生活必不可少的一項(xiàng)技術(shù)。

人工智能的論文篇六

人工智能和數(shù)字地球是計(jì)算機(jī)科學(xué)及信息科學(xué)發(fā)展中的重要領(lǐng)域。本文簡述了人工智能的概念及其在計(jì)算機(jī)上的實(shí)現(xiàn)方式,并提出了人工智能技術(shù)在數(shù)字地球發(fā)展中幾個方面的應(yīng)用,最后總結(jié)了人工智能技術(shù)為數(shù)字地球的發(fā)展帶來的好處。

1前言

,美國副總統(tǒng)阿爾.戈?duì)栐诩永D醽喛茖W(xué)中心作的演講中提出了“數(shù)字地球”這一新概念,并對其作了比較全面和通俗的說明[1]。演講中戈?duì)柨偨y(tǒng)給出數(shù)字地球可能的無比廣闊的應(yīng)用前景,人們可以通過數(shù)字地球技術(shù)指導(dǎo)仿真外交,打擊和監(jiān)測犯罪,保護(hù)生態(tài)多樣性,預(yù)測氣候變化,增加作物產(chǎn)量等。

在數(shù)字地球中非常重要的一點(diǎn)是如何使海量的地理空間數(shù)據(jù)變得有意義,即讓它們能過被人們所理解。但是,在面對這些海量的數(shù)據(jù)時,我們處理的手段卻是有限的。而且這些數(shù)據(jù)都是由計(jì)算機(jī)來處理的,在面對大量數(shù)據(jù)中的無用數(shù)據(jù)時,計(jì)算機(jī)是很難將其識別出來的。所以我們需要讓計(jì)算機(jī)具有人類一樣的智慧,將這些數(shù)據(jù)進(jìn)行有效的處理。如今,人工智能技術(shù)在數(shù)字地球中有著廣泛的應(yīng)用。通過這一技術(shù),人們可以高效的處理和分析這些海量數(shù)據(jù)。

2人工智能的實(shí)現(xiàn)方式

人工智能在計(jì)算機(jī)上有兩種不同的實(shí)現(xiàn)方式。一種是采用傳統(tǒng)的編碼技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用的方法是否與人或動物機(jī)體所用的方法相同。另一種是模擬法(modelingapproach),它要求實(shí)現(xiàn)方法也和人或動物機(jī)體所用的方法相同或相似。模擬法有兩種實(shí)現(xiàn)的算法:遺傳算法和神經(jīng)網(wǎng)絡(luò)算法。

遺傳算法借鑒生物進(jìn)化論,將要解決的問題模擬成一個生物體,通過復(fù)制、交叉、突變等操作產(chǎn)生下一代解空間[3],并通過適應(yīng)函數(shù)度來淘汰那些不良的個體,這樣迭代進(jìn)化幾代之后就很有可能得到適應(yīng)度函數(shù)值較高的個體。遺傳算法通常用在求解問題最優(yōu)解的情況下,如函數(shù)優(yōu)化、組合優(yōu)化等。

神經(jīng)網(wǎng)絡(luò)算法通過模擬人或動物的神經(jīng)網(wǎng)絡(luò)傳遞和處理信息的行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型[4]。使用神經(jīng)網(wǎng)絡(luò)算法使系統(tǒng)具有像人一樣學(xué)習(xí)的特征。初始時,系統(tǒng)模塊跟初生嬰兒一樣什么也不懂,而且會經(jīng)常犯錯,但是它可用通過學(xué)習(xí),從錯誤中吸取教訓(xùn),下一次運(yùn)行時就可能改正。

3人工智能技術(shù)在數(shù)字地球中的應(yīng)用

人工智能能夠使我們的計(jì)算機(jī)具有人能解決問題的能力,使得計(jì)算機(jī)工作起來更加的高效。而且通過人工智能的學(xué)習(xí)機(jī)制,降低其出錯的幾率。人工智能在數(shù)字地球中可以有以下幾個方面的應(yīng)用:

3.1智能導(dǎo)航

當(dāng)前我們主要使用gps技術(shù)來做定位和導(dǎo)航的。但是gps只能在室外及衛(wèi)星信號不被遮擋或反射的地方才能使用。因此,在室內(nèi)、茂密的樹木覆蓋處和高層建筑地下gps就很難使用了[5]。

使用人工智能技術(shù)進(jìn)行智能導(dǎo)航,當(dāng)不能獲得gps衛(wèi)星信號時,系統(tǒng)會智能的使用基于通信基站定位、互聯(lián)網(wǎng)定位等來提供導(dǎo)航。同時,人工智能系統(tǒng)還可以實(shí)現(xiàn)最優(yōu)路徑規(guī)劃,周邊信息搜索等功能。

3.2智能的人機(jī)交互

數(shù)字地球的建設(shè)依賴于互聯(lián)網(wǎng)、虛擬現(xiàn)實(shí)等技術(shù),但是現(xiàn)在我們能做的僅僅是通過這些技術(shù)將我們所獲得的海量數(shù)據(jù)展現(xiàn)在人們面前。而顯示信息的形式主要是以瀏覽器、虛擬頭盔等,這些工具存在著不能與人友好交互的問題。我們通常是通過人肢體來交互,而不能像現(xiàn)實(shí)生活中人們通過對話的形式交互。

3.3專家系統(tǒng)

計(jì)算機(jī)較人強(qiáng)的地方在于它的計(jì)算速度快,將計(jì)算機(jī)的高運(yùn)算速度和人的智慧集成起來構(gòu)成專家系統(tǒng)。專家系統(tǒng)使用人類專家推理的模型來處理現(xiàn)實(shí)世界中需要專家作出解釋的復(fù)雜問題,并得出與專家相同的結(jié)論[6]。

在氣象預(yù)測中,我們要處理大量的氣象數(shù)據(jù)。使用傳統(tǒng)的計(jì)算機(jī)處理方式,我們還要對計(jì)算機(jī)的處理結(jié)果做大量的分析。但是通過專家系統(tǒng),不僅給出處理的數(shù)據(jù)結(jié)果,還可以給出分析的結(jié)果,以便研究人員輔助研究使用。這樣可以減少大量的人力耗費(fèi)。

總結(jié)

戈?duì)柨偨y(tǒng)所提出的數(shù)字地球,不僅僅是數(shù)字化的地球,其未來的發(fā)展跟應(yīng)該是在數(shù)字化的基礎(chǔ)之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未來,電子設(shè)備將會更加智能化,人機(jī)交互將會更友好化。

同時在面對海量的地理空間數(shù)據(jù)時,使用人工智能技術(shù)可以拓寬我們隊(duì)這些數(shù)據(jù)的處理能力。加快數(shù)據(jù)的處理速度、精確性等。通過智能搜索,可以快速精準(zhǔn)的找到我們所需要的信息。就像google公司所做的智能周邊搜索一樣,當(dāng)人們走在城市街道上的時候,系統(tǒng)可以搜索并顯示周邊我們感興趣的一些商店、景觀、飯店等信息。并且人工智能技術(shù)還能提供智能導(dǎo)航、人機(jī)自然語言交互、專家系統(tǒng)等。未來人工智能技術(shù)將在數(shù)字地球的發(fā)展中起到更大的作用。

人工智能的論文篇七

摘要:隨著工業(yè)領(lǐng)域的迅猛發(fā)展,自動化、智能化被當(dāng)做是電氣控制領(lǐng)域的重點(diǎn)發(fā)展趨勢。為了讓電氣自動化控制中人工智能技術(shù)發(fā)揮更大的作用,本文概括了人工智能技術(shù),闡述了人工智能技術(shù)在電氣自動化領(lǐng)域的使用實(shí)例,以此期望對有關(guān)工作人員能有幫助。

關(guān)鍵詞:電氣控制;自動化控制;人工智能

近年來隨著國內(nèi)外人工智能研究的興起與發(fā)展,越來越多的傳統(tǒng)領(lǐng)域開始思考能否在自己的產(chǎn)品生產(chǎn)線上使用人工智能技術(shù),所以它的實(shí)際使用領(lǐng)域廣泛。現(xiàn)代社會的發(fā)展離不開人工智能技術(shù)的使用,特別是在現(xiàn)代工業(yè)的領(lǐng)域,在方法上需要依靠最新的人工智能技術(shù)為支持,但要做到讓人工智能技術(shù)在電氣自動化控制中更好的發(fā)揮作用,我們先要知道人工智能技術(shù)到底是什么樣的技術(shù)[1]。

1人工智能技術(shù)的概述

國內(nèi)的創(chuàng)新熱潮近幾年正在蓬勃的發(fā)展,各種新技術(shù)競相展現(xiàn),人工智能技術(shù)也逐漸成熟了,而且它在當(dāng)今社會中的使用也更加寬泛。人工智能技術(shù)的建立,不僅要有計(jì)算機(jī)技術(shù)知識進(jìn)行有效支持,還與其他學(xué)科知識息息相關(guān),人工智能技術(shù)通俗上講就是生產(chǎn)出可以替代人類來工作的智能化機(jī)器人,將來許多崗位都可以由機(jī)器來替代人類工作[2]。隨著科技的日新月異,科學(xué)家們已經(jīng)成功地生產(chǎn)出了類似于人腦一樣思考的人工大腦芯片,并將這種新技術(shù)命名為人工智能技術(shù)。在人們平常的生產(chǎn)活動中,已有非常多的范圍都使用了人工智能技術(shù),而且它們的現(xiàn)實(shí)使用效率非常高。

2人工智能技術(shù)在電氣自動化中的應(yīng)用廣闊前景

電氣自動化中應(yīng)用人工智能技術(shù),不僅在極大程度上讓工人更好的操控電氣自動化設(shè)備,還極大地減少了電氣自動化的使用成本,這說明發(fā)展人工智能技術(shù)的前景是非常有利的。

2.1電氣自動化控制中加入人工智能技術(shù)的重要性

人工智能技術(shù)同人類的工作方式相比有許多人類不能替代的優(yōu)勢,例如人工智能對于數(shù)字和程式非常敏感,可以長時間的集中于處理同一個問題,這些優(yōu)勢可以幫助人類解決一些繁復(fù)的工作,所以電氣自動化控制中應(yīng)用人工智能技術(shù)后,它一定可以為人類創(chuàng)造更大的價值[3]。

2.2人工智能技術(shù)在電氣自動化控制中的應(yīng)用優(yōu)勢

因?yàn)殡姎庠O(shè)備的復(fù)雜性和連貫性的要求,所以對電氣設(shè)備的設(shè)計(jì)人員就提出了非常高的專業(yè)要求,除了具備非常扎實(shí)的專業(yè)知識以外,還要求他們的設(shè)計(jì)最好可以結(jié)合最新的科學(xué)技術(shù)。在電氣自動化控制中使用人工智能技術(shù)之后,會帶來很多便利性,具體表現(xiàn)為下面這4點(diǎn):(1)數(shù)據(jù)的收集與運(yùn)算都能利用人工智能技術(shù)來實(shí)現(xiàn),因?yàn)閾碛辛诉@一作用,以此一來就能對電氣設(shè)備的每樣數(shù)值開展收集,還可立即對數(shù)據(jù)進(jìn)行運(yùn)算,因此能讓電氣自動化的現(xiàn)實(shí)管控效果得以大范圍提高。(2)人工智能技術(shù)可實(shí)現(xiàn)連續(xù)的監(jiān)管并實(shí)現(xiàn)必要的報警。人工智能技術(shù)能同步監(jiān)控電氣系統(tǒng)中主要設(shè)備的模擬數(shù)據(jù)值。(3)人工智能管控的操縱監(jiān)控系統(tǒng)較高效。能夠通過鼠標(biāo)、鍵盤來對電氣設(shè)備實(shí)行自動化管控,因?yàn)槭褂霉芸亓鞒叹湍軌驅(qū)崿F(xiàn)同步并網(wǎng)帶負(fù)荷操縱,以此以來不僅能夠大范圍減少工作人員的勞動時間,還能讓控制效率得以提升,這同目前工業(yè)發(fā)展的`現(xiàn)實(shí)需要非常符合[4]。(4)差錯記載功能也是人工智能技術(shù)擁有的獨(dú)特特點(diǎn),人類可以更好的運(yùn)用這個技術(shù)來監(jiān)測每一個運(yùn)行環(huán)節(jié)中出現(xiàn)的點(diǎn)滴差池,以此來調(diào)試設(shè)備使其達(dá)到最佳的狀態(tài),這從根本上提高了電氣設(shè)備的運(yùn)行效率和使用安全度,使其更好的為人類服務(wù)。

3人工智能技術(shù)在電氣自動化中的應(yīng)用分析

因?yàn)槟壳皬母旧仙壛巳斯ぶ悄芗夹g(shù),加上它技術(shù)的逐漸完備,越來越多的電氣設(shè)備開始同人工智能技術(shù)掛鉤,為了更加直觀的介紹人工智能設(shè)備的特點(diǎn)與技術(shù)屬性,筆者主要對電氣自動化設(shè)備中人工智能技術(shù)的使用和電氣管控流程中人工智能技術(shù)的使用開展了辨析。

3.1人工智能技術(shù)在電氣自動化設(shè)備中的應(yīng)用

電氣自動化系統(tǒng)有極大的繁雜性,它主要牽扯到許多范圍與科目,這就對操控電氣自動化設(shè)備的員工提出了很高的要求,他們應(yīng)該擁有很高的職業(yè)素養(yǎng),而且還要有充足的知識儲備。因?yàn)殡姎庾詣踊w系相當(dāng)繁雜,所以在現(xiàn)實(shí)操控中的效率性要加強(qiáng),這樣才能極大程度地降低因?yàn)椴缓侠硎褂茫瑢?dǎo)致出現(xiàn)非常規(guī)錯誤,有時更可能導(dǎo)致安全事故等。這些問題的解決都可憑借人工智能技術(shù)來達(dá)成,就人工智能技術(shù)自身來看,其系統(tǒng)中心主要是計(jì)算機(jī)系統(tǒng),經(jīng)由編輯每種操控系統(tǒng),能夠使計(jì)算機(jī)控制中的智能管控得以更好的施行[5]。

3.2人工智能技術(shù)在電氣控制過程中的應(yīng)用

就電氣自動化的管控流程來看,人工智能可以幫助人類更好的控制電氣設(shè)備。在電氣設(shè)備的控制系統(tǒng)中,引入人工智能的現(xiàn)金技術(shù)后,能讓實(shí)際工作操作效果在很大范圍上得以提升,還能使得整個操作過程實(shí)現(xiàn)無人化監(jiān)管,這樣一來達(dá)到了企業(yè)節(jié)約成本的目的,尤其是不用再去花費(fèi)大筆的人工費(fèi)用。除此之外就從整個控制過程來看,人工智能技術(shù)可以實(shí)現(xiàn)同多臺設(shè)備的同時控制,專家體系、模擬操控和神經(jīng)網(wǎng)絡(luò)操控是其首要應(yīng)用的人工智能系統(tǒng)[6]。

4總結(jié)

科技的發(fā)展讓人類的生活更加便利與美好,人工智能技術(shù)的發(fā)揮在那越來越推進(jìn)了現(xiàn)代工業(yè)的更好發(fā)展。因?yàn)槿斯ぶ悄芗夹g(shù)具備相當(dāng)多的優(yōu)點(diǎn),它是這些年來發(fā)展起來的一門新興高科技技術(shù),它在實(shí)際應(yīng)用中有巨大的使用效率,不僅在電氣自動化控制中,加入人工智能技術(shù)后,極大程度上提高了電氣設(shè)備的控制度,讓它能更好的的服務(wù)人類生產(chǎn)活動;同時電氣設(shè)備上結(jié)合了人工智能技術(shù),讓電氣自動化設(shè)備的操控系統(tǒng)變得更加簡潔,提高了員工操控效率;降低了企業(yè)的人力物力成本,使得生產(chǎn)流程更加科學(xué)、連貫,所以大力發(fā)展人工智能技術(shù)與電氣自動化的結(jié)合是非常有必要的研究。

參考文獻(xiàn):

[5]黃開平.高級項(xiàng)目中自動化系統(tǒng)的應(yīng)用[j].電氣時代,20xx(02).

人工智能的論文篇八

十九世紀(jì)末到二十世紀(jì)以來科學(xué)技術(shù)得到了飛速的發(fā)展,在這個時期里很多學(xué)科都得到了提高和補(bǔ)充,學(xué)科間的關(guān)系也越來越密切,一系列利好因素的共同作用下,機(jī)械電子工程學(xué)得以產(chǎn)生并發(fā)展。

顧名思義,機(jī)械電子工程就是電子信息技術(shù)與傳統(tǒng)的機(jī)械技術(shù)的一個結(jié)合,充分的發(fā)揮了兩個不同學(xué)科在技術(shù)上的共同點(diǎn),達(dá)到了物理上和信息功能上的連結(jié)。這是一個跨學(xué)科的嘗試,更是一個挑戰(zhàn),它可以將所有的機(jī)械工程信息進(jìn)行分析,達(dá)到智能化的目的。雖然依舊屬于機(jī)械工程行業(yè),但是顯然已經(jīng)擁有了自己的特點(diǎn)。

1)不同的設(shè)計(jì)方法

機(jī)械電子工程與傳統(tǒng)工程相比,已經(jīng)不是單一的一個學(xué)科,它已經(jīng)發(fā)展成為了有很多技術(shù)和科學(xué)共同組成的一個新學(xué)科,并且在工程設(shè)計(jì)上充分的吸納了信息技術(shù)、機(jī)械技術(shù),并為了使工程的各模塊結(jié)構(gòu)布局更加完整,設(shè)計(jì)人員一般都會采取自上而下的設(shè)計(jì)方法。

2)產(chǎn)品上的差異

2機(jī)械電子工程的發(fā)展過程

機(jī)械電子工程學(xué)并不是一個孤立的學(xué)科,它與很多工程和技術(shù)都有著密切的聯(lián)系,是機(jī)械工程學(xué)科和電子信息工程、智能管理技術(shù)共同作用下,形成的一個新的發(fā)展體系。在信息系統(tǒng)不斷完善的過程中,機(jī)械電子工程體系也更加完善,并日益成熟。機(jī)械電子工程學(xué)的發(fā)展歷程主要是這樣的幾個方面:

1)機(jī)械電子工程學(xué)的開端

機(jī)械電子工程學(xué)在剛起步的階段,其主要的生產(chǎn)形式是手工生產(chǎn),此時社會的生產(chǎn)能力很低,沒有充足的勞動力資源,發(fā)展生產(chǎn)力變得異常艱辛。為了改變這樣一個窘迫的狀況,科學(xué)家進(jìn)行了大量的研究和嘗試,在一次次的失敗中,機(jī)械工程終于得到了一定的發(fā)展。

2)機(jī)械電子工程學(xué)的高速發(fā)展階段

在經(jīng)歷了起初艱難的開始階段以后,機(jī)械電子工程迎來了高速發(fā)展時期,隨著標(biāo)準(zhǔn)件生產(chǎn)在同一的流水線下得以實(shí)現(xiàn),這一時期的生產(chǎn)已經(jīng)具備了一定的標(biāo)準(zhǔn),并且極大地刺激了生產(chǎn)力的發(fā)展。但是這樣的生產(chǎn)模式并不是沒有缺點(diǎn)的,生產(chǎn)的過程過于標(biāo)準(zhǔn),使產(chǎn)品過于單一,滿足不了不同用戶和社會不斷變化的需要。

3)機(jī)械電子工程的成熟階段

經(jīng)過了多年的發(fā)展,機(jī)械電子工程產(chǎn)業(yè)已經(jīng)形成了一定的體系,并與現(xiàn)代化科學(xué)技術(shù)有了一定的融合,進(jìn)入了現(xiàn)代機(jī)械電子發(fā)展階段。歸根結(jié)底,機(jī)械電子工程的發(fā)展是為了滿足社會工作和生活的需要,現(xiàn)代社會工作節(jié)奏加快,生產(chǎn)也更加靈活,對機(jī)械電子工程提出了更高的要求,機(jī)械電子行業(yè)的特點(diǎn)是柔性制造,這也為機(jī)械電子同信息化社會的融合創(chuàng)造了條件。

3人工智能在機(jī)械電子工程的運(yùn)用

人類社會的發(fā)展始終離不開能源、信息。在古代,生產(chǎn)力水平及其低下,人們對信息的獲取能力也十分有限,能源和物質(zhì)是維持人類生產(chǎn)生活的必需品。長久以來,人類往往都沒有認(rèn)識到信息的作用。隨著人類文明的不斷發(fā)展,生產(chǎn)力水平的不斷提高人類對信息的概念逐漸了解,同時也產(chǎn)生了對信息的需求,信息的價值逐漸被發(fā)現(xiàn)。

隨著電子計(jì)算機(jī)技術(shù)的逐漸應(yīng)用,人類的生活發(fā)生了質(zhì)的變化,人類社會至此進(jìn)入了高科技的信息時代。人工智能系統(tǒng)作為電子技術(shù)發(fā)展的產(chǎn)物,在近兩年出現(xiàn),并且迅速的應(yīng)用到了機(jī)械電子工程領(lǐng)域。

電子信息技術(shù)在方便快捷的同時,也存在一定的弊端,比如缺乏一定的穩(wěn)定性,這使機(jī)械信息系統(tǒng)在輸入和輸出上就會變得十分混亂,并且不利于描述。以往的描述方法一般包括:建設(shè)規(guī)則庫、推導(dǎo)數(shù)學(xué)方程、學(xué)習(xí)并生成知識。

一般的解析方法都比較精密、準(zhǔn)確,但是應(yīng)用范圍十分有限,只能應(yīng)用于比較簡單的系統(tǒng),而對比較繁瑣復(fù)雜的體系,卻不能夠提供完整的解析式,必須依靠人工操作才能實(shí)現(xiàn)。隨著人們對系統(tǒng)的要求越來越高,處理的信息變得復(fù)雜多樣,信息的內(nèi)容不僅包括數(shù)據(jù)的形式,也出現(xiàn)了數(shù)字信息和語言信息等新形式。為了適應(yīng)時代形勢的發(fā)展,人工智能處理方式以其復(fù)雜、不確定的特點(diǎn)成為了解析數(shù)學(xué)的新方法、新手段。

人工智能處理體系一般是這樣進(jìn)行分類的,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系。這兩個系統(tǒng)存在著聯(lián)系,也有所不同。模糊推理系統(tǒng)一般通過對大腦功能進(jìn)行模擬,從而分析出語言的信號;而神經(jīng)網(wǎng)絡(luò)系統(tǒng)模擬的卻是大腦的結(jié)構(gòu),通過對數(shù)字信號的處理得出參考數(shù)值。

1)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的相同點(diǎn)

我們可以說,模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系都是利用網(wǎng)絡(luò)結(jié)構(gòu),然后在某一精度上趨近一個函數(shù)。

2)模糊推理體系和神經(jīng)網(wǎng)絡(luò)體系的不同點(diǎn)

(1)映射方式

在映射方式的運(yùn)用方面,模糊推理系統(tǒng)運(yùn)用域和域之間的映射,神經(jīng)網(wǎng)絡(luò)體系則是點(diǎn)到點(diǎn)的映射。

(2)物理性質(zhì)

模糊推理體系與神經(jīng)網(wǎng)絡(luò)體系相比擁有更明確的物理性質(zhì)。

(3)計(jì)算量和計(jì)算精度

模糊推理體系沒有固定的連接,計(jì)算量和計(jì)算精度都十分有限,神經(jīng)網(wǎng)絡(luò)體系則很好的克服了這一點(diǎn),在輸入的過程中使每個神經(jīng)元相互作用,大大的提高了計(jì)算量,并且能夠保證較高的輸出精度。

(4)儲存方式

在儲存信息的過程中,模糊推理體系采用的是比較規(guī)則的方式,神經(jīng)網(wǎng)絡(luò)體系則是利用分布式對信息進(jìn)行儲存。

社會作為一個不斷發(fā)展變化的有機(jī)結(jié)合體,單一的處理手段是無法滿足人類發(fā)展的需要的。為此,智能系統(tǒng)研究專家開始了對綜合智能系統(tǒng)的開發(fā)與探索。綜合智能系統(tǒng)是對以往人工智能體系的繼承和發(fā)展,它能夠融合以往兩種智能體系的優(yōu)點(diǎn),使數(shù)學(xué)描述變得更加全面。

4結(jié)論

機(jī)械電子工程產(chǎn)業(yè)發(fā)展是我國工業(yè)信息化過程的一個寫照,在工程制造的過程中充分利用現(xiàn)代化科學(xué)技術(shù)的巨大優(yōu)勢,實(shí)現(xiàn)了生產(chǎn)力的提高,滿足社會發(fā)展的需求,機(jī)械電子工程和人工智能和完美結(jié)合實(shí)現(xiàn)了不同學(xué)科之間的融合,為工業(yè)信息化的發(fā)展提供了成功經(jīng)驗(yàn)和新思路。

人工智能的論文篇九

長久以來,人工智能對于普通人來說是那樣的可望而不可及,然而它卻吸引了無數(shù)研究人員為之奉獻(xiàn)才智,從美國的麻省理工學(xué)院(mit)、卡內(nèi)基-梅隆大學(xué)(cmu)到ibm公司,再到日本的本田公司、sony公司以及國內(nèi)的清華大學(xué)、中科院等科研院所,全世界的實(shí)驗(yàn)室都在進(jìn)行著ai技術(shù)的實(shí)驗(yàn)。不久前,著名導(dǎo)演斯蒂文·斯皮爾伯格還將這一主題搬上了銀幕,科幻片《人工智能》(a.i.)對許多人的頭腦又一次產(chǎn)生了震動,引起了一些人士了解并探索人工智能領(lǐng)域的興趣。

在本期技術(shù)專題中,中國科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室的幾位研究人員將引領(lǐng)我們走近人工智能這一充滿挑戰(zhàn)與機(jī)遇的領(lǐng)域。

"智能"源于拉丁語legere,字面意思是采集(特別是果實(shí))、收集、匯集,并由此進(jìn)行選擇,形成一個東西。intelegere是從中進(jìn)行選擇,進(jìn)而理解、領(lǐng)悟和認(rèn)識。正如帕梅拉·麥考達(dá)克在《機(jī)器思維》(machineswhothinks,1979)中所提出的:在復(fù)雜的機(jī)械裝置與智能之間存在長期的聯(lián)系。從幾個世紀(jì)前出現(xiàn)的神話般的巨鐘和機(jī)械自動機(jī)開始,人們已對機(jī)器操作的復(fù)雜性與自身的某些智能活動進(jìn)行直觀聯(lián)系。經(jīng)過幾個世紀(jì)之后,新技術(shù)已使我們所建立的機(jī)器的復(fù)雜性大為提高。1936年,24歲的英國數(shù)學(xué)家圖靈(turing)提出了"自動機(jī)"理論,把研究會思維的機(jī)器和計(jì)算機(jī)的工作大大向前推進(jìn)了一步,他也因此被稱為"人工智能之父"。

人工智能領(lǐng)域的研究是從1956年正式開始的,這一年在達(dá)特茅斯大學(xué)召開的會議上正式使用了"人工智能"(artificialintelligence,ai)這個術(shù)語。隨后的幾十年中,人們從問題求解、邏輯推理與定理證明、自然語言理解、博弈、自動程序設(shè)計(jì)、專家系統(tǒng)、學(xué)習(xí)以及機(jī)器人學(xué)等多個角度展開了研究,已經(jīng)建立了一些具有不同程度人工智能的計(jì)算機(jī)系統(tǒng),例如能夠求解微分方程、設(shè)計(jì)分析集成電路、合成人類自然語言,而進(jìn)行情報檢索,提供語音識別、手寫體識別的多模式接口,應(yīng)用于疾病診斷的專家系統(tǒng)以及控制太空飛行器和水下機(jī)器人更加貼近我們的生活。我們熟知的ibm的"深藍(lán)"在棋盤上擊敗了國際象棋大師卡斯帕羅夫就是比較突出的例子。

當(dāng)然,人工智能的發(fā)展也并不是一帆風(fēng)順的,也曾因計(jì)算機(jī)計(jì)算能力的限制無法模仿人腦的思考以及與實(shí)際需求的差距過遠(yuǎn)而走入低谷,但是隨著硬件和軟件的發(fā)展,計(jì)算機(jī)的運(yùn)算能力在以指數(shù)級增長,同時網(wǎng)絡(luò)技術(shù)蓬勃興起,確保計(jì)算機(jī)已經(jīng)具備了足夠的條件來運(yùn)行一些要求更高的ai軟件,而且現(xiàn)在的ai具備了更多的現(xiàn)實(shí)應(yīng)用的基礎(chǔ)。90年代以來,人工智能研究又出現(xiàn)了新的高潮。

我們有幸采訪了中國科學(xué)院計(jì)算技術(shù)研究所智能信息處理開放實(shí)驗(yàn)室史忠植研究員,請他和他的實(shí)驗(yàn)室成員引領(lǐng)我們走近人工智能這個讓普通人感到深奧卻又具有無窮魅力的領(lǐng)域。

問:目前人工智能研究出現(xiàn)了新的高潮,那么現(xiàn)在有哪些新的研究熱點(diǎn)和實(shí)際應(yīng)用呢?

答:ai研究出現(xiàn)了新的高潮,這一方面是因?yàn)樵谌斯ぶ悄芾碚摲矫嬗辛诵碌倪M(jìn)展,另一方面也是因?yàn)橛?jì)算機(jī)硬件突飛猛進(jìn)的發(fā)展。隨著計(jì)算機(jī)速度的`不斷提高、存儲容量的不斷擴(kuò)大、價格的不斷降低以及網(wǎng)絡(luò)技術(shù)的不斷發(fā)展,許多原來無法完成的工作現(xiàn)在已經(jīng)能夠?qū)崿F(xiàn)。目前人工智能研究的3個熱點(diǎn)是:智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)。

智能接口技術(shù)是研究如何使人們能夠方便自然地與計(jì)算機(jī)交流。為了實(shí)現(xiàn)這一目標(biāo),要求計(jì)算機(jī)能夠看懂文字、聽懂語言、說話表達(dá),甚至能夠進(jìn)行不同語言之間的翻譯,而這些功能的實(shí)現(xiàn)又依賴于知識表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識別、語音識別、語音合成、圖像識別、機(jī)器翻譯以及自然語言理解等技術(shù)已經(jīng)開始實(shí)用化。

數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的實(shí)際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數(shù)據(jù)挖掘和知識發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強(qiáng)大的技術(shù)支柱:數(shù)據(jù)庫、人工智能和數(shù)理統(tǒng)計(jì)。主要研究內(nèi)容包括基礎(chǔ)理論、發(fā)現(xiàn)算法、數(shù)據(jù)倉庫、可視化技術(shù)、定性定量互換模型、知識表示方法、發(fā)現(xiàn)知識的維護(hù)和再利用、半結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中的知識發(fā)現(xiàn)以及網(wǎng)上數(shù)據(jù)挖掘等。

主體是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實(shí)體,比對象的粒度更大,智能性更高,而且具有一定自主性。主體試圖自治地、獨(dú)立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過規(guī)劃達(dá)到目標(biāo)。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個主體之間進(jìn)行協(xié)調(diào)智能行為,最終實(shí)現(xiàn)問題求解。多主體系統(tǒng)試圖用主體來模擬人的理性行為,主要應(yīng)用在對現(xiàn)實(shí)世界和社會的模擬、機(jī)器人以及智能機(jī)械等領(lǐng)域。目前對主體和多主體系統(tǒng)的研究主要集中在主體和多主體理論、主體的體系結(jié)構(gòu)和組織、主體語言、主體之間的協(xié)作和協(xié)調(diào)、通信和交互技術(shù)、多主體學(xué)習(xí)以及多主體系統(tǒng)應(yīng)用等方面。

答:我國開始"863計(jì)劃"時,正值全世界的人工智能熱潮。"863-306"主題的名稱是"智能計(jì)算機(jī)系統(tǒng)",其任務(wù)就是在充分發(fā)掘現(xiàn)有計(jì)算機(jī)潛力的基礎(chǔ)上,分析現(xiàn)有計(jì)算機(jī)在應(yīng)用中的缺陷和"瓶頸",用人工智能技術(shù)克服這些問題,建立起更為和諧的人-機(jī)環(huán)境。經(jīng)過十幾年來的努力,我們縮短了我國人工智能技術(shù)與世界先進(jìn)水平的差距,也為未來的發(fā)展奠定了技術(shù)和人才基礎(chǔ)。

但是也應(yīng)該看到目前我國人工智能研究中還存在一些問題,其特點(diǎn)是:課題比較分散,應(yīng)用項(xiàng)目偏多、基礎(chǔ)研究比例略少、理論研究與實(shí)際應(yīng)用需求結(jié)合不夠緊密。選題時,容易跟著國外的選題走;立項(xiàng)論證時,慣于考慮國外怎么做;落實(shí)項(xiàng)目時,又往往顧及面面俱到,大而全;再加上受研究經(jīng)費(fèi)的限制,所以很多課題既沒有取得理論上的突破,也沒有太大的實(shí)際應(yīng)用價值。

今后,基礎(chǔ)研究的比例應(yīng)該適當(dāng)提高,同時人工智能研究一定要與應(yīng)用需求相結(jié)合。科學(xué)研究講創(chuàng)新,而創(chuàng)新必須接受應(yīng)用和市場的檢驗(yàn)。因此,我們不僅要善于找到解決問題的答案,更重要的是要發(fā)現(xiàn)最迫切需要解決的問題和最迫切需要滿足的市場需求。

問:請您預(yù)測一下人工智能將來會向哪些方面發(fā)展?

答:技術(shù)的發(fā)展總是超乎人們的想象,要準(zhǔn)確地預(yù)測人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會向以下幾個方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機(jī)器情感。

目前,人工智能的推理功能已獲突破,學(xué)習(xí)及聯(lián)想功能正在研究之中,下一步就是模仿人類右腦的模糊處理功能和整個大腦的并行化處理功能。人工神經(jīng)網(wǎng)絡(luò)是未來人工智能應(yīng)用的新領(lǐng)域,未來智能計(jì)算機(jī)的構(gòu)成,可能就是作為主機(jī)的馮·諾依曼型機(jī)與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。研究表明:情感是智能的一部分,而不是與智能相分離的,因此人工智能領(lǐng)域的下一個突破可能在于賦予計(jì)算機(jī)情感能力。情感能力對于計(jì)算機(jī)與人的自然交往至關(guān)重要。

人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進(jìn)入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會給人們的生活、工作和教育等帶來更大的影響。

人工智能也稱機(jī)器智能,它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造出人造的智能機(jī)器或智能系統(tǒng),來模擬人類智能活動的能力,以延伸人們智能的科學(xué)。

在一年一度at&t實(shí)驗(yàn)室舉行的機(jī)器人足球賽中,每支球隊(duì)的"球員"都裝備上了ai軟件和許多感應(yīng)器,它們都很清楚自己該踢什么位置,同時也明白有些情況下不能死守崗位。盡管現(xiàn)在的ai技術(shù)只能使它們大部分時間處于個人盤帶的狀態(tài),但它們傳接配合的能力正在以很快的速度改進(jìn)。

這種ai機(jī)器人組隊(duì)打比賽看似無聊,但是有很強(qiáng)的現(xiàn)實(shí)意義。因?yàn)橥ㄟ^這類活動可以加強(qiáng)機(jī)器之間的協(xié)作能力。我們知道,internet是由無數(shù)臺服務(wù)器和無數(shù)臺路由器組成的,路由器的作用就是為各自的數(shù)據(jù)選擇通道并加以傳送,如果利用一些智能化的路由器很好地協(xié)作,就能分析出傳輸數(shù)據(jù)的最佳路徑,從而可以大大減少網(wǎng)絡(luò)堵塞。

我國也已經(jīng)在大學(xué)中開展了機(jī)器人足球賽,有很多學(xué)校組隊(duì)參加,引起了大學(xué)生對人工智能研究的興趣。

安放于加州勞倫斯·利佛摩爾國家實(shí)驗(yàn)室的asciwhite電腦,是ibm制造的世界最快的超級電腦,但其智力能力也僅為人腦的千分之一?,F(xiàn)在,ibm正在開發(fā)能力更為強(qiáng)大的新超級電腦--"藍(lán)色牛仔"(bluejean)。據(jù)其研究主任保羅·霍恩稱,預(yù)計(jì)于4年后誕生的"藍(lán)色牛仔"的智力水平將大致與人腦相當(dāng)。

麻省理工學(xué)院的ai實(shí)驗(yàn)室進(jìn)行一個的代號為cog的項(xiàng)目。cog計(jì)劃意圖賦予機(jī)器人以人類的行為。該實(shí)驗(yàn)的一個項(xiàng)目是讓機(jī)器人捕捉眼睛的移動和面部表情,另一個項(xiàng)目是讓機(jī)器人抓住從它眼前經(jīng)過的東西,還有一個項(xiàng)目則是讓機(jī)器人學(xué)會聆聽音樂的節(jié)奏并將其在鼓上演奏出來。

人工智能的論文篇十

1.1制訂本標(biāo)準(zhǔn)的目的是為了統(tǒng)一科學(xué)技術(shù)報告、學(xué)位論文和學(xué)術(shù)論文(以下簡稱報告、論文)的撰寫和編輯的格式,便利信息系統(tǒng)的收集、存儲、處理、加工、檢索、利用、交流、傳播。1.2本標(biāo)準(zhǔn)適用于報告、論文的編寫格式,包括形式構(gòu)成和題錄著錄,及其撰寫、編輯、印刷、出版等。本標(biāo)準(zhǔn)所指報告、論文可以是手稿,包括手抄本和打字本及其復(fù)制品;也可以是印刷本,包括發(fā)表在期刊或會議錄上的論文及其預(yù)印本、抽印本和變異本;作為書中一部分或獨(dú)立成書的專著;縮微復(fù)制品和其他形式。1.3本標(biāo)準(zhǔn)全部或部分適用于其他科技文件,如年報、便覽、備忘錄等,也適用于技術(shù)檔案。2定義2.1科學(xué)技術(shù)報告科學(xué)技術(shù)報告是描述一項(xiàng)科學(xué)技術(shù)研究的結(jié)果或進(jìn)展或一項(xiàng)技術(shù)研制試驗(yàn)和評價的結(jié)果;或是論述某項(xiàng)科學(xué)技術(shù)問題的現(xiàn)狀和發(fā)展的文件??茖W(xué)技術(shù)報告是為了呈送科學(xué)技術(shù)工作主管機(jī)構(gòu)或科學(xué)基金會等組織或主持研究的人等??茖W(xué)技術(shù)報告中一般應(yīng)該提供系統(tǒng)的或按工作進(jìn)程的充分信息,可以包括正反兩方面的結(jié)果和經(jīng)驗(yàn),以便有關(guān)人員和讀者判斷和評價,以及對報告中的結(jié)論和建議提出修正意見。2.2學(xué)位論文學(xué)位論文是表明作者從事科學(xué)研究取得創(chuàng)造性的結(jié)果或有了新的見解,并以此為內(nèi)容撰寫而成、作為提出申請授予相應(yīng)的學(xué)位時評審用的學(xué)術(shù)論文。學(xué)士論文應(yīng)能表明作者確已較好地掌握了本門學(xué)科的基礎(chǔ)理論、專門知識和基本技能,并具有從事科學(xué)研究工作或擔(dān)負(fù)專門技術(shù)工作的初步能力。

碩士論文應(yīng)能表明作者確已在本門學(xué)科上掌握了堅(jiān)實(shí)的基礎(chǔ)理論和系統(tǒng)的專門知識,并對所研究課題有新的見解,有從事科學(xué)研究工作或獨(dú)立擔(dān)負(fù)專門技術(shù)工作的能力。博士論文應(yīng)能表明作者確已在本門學(xué)科上掌握了堅(jiān)實(shí)寬廣的基礎(chǔ)理論和系統(tǒng)深入的專門知識,并具有獨(dú)立從事科學(xué)研究工作的能力,在科學(xué)或?qū)iT技術(shù)上做出了創(chuàng)造性的成果。2.3學(xué)術(shù)論文學(xué)術(shù)論文是某一學(xué)術(shù)課題在實(shí)驗(yàn)性、理論性或觀測性上具有新的科學(xué)研究成果或創(chuàng)新見解和知識的科學(xué)記錄;或是某種已知原理應(yīng)用于實(shí)際中取得新進(jìn)展的科學(xué)總結(jié),用以提供學(xué)術(shù)會議上宣讀、交流或討論;或在學(xué)術(shù)刊物上發(fā)表;或作其他用途的書面文件。學(xué)術(shù)論文應(yīng)提供新的科技信息,其內(nèi)容應(yīng)有所發(fā)現(xiàn)、有所發(fā)明、有所創(chuàng)造、有所前進(jìn),而不是重復(fù)、模仿、抄襲前人的工作。3編寫要求報告、論文的中文稿必須用白色稿紙單面繕寫或打字;外文稿必須用打字??梢杂貌煌噬膹?fù)制本。報告、論文宜用(210mm×297mm)標(biāo)準(zhǔn)大小的白紙,應(yīng)便于閱讀、復(fù)制和拍攝縮微制品。報告、論文在書寫、打字或印刷時,要求紙的四周留足空白邊緣,以便裝訂、復(fù)制和讀者批注。每一面的上方(天頭)和左側(cè)(訂口)應(yīng)分別留邊25mm以上,下方(地腳)和右側(cè)(切口)應(yīng)分別留邊20mm以上。4編寫格式4.1報告、論文章、條的編號參照國家標(biāo)準(zhǔn)gb1.1《標(biāo)準(zhǔn)化工作導(dǎo)則標(biāo)準(zhǔn)編寫的基本規(guī)定》第8章“標(biāo)準(zhǔn)條文的編排”的有關(guān)規(guī)定,采用阿拉伯?dāng)?shù)字分級編號。4.2報告、論文的構(gòu)成5前置部分5.1封面5.1.1封面是報告、論文的外表面,提供應(yīng)有的信息,并起保護(hù)作用。封面不是必不可少的。學(xué)術(shù)論文如作為期刊、書或其他出版物的一部分,無需封面;如作為預(yù)印本、抽印本等單行本時,可以有封面。5.1.2封面上可包括下列內(nèi)容:a.分類號在左上角注明分類號,便于信息交換和處理。一般應(yīng)注明《中國圖書資料分類法》的類號,同時應(yīng)盡可能注明《國際十進(jìn)分類法udc》的類號。

b.本單位編號一般標(biāo)注在右上角。學(xué)術(shù)論文無必要。

c.密級視報告、論文的內(nèi)容,按國家規(guī)定的保密條例,在右上角注明密級。如系公開發(fā)行,不注密級。

d.題名和副題名或分冊題名用大號字標(biāo)注于明顯地位。

e.卷、分冊、篇的序號和名稱如系全一冊,無需此項(xiàng)。

f.版本如草案、初稿、修訂版……等。如系初版,無需此項(xiàng)。

人工智能的論文篇十一

在二十一世紀(jì)的將來,寧波市室驗(yàn)小學(xué)的中心,有一座巨大的建筑物――大本鐘。

這不是大本鐘的仿照,而是一座高科技的智能教學(xué)樓。這座樓分成一個個小小的圓,那是一個個教室。現(xiàn)在,可以讓你見識見識所謂的“高科技”啦。走上樓梯,來到四(五)班的教室門口,門口擺著好多雙鞋,不用驚奇,教室是圓的,固然得穿特別的鞋啦。在門框上,有一個指甲大小的洞,那是微形錄像頭,假如你晚到了便會自動發(fā)信息給教師,以防你不誠懇,偷偷溜進(jìn)來。教室的中心有一大個一大個的沙包,那是學(xué)生座椅,你任憑怎么坐都可以,由于它有一個芯片,可以測你的心理,只要在聽課就可以。假如沒聽課,它就會像一把扎滿釘子的“活火山”,把你弄得苦痛不堪。教室里沒有桌子,一人一個平板電腦,教師講課的板書占一半,不用怕看不見,在為可以放大。另一半是錄像機(jī),把教師講的課全程錄像。

教室前面的講臺更牛,還有那個“大本鐘”語。數(shù)教師(包括全部教師)要拖課,那把教室建成大本鐘干嗎?鐘一響,學(xué)生倒安平穩(wěn)穩(wěn)的,教師在講臺上卻被震得象在12級地震現(xiàn)場,五臟六腑都“蹦”了出來。假如學(xué)生很喜愛,只要在“課后評分”地方點(diǎn)一個好,教師就會留下來?!皦Α鄙系暮诎逡灿行酒?,教師不用找文件,心里一想,文件就會立即翻開。芯片還能識別人。同學(xué)假如在動,不到5秒,電腦就會自動關(guān)機(jī),以防壞掉。黑板角落一個個白色的,上面畫有圖案的是教室按扭,一按,相應(yīng)的教室布置,讓同學(xué)們和教師不會為沒有教室而苦惱。

教室后邊的圖書角也很奇妙。想到什么書,什么書就會被推出一個角,不用我們一本本地找了。圖書角的邊上有一個生物角,透亮的玻璃里一個“動物園”一樣的地方。每天都會引來很多奇怪的眼睛,里面除了兇狠的野獸,其它動物幾乎都不缺。進(jìn)入邊上的“更衣室”,一套適合你的衣服就穿在了你身上,再走進(jìn)“迷你動物園”,邊上不是透亮的了,而是一望無際的“動物天堂”。盡管知道這是幻覺,但學(xué)是很吸引人。走近那些動物,衣服起了作用,讓人聽懂了它們的語言,還能和它們溝通呢!

不止這些呢,節(jié)日里,“天花板”上的燈會身出五彩的`光線,平常只會在摔倒時變軟的“地板”現(xiàn)在一不當(dāng)心踩著了哪塊,“砰”地一下就會炸出五色的彩帶,立即又自動恢復(fù),為節(jié)日增加不少樂趣。

噢,差點(diǎn)遺忘了,教室是園的,真正的目的就是不讓教師體罰學(xué)生。由于那把“沙包椅”已經(jīng)起到這個作用了啦!

這樣一個智能教室,肯定會在21世紀(jì)被創(chuàng)造出來讓我們用的。我們肯定要去研發(fā)出這種高科技的智能教室。

人工智能的論文篇十二

是的,正如霍金預(yù)言:“全面化人工智能可能意味著人類的終結(jié)?!彪S著人工智能日益滲透我們的生活,人類社會面臨著生存競爭、倫理逆境等方方面面的嚴(yán)峻挑戰(zhàn),然而,冷靜想一想,ai其實(shí)本質(zhì)上與互聯(lián)網(wǎng)、智能手機(jī)等科技相差無幾,其終極目標(biāo)都是為了讓我們的生活更快捷便利,我們?yōu)楹我獙i的到來感到恐慌?私以為,面對人工智能全面化的大勢之趨,我們理應(yīng)勇立潮頭,迎戰(zhàn)ai洪流。

毋庸置疑,人工智能無可比較的學(xué)習(xí)速度,不知疲乏的高能運(yùn)作,面面俱到的'系統(tǒng)分析,以及浩大繁雜的數(shù)據(jù)體系,勢必會占據(jù)了人類相當(dāng)比重的生存空間,機(jī)器人種種優(yōu)勢人類也難以企及,但是,ai的誕生不是為了毀滅、戰(zhàn)勝人類,而是要讓人類不斷突破自我,查找新的可能。在幾十年前,我們誰能想到如今的互聯(lián)網(wǎng)科技能徹底轉(zhuǎn)變我們的生活?同樣地,我們也無法否認(rèn)將來在ai時代我們的生活會再次被*。拒絕ai更是對更美妙將來的拒絕,唯有與ai同行,讓簡單的世界更簡潔,我們才能迎來更好的時代。

是的,無論是哪個時代,“被替代”的隱患始終存在,但也恰恰是這些隱患與挑戰(zhàn),篩選著、鞭策著人們。成也挑戰(zhàn),敗也挑戰(zhàn),關(guān)鍵在于當(dāng)洪流襲來,你是否有勇立潮頭,發(fā)覺機(jī)遇的士氣。正如王鼎鈞所言,“時代像篩子,篩得多數(shù)人流離失所,篩得少數(shù)人出類拔萃?!蔽倚湃?,那些自甘墮落,向人工智能俯首稱臣的人只會在社會中漸漸淡去,唯有那勇立潮頭的少數(shù)人才能提升自我,在ai洪流中暗藏的機(jī)遇中大放異彩。

人工智能之大勢已成定局,然人類將來之命運(yùn)猶未可知。面對ai洪流,是消沉,還是迎戰(zhàn)?由君定奪。

人工智能的論文篇十三

在科學(xué)技術(shù)日新月異的今天,知識呈爆炸性增長,全世界每天發(fā)表的論文都有數(shù)以萬計(jì),關(guān)鍵詞能鮮明而直觀地表述文獻(xiàn)論述或表達(dá)的主題,使讀者在未看學(xué)術(shù)論文的文摘和正文之前便能一目了然地知道論文論述的主題,從而作出是否要花費(fèi)時間閱讀正文的判斷[1]。不僅如此,關(guān)鍵詞揭示的是學(xué)術(shù)論文最核心的內(nèi)容,是文章最基本的學(xué)術(shù)思想、技術(shù)方法的提煉和概括[2],因此學(xué)術(shù)界已約定利用主題概念詞去檢索最新發(fā)表的論文??梢姡P(guān)鍵詞早已成為學(xué)術(shù)論文的文獻(xiàn)檢索標(biāo)識,它并不是可有可無的論文裝飾品,更不是“形式主義”和“八股文”。關(guān)鍵詞標(biāo)引得是否恰當(dāng),關(guān)系到該文被檢索的概率和該成果的利用率。

二、關(guān)鍵詞標(biāo)引的原則

(一)專指性規(guī)則

一個詞只能表達(dá)一個主題概念,即為專指性。只要能在敘詞表中找到與該文主題概念直接對應(yīng)的專指性敘詞,就不允許用詞表中的上位詞(s項(xiàng))或下位詞(f項(xiàng));若找不到與主題概念直接對應(yīng)的敘詞,而上位詞確實(shí)與主題概念相符,即可選用。限制不加組配的泛指詞的使用,以免出現(xiàn)概念含糊。

(二)組配規(guī)則

1。交叉組配。系指2個或2個以上具有概念交叉關(guān)系的敘詞所進(jìn)行的組配,其結(jié)果表達(dá)一個專指概念。例如:“噴氣式垂直起落飛機(jī)”,可用“噴氣式飛機(jī)”和“垂直起落飛機(jī)”這兩個泛指概念的詞確切地表達(dá)敘詞表中沒有的專指概念。

2。方面組配。系指一個表示事物的敘詞和另一個表示事物某個屬性或某個方面的敘詞所進(jìn)行的組配,其結(jié)果表達(dá)一個專指概念。例如:“信號模擬穩(wěn)定器”可用“信號模擬器”與“穩(wěn)定器”組配,即用事物及其性質(zhì)來表達(dá)專指概念。

在組配標(biāo)引時,優(yōu)先考慮交叉組配,然后考慮方面組配;參與組配的敘詞必須是與文獻(xiàn)主題關(guān)系最密切、最臨近的敘詞,以避免越級組配;組配結(jié)果要求所表達(dá)的概念清楚、確切,只能表達(dá)一個單一的概念;如果無法用組配方法表達(dá)主題概念時,可選用最直接的上位詞或相關(guān)敘詞標(biāo)引。

(三)采用自由詞標(biāo)引

關(guān)鍵詞允許采用自由詞標(biāo)引,下列幾種情況可采用自由詞標(biāo)引:

1。主題詞表中明顯漏選的制圖概念詞;

2。表達(dá)新學(xué)科、新理論、新技術(shù)、新材料等新出現(xiàn)的概念;

3。詞表中未收錄的地區(qū)、人物、文獻(xiàn)、產(chǎn)品等名稱及重要數(shù)據(jù)名稱;

4。某些概念采用組配,其結(jié)果出現(xiàn)多義時,被標(biāo)引概念也可用自由詞標(biāo)引。

自由詞盡可能選自其他詞表或較權(quán)威的參考書和工具書,選用的自由詞必須達(dá)到詞形簡練、概念明確、實(shí)用性強(qiáng)。采用自由詞標(biāo)引后,應(yīng)有記錄,并及時向敘詞表管理部門反映。

(四)標(biāo)引程序

首先對文獻(xiàn)進(jìn)行主題分析,弄清該文的主題概念和中心內(nèi)容;盡可能從題名、摘要、層次標(biāo)題和正文的重要段落中抽出與主題概念一致的詞和詞組;對所選出的詞進(jìn)行排序,對照敘述詞表中找出哪些詞可以直接作為敘詞標(biāo)引,哪些詞可以通過規(guī)范詞化變?yōu)閿⒃~,哪些敘詞可以組配成專指主題概念詞的詞組;還有相當(dāng)數(shù)量無法規(guī)范為敘詞的詞,只要是表達(dá)主題概念所必需的,都可以作為自由詞標(biāo)引并列入關(guān)鍵詞。

三、關(guān)鍵詞標(biāo)引常出現(xiàn)的問題

(一)用詞不規(guī)范

關(guān)鍵詞雖然不像主題詞那么嚴(yán)謹(jǐn)規(guī)范,但絕不能隨意選取。因?yàn)殛P(guān)鍵詞標(biāo)引的正確與否直接影響到計(jì)算機(jī)檢索工作,所以無檢索意義的詞語不能作關(guān)鍵詞。一般規(guī)定關(guān)鍵詞必須是實(shí)詞,即必須是一些具有實(shí)質(zhì)意義的詞語。用詞不規(guī)范主要表現(xiàn)在有些選用的詞語不是實(shí)詞,或不能揭示主題內(nèi)容。

例5:網(wǎng)絡(luò)經(jīng)濟(jì)時代圖書館信息服務(wù)的創(chuàng)新/傅先華//現(xiàn)代圖書情報技術(shù)。20xx。3

關(guān)鍵詞:網(wǎng)絡(luò)經(jīng)濟(jì);圖書館;信息服務(wù);創(chuàng)新;策略

此論文中的關(guān)鍵詞“圖書館”,用詞太寬泛,作為關(guān)鍵詞輸入電腦檢索,會跳出大量有關(guān)“圖書館”方面的文獻(xiàn),使其在提示該論文主題內(nèi)容的專指性方面的作用大大降低,失去該關(guān)鍵詞應(yīng)起的作用。

例6:電子商務(wù)在數(shù)字圖書館中的應(yīng)用/謝春枝//現(xiàn)代圖書情報技術(shù)。20xx。2

關(guān)鍵詞:電子商務(wù);數(shù)字圖書館;應(yīng)用

該論文中的關(guān)鍵詞“應(yīng)用”沒有檢索意義,不能作關(guān)鍵詞。

(二)關(guān)鍵詞的外延過于寬泛

關(guān)鍵詞是學(xué)術(shù)論文的文獻(xiàn)檢索標(biāo)識,是表達(dá)文獻(xiàn)主題概念的自然語言詞匯。它是從論文的題名、摘要、層次標(biāo)題和正文中選出來的,能反映論文主題概念的詞或詞組。因此,應(yīng)從題名、摘要、層次標(biāo)題和正文中選取最恰當(dāng)、最能反映論文所屬學(xué)科的專用的、義項(xiàng)比較單一的詞作為關(guān)鍵詞,切忌選用概念外延過于寬泛的詞。

例3:一篇題名為《論高校自然科學(xué)學(xué)報發(fā)展的新理念》的論文[3],把“新理念”選作關(guān)鍵詞就不妥當(dāng)。因?yàn)椤靶吕砟睢钡耐庋犹?,任何一門學(xué)科都存在新理念,從正文的3個層次標(biāo)題中選取“科技理論”、“人文理論”、“編輯理論”作為關(guān)鍵詞要恰當(dāng)?shù)枚唷?/p>

(三)關(guān)鍵詞漏標(biāo)

例6:一篇題名為《話說退稿》的論文[4]的關(guān)鍵詞為:“稿件;期刊;作者;編輯”。這篇論文就明顯地漏標(biāo)了“退稿”這個關(guān)鍵詞,而沒有這個關(guān)鍵詞,全文就主題不明。

例7:一篇題名為《文化傳播與外語教學(xué)》的論文[5],關(guān)鍵詞是:“語言;文化;目的語文化”,顯然也漏標(biāo)了“外語教學(xué)”這個關(guān)鍵詞。由上可見,關(guān)鍵詞漏標(biāo)現(xiàn)象在許多學(xué)術(shù)期刊中也是屢見不鮮的毛病。

(四)英文關(guān)鍵詞不規(guī)范

中、英文關(guān)鍵詞不一一對應(yīng),有的中文關(guān)鍵詞為6個,英文關(guān)鍵詞則為5個,或中、英文關(guān)鍵詞的順序不一致。英文關(guān)鍵詞拼寫錯誤多,有的用詞不正規(guī),不是專用名詞術(shù)語,而是由普通英文名詞羅列而成。

隨著計(jì)算機(jī)硬件設(shè)備的改進(jìn)和軟件技術(shù)的提高,以關(guān)鍵詞做主題索引而設(shè)計(jì)和建立的計(jì)算機(jī)數(shù)據(jù)庫檢索系統(tǒng)越來越多。關(guān)鍵詞作為一種便于文獻(xiàn)信息在計(jì)算機(jī)中進(jìn)行文獻(xiàn)標(biāo)引的最佳形式,具有較高的標(biāo)引效率,特別適合于網(wǎng)上繁雜、無序的海量文獻(xiàn)信息處理,因而成為當(dāng)前互聯(lián)網(wǎng)主要的檢索語言,為國內(nèi)外各種學(xué)術(shù)期刊和文獻(xiàn)檢索工具普遍采用,并得到迅速發(fā)展,這足以說明其對揭示論文主題和檢索科研成果的重要作用。因此,必須加強(qiáng)對學(xué)術(shù)論文中關(guān)鍵詞的規(guī)范化建設(shè),重視對學(xué)術(shù)論文關(guān)鍵詞的學(xué)習(xí)與研究。

人工智能的論文篇十四

你聽說過或者看到過智能垃圾桶嗎?假如你們沒看到,那就請跟我一起坐時間穿梭機(jī)到將來世界去參觀吧!

將來的大街上,潔凈無比,沒有落葉、沒有垃圾、沒有處處飄舞的蒼蠅、蚊蟲、更沒有刺鼻的汽油味......

喲!多得意的米奇老鼠??!我們一起跑上前,正想摩挲它,嘿!原來是一個垃圾桶。這可不是一般的垃圾桶喲!你們瞧:米奇兩眼還發(fā)著光呢,原來它正在發(fā)電來處理自已肚里的東西。米奇嘴巴緊閉著,頭上有二根天線,這天線可不是好玩的,它左邊一根天線是汲取路旁汽車的尾氣的,右邊一根天線是汲取太陽能的,以用來發(fā)電處理垃圾的;米奇胖乎乎的身體上還有三顆顏色不同的大紐扣。一個小朋友奇怪的觸摸了一下第一顆紅色的扣子,垃圾桶的門自動翻開了,又按了一下其次顆綠色扣子,門又自動的關(guān)上了,那第三顆是干什么的呢?小朋友忍不住又按了一下第三顆*的扣子,哈!真奇妙,扣子眼里彈出一個微型電話。這時,一位阿姨走過來,見我們圍著米奇,知道我們想知道這只奇妙的米奇的功能,于是,便給我們介紹起來:這只米奇的腦袋里裝有電腦芯片,它只要看到有人不當(dāng)心掉了垃圾,它就會走過去,用手將垃圾撿起來,張開緊閉的嘴,把它扔進(jìn)去。假如看到有人不愛清潔,它的`另一只手則會出示”愛惜環(huán)境榮耀,破壞環(huán)境恥辱”的小牌。它還有很多的內(nèi)在功能:它會垃圾分類,把有毒和無毒的分裝在肚子的兩邊,它肚子里還有一種溶化器,它把無毒的垃圾處理成肥料,把有毒的垃圾通過自身的排毒器將它轉(zhuǎn)換成一種無毒的清爽氣體,釋放出來。它還有一種特別好玩的趣事,一但它肚子的垃圾裝滿了,它就會自動處理垃圾,并會走到一棵樹下,從緊閉的嘴里彈出一根管了,然后插入土里,把垃圾養(yǎng)份注入樹里,然后又回到它原來的位置。

到了秋天,秋風(fēng)掃落葉時,米奇頭上便會張開一個巨大的吸盤,把黃葉都吸進(jìn)去,然后又做成肥料。米奇的腳下還有一種粘了水的毛刷式吸塵器,它可以一邊唱”小曲”,一邊走一邊清潔道路。

假如我們現(xiàn)實(shí)中有這種垃圾桶,那該多便利??!我想,這個愿望不會是夢,我們的愿望肯定會實(shí)現(xiàn)。

人工智能的論文篇十五

在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。

人工智能;空中交通;管理

人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個分支,研究對人的意識及思維的信息過程的模擬并對其進(jìn)行延伸和擴(kuò)展,通過了解人類智能,研究出類似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來越多的運(yùn)用于民航的各個方面,如飛行間隔的控制,空中流量的預(yù)測,飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。

在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場、航路有效結(jié)合,減少延誤,提高機(jī)場和空域的.利用率。從時間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場終端區(qū)流量管理兩部分,從時間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時就要對航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對地面航空器的起飛時間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒有沖突的臨時等待點(diǎn)進(jìn)行盤旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時,航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對航空器進(jìn)入空域的間隔進(jìn)行限制,來達(dá)到流量管理的目的,吸收部分擁擠的流量。

agent在人工智能的研究中,指能自主活動的軟件或者硬件實(shí)體,目前國內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級的航路智能體或機(jī)場終端區(qū)智能體發(fā)出申請,上級智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個過程是通過空中交通管制員指揮航空器實(shí)現(xiàn)的。空中交通管制員在實(shí)際指揮工作中,需要結(jié)合當(dāng)時的空中交通狀況和自身的經(jīng)驗(yàn)知識。航路智能體的主要屬性有航路的高度、寬度、容量等。航路智能體需要對航班智能體進(jìn)行指揮,管理航路上的智能體,同時與其他航路智能體和機(jī)場終端區(qū)智能體進(jìn)行通信,對航班智能體進(jìn)入和離開航路的時機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報告給上級流量管理部門,接收上級智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評估。通過評估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒有通過容量評估,則要向上級智能體發(fā)送將流量限制的申請,發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場終端區(qū)智能體:在實(shí)際工作中,機(jī)場終端區(qū)的航班管理包括管制指揮、流量控制、地面場面監(jiān)視、進(jìn)離場等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報信息等等,結(jié)合已有知識開展機(jī)場的容量評估。如遇到低云低能見度、雷雨等天氣時可以調(diào)低終端區(qū)/機(jī)場容量,對進(jìn)入離開的航空器進(jìn)行限制。通過容量評估,塔臺會給航班智能體一個slottime,航班智能體按照塔臺的slottime起飛或降落,從而達(dá)到流量控制。如果沒有通過容量評估,則需要通過上級的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過控制進(jìn)入或離開的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場終端區(qū)智能體(塔臺)對終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級的終端去智能體進(jìn)行通信,對航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報告給上級流量管理部門,接收上級智能體的命令。如果出現(xiàn)擁堵機(jī)場終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。

綜上所述,以往在模擬空中交通流量進(jìn)行研究的時候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過程的工作量。而通過智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。

[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財富,2015(30):278.

[5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,2015(14):57-57.

人工智能的論文篇十六

摘要:崔政博士的新著《科學(xué)技術(shù)知識的政治經(jīng)濟(jì)學(xué)研究》以馬克思的“勞動”概念為中心,提供了一個劃定人工智能替代人類勞動的邊界框架。該書區(qū)分了重復(fù)性勞動與創(chuàng)造性勞動,提出創(chuàng)造性勞動是人類勞動的本質(zhì)也是人工智能不可替代的。但需要進(jìn)一步指出的是,機(jī)器學(xué)習(xí)已經(jīng)在認(rèn)識實(shí)踐中表現(xiàn)出對人類認(rèn)知勞動的極大輔助作用,包括:人工智能能夠提升科學(xué)知識生產(chǎn)效率;人工智能擅于提取和傳遞默會知識;人工智能可以產(chǎn)生某種機(jī)器知識。以上原因使得我們在創(chuàng)造性勞動中很難將人工智能排除在外,未來可能的創(chuàng)造性勞動方式應(yīng)當(dāng)是某種人機(jī)協(xié)作或人機(jī)融合。

關(guān)鍵詞:人工智能;創(chuàng)造性勞動;科學(xué)知識;默會知識;機(jī)器知識

產(chǎn)業(yè)科學(xué)出現(xiàn)以來,科技創(chuàng)新對經(jīng)濟(jì)增長的驅(qū)動作用已經(jīng)成為全球性的共識。崔政博士的新著——《科學(xué)技術(shù)知識的政治經(jīng)濟(jì)學(xué)研究》,試圖以“勞動”概念的歷史分析為切入點(diǎn),討論科學(xué)技術(shù)在當(dāng)代資本主義經(jīng)濟(jì)中所扮演的角色,進(jìn)而以一種動態(tài)的勞動價值論表明當(dāng)代社會經(jīng)濟(jì)運(yùn)行的內(nèi)在動因[1]2。該書以馬克思的“勞動”概念為核心構(gòu)建了一個哲學(xué)空間,將科學(xué)知識、技術(shù)創(chuàng)新、資本運(yùn)行納入其中,完整地闡述了科學(xué)技術(shù)對經(jīng)濟(jì)社會的塑造作用。該書的敘事方式表達(dá)了兩個理論取向:第一,對科技創(chuàng)新的分析不同于傳統(tǒng)技術(shù)創(chuàng)新理論僅關(guān)注經(jīng)濟(jì)“增長”,而是從更為基礎(chǔ)的社會分工出發(fā)關(guān)注經(jīng)濟(jì)“發(fā)展”;第二,將科學(xué)知識的生產(chǎn)還原到馬克思的“科學(xué)勞動”概念,實(shí)際上已經(jīng)使用了一種擴(kuò)展了的“科學(xué)”概念,蘊(yùn)含著當(dāng)代科學(xué)知識生產(chǎn)所具有的實(shí)踐性、情境化、多主體等特征。

該書更為重要的貢獻(xiàn)在于討論了人工智能技術(shù)對于社會生產(chǎn)方式的挑戰(zhàn)和變革作用。書中提出:“人工智能的替代效應(yīng)是建立在對人類勞動數(shù)據(jù)化和邏輯化的基礎(chǔ)上的,探索自在自然的創(chuàng)造性勞動是不可數(shù)據(jù)化和邏輯化的。因此,人工智能只能圍繞既有的對象進(jìn)行重復(fù)性生產(chǎn),替代重復(fù)性勞動;而人類則能夠探索自在自然,從而摸索新技術(shù)、建構(gòu)新對象,進(jìn)行創(chuàng)造性勞動。也就是說,機(jī)器所不能替代的人類勞動的‘硬核’是探索自在自然的勞動,是創(chuàng)造對象和掌握技術(shù)的‘創(chuàng)造性勞動’?!盵1]25作者將馬克思的“勞動”概念區(qū)分為“重復(fù)性勞動”和“創(chuàng)造性勞動”,進(jìn)而指出人工智能是對機(jī)器大工業(yè)的否定,它將替代人類勞動中可以重復(fù)、可以數(shù)據(jù)化的部分,但創(chuàng)造性勞動是人類勞動的本質(zhì),是人工智能所不能替代的。

作者提出:“人工智能可以在將重復(fù)性勞動數(shù)據(jù)化的基礎(chǔ)上,對人類勞動進(jìn)行模仿,從而取代任何形式的重復(fù)性勞動。但人工智能卻不能取代人類的創(chuàng)造性勞動,創(chuàng)造性勞動是通過探索自在自然,經(jīng)過反復(fù)的摸索與實(shí)驗(yàn)、征服反常和偶然、掌握技術(shù)、創(chuàng)造對象、實(shí)現(xiàn)對象從無到有的過程的勞動,這是一種原生性的勞動?!盵1]27作者認(rèn)為,創(chuàng)造性勞動是對馬克思的“自在自然”的探索,“自在自然”是在人類的現(xiàn)有認(rèn)知能力之外,卻以反常和失敗等形式向人類顯現(xiàn)其自身。然而,在認(rèn)知實(shí)踐當(dāng)中,機(jī)器學(xué)習(xí)已經(jīng)可以幫助人類探索認(rèn)知能力之外的“自然”,當(dāng)然這種“自然”并不以反?;蚴〉男问酱嬖凇W髡咭仓赋觯骸坝绕涫窃诖髷?shù)據(jù)和云計(jì)算的背景之下,機(jī)器學(xué)習(xí)的速度遠(yuǎn)超人類的認(rèn)知極限,甚至可能在數(shù)據(jù)中找到人尚未發(fā)現(xiàn)的方法和規(guī)則。”[1]35因此,在認(rèn)知勞動方面,我們可以在作者的概念框架下進(jìn)一步區(qū)分出人工智能對人類“創(chuàng)造性勞動”的輔助作用,具體表現(xiàn)為三個方面:人工智能提高科學(xué)知識生產(chǎn)效率;人工智能擅于提取和傳遞默會知識;人工智能可以產(chǎn)生某種機(jī)器知識。

機(jī)器學(xué)習(xí)的廣泛使用可以提升科學(xué)知識生產(chǎn)的效率,主要表現(xiàn)在文獻(xiàn)研究和實(shí)驗(yàn)室研究兩個方面。人工智能系統(tǒng)可以通過自然語言理解獲取、閱讀和總結(jié)所有相關(guān)文獻(xiàn)。例如,一個叫做iris的人工智能系統(tǒng)的運(yùn)行方式是:從某個研究主題的演講切入,先使用自然語言處理算法分析演講的腳本,挖掘從開放渠道獲取的研究文獻(xiàn),然后將相關(guān)研究文獻(xiàn)分組并進(jìn)行可視化,再通過人工標(biāo)注文獻(xiàn)使機(jī)器匹配精度增加,當(dāng)機(jī)器能夠理解文獻(xiàn)的內(nèi)容和結(jié)構(gòu)時,可以幫助科研人員總結(jié)出該研究主題下的所有研究問題、假設(shè)、實(shí)驗(yàn)結(jié)果等,從而將前人工作完整呈現(xiàn)。此外,機(jī)器學(xué)習(xí)的使用還能夠加快實(shí)驗(yàn)研究的進(jìn)程。例如,2016年5月,澳大利亞國立大學(xué)的研究團(tuán)隊(duì)使用機(jī)器學(xué)習(xí)重復(fù)了物質(zhì)的玻色—愛因斯坦凝聚態(tài)的實(shí)驗(yàn)室發(fā)現(xiàn)過程,從反復(fù)設(shè)置調(diào)整實(shí)驗(yàn)設(shè)備的各種參數(shù)到產(chǎn)生凝聚態(tài)物質(zhì),機(jī)器學(xué)習(xí)只用了一個小時,而憑借這一發(fā)現(xiàn)獲得諾貝爾獎的三位科學(xué)家是在直覺的基礎(chǔ)上經(jīng)過多年實(shí)驗(yàn)才制造出了物質(zhì)的凝聚態(tài)。由此可見,作為技術(shù)的人工智能的進(jìn)步已經(jīng)開始反向促進(jìn)作為基礎(chǔ)研究的科學(xué)知識的生產(chǎn)。

在當(dāng)前人類社會所有已經(jīng)產(chǎn)生的信息中,文字只占極少的比例,大量的信息以圖片和視頻方式呈現(xiàn),其中蘊(yùn)含了大量需要通過親身體驗(yàn)才能獲取的默會知識。如果有辦法將事物狀態(tài)用圖片或視頻記錄下來,就有可能使用機(jī)器學(xué)習(xí)從中萃取出知識。很多電影公司已經(jīng)使用人工智能系統(tǒng)觀看大量人類歷史上的影視作品,從而歸納提取出經(jīng)典橋段,創(chuàng)作出新的配樂、臺詞和預(yù)告片以供人類借鑒。更為重要的是,由人工智能系統(tǒng)獲取的默會知識是以神經(jīng)網(wǎng)絡(luò)參數(shù)集的形式存在的,這對人類而言仍然不可描述,也難以在人類之間傳遞,但卻非常易于在人工智能系統(tǒng)間傳播。例如,一臺掌握駕駛技能的自動駕駛汽車只要將參數(shù)集分享出來就可以快速讓所有汽車學(xué)會這項(xiàng)技能,而且可以實(shí)現(xiàn)機(jī)器間的協(xié)同行動。

機(jī)器知識與科學(xué)知識或默會知識的核心差別在于:機(jī)器知識依賴數(shù)據(jù),科學(xué)知識或默會知識依賴信息。信息是事物可觀察的表征,或者說信息是事物的外在表現(xiàn)。任何一個物體的信息量都非常大,要精確描述一個物體,就需要將其中所有基本粒子的形態(tài)以及它們之間的關(guān)系都描述出來,同時還要將該物體與周圍環(huán)境的關(guān)系都描述出來。而數(shù)據(jù)是已經(jīng)描述出來的部分信息,關(guān)于一個物體的數(shù)據(jù)通常要比信息少得多,例如只包含它的形狀、重量、顏色和種屬關(guān)系等。只有當(dāng)信息經(jīng)過適當(dāng)?shù)奶幚?,?dāng)它被用來進(jìn)行比較、得出結(jié)論和建立聯(lián)系時,它才會轉(zhuǎn)化為知識。而知識可以理解為伴隨著經(jīng)驗(yàn)、判斷、直覺和價值的信息,作為認(rèn)知主體的人在其中扮演了關(guān)鍵角色。

相較之下,機(jī)器知識可以被刻畫為數(shù)據(jù)在時空中的關(guān)系,這些關(guān)系表現(xiàn)為某種模式,對模式的識別就是認(rèn)知,識別出來的模式就是知識,用模式去預(yù)測就是知識的應(yīng)用。這些數(shù)據(jù)在時空中的關(guān)系只在少數(shù)情況下才能用數(shù)學(xué)工具進(jìn)行表達(dá),而多數(shù)情況下知識表現(xiàn)為數(shù)據(jù)間的相關(guān)性的集合,這些相關(guān)性只有一小部分可以被人類感知和理解。這源于人類感受能力的局限性:人類只能感受部分外界信息,人類的感官經(jīng)驗(yàn)局限在三維的物理空間和一維的時間。因此,當(dāng)數(shù)據(jù)無法被感知,它們之間的關(guān)系又無法用數(shù)學(xué)工具表達(dá)時,這些數(shù)據(jù)間的關(guān)系就超出了人類的理解能力之外而屬于機(jī)器知識。當(dāng)前機(jī)器學(xué)習(xí)的主流形式——人工神經(jīng)網(wǎng)絡(luò)的最大特點(diǎn)就是發(fā)現(xiàn)并記憶數(shù)據(jù)中的相關(guān)性,例如在看了很多汽車圖片后會發(fā)現(xiàn)汽車都有四個輪胎,人類對圖片這類直觀的數(shù)據(jù)間的相關(guān)性也能發(fā)現(xiàn)并記憶一部分,這就是默會知識。但當(dāng)數(shù)據(jù)量很大且不直觀時,例如股票市場的數(shù)據(jù)或者核電站的內(nèi)部數(shù)據(jù),人類就無法應(yīng)對了。而隨著人工神經(jīng)網(wǎng)絡(luò)層級和數(shù)量的增加,人工智能系統(tǒng)能夠處理大規(guī)模的復(fù)雜數(shù)據(jù),這就是機(jī)器知識。機(jī)器知識當(dāng)前的主要表現(xiàn)形式類似于alphagozero中的神經(jīng)網(wǎng)絡(luò)的全部參數(shù)。

概言之,科學(xué)知識和默會知識多是基于信息的因果性知識,而機(jī)器知識多是基于數(shù)據(jù)的相關(guān)性知識。此外,科學(xué)知識是易于記錄、易于陳述、易于傳遞的;默會知識是難以記錄、難以陳述、可傳遞的;機(jī)器知識則是可記錄、不可陳述、易于在機(jī)器間傳遞的。

當(dāng)然,基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)仍有兩個核心的局限性導(dǎo)致人工智能系統(tǒng)還不足以承擔(dān)創(chuàng)造性勞動。第一個局限是,人工神經(jīng)網(wǎng)絡(luò)需要依賴特定領(lǐng)域的先驗(yàn)知識,也就是需要特定場景下的訓(xùn)練,這是因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)的學(xué)習(xí)本質(zhì)上是對相關(guān)性的記憶,人工神經(jīng)網(wǎng)絡(luò)將訓(xùn)練數(shù)據(jù)中相關(guān)性最高的因素作為判斷標(biāo)準(zhǔn)。這個問題在自動駕駛汽車中表現(xiàn)的非常突出,鑒于道路交通情境的復(fù)雜性和交通標(biāo)示的多樣性,自動駕駛系統(tǒng)難以避免很多交通事故。第二個局限是,人工神經(jīng)網(wǎng)絡(luò)無法解釋產(chǎn)生某個結(jié)果的原因,這種不可解釋性在許多涉及安全和公共政策的領(lǐng)域顯現(xiàn)的比較突出,例如在智能醫(yī)療中,人工神經(jīng)網(wǎng)絡(luò)在影像識別和輔助診斷中都對其結(jié)果缺乏醫(yī)學(xué)上的解釋性,都需要專業(yè)醫(yī)生的復(fù)核。

基于人工神經(jīng)網(wǎng)絡(luò)的人工智能系統(tǒng)在記憶和識別這兩個基礎(chǔ)智能方面超越了人類,但在推理、想象等高級智能方面還相差較遠(yuǎn)。與人類相比,人工智能無法承擔(dān)創(chuàng)造性勞動的原因還不止于以上的局限性,還包括:人工智能沒有常識和物理世界的模型;人工智能沒有自主和自發(fā)的通用語言能力;人工智能沒有想象力,需要大量常識、反事實(shí)假設(shè)和推理能力;最重要的是人工智能沒有自我意識。自我意識的缺乏導(dǎo)致能夠產(chǎn)生機(jī)器知識的人工智能系統(tǒng)仍然無法被視為認(rèn)知主體,其知識的“創(chuàng)造性勞動”是一種無意識認(rèn)識活動。

人工智能系統(tǒng)在提升科學(xué)知識生產(chǎn)效率、處理默會知識以及產(chǎn)生機(jī)器知識方面的優(yōu)勢,使得我們在創(chuàng)造性勞動中很難將其排除在外,未來可能的創(chuàng)造性勞動方式應(yīng)當(dāng)是某種人機(jī)協(xié)作或人機(jī)融合。腦機(jī)接口(brain-computerinterface)是當(dāng)前一個重要的人機(jī)協(xié)作研究方向,而其中最激進(jìn)的方式是馬斯克提出的neuralink,即通過柔性電極對接在人腦的神經(jīng)網(wǎng)絡(luò)上,neuralink要解決的是人類的信號輸入與輸出,但其問題在于人類的高級思維(如邏輯推理或描述場景)必須依賴語言,而目前基于人工神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)能力主要是對環(huán)境的識別能力,還遠(yuǎn)沒有達(dá)到語言和邏輯推理,但人類智能通過語言進(jìn)行溝通。這背后就隱含了人類的科學(xué)知識與人工智能系統(tǒng)的機(jī)器知識之間的不可通約,以上例子也表明基于人機(jī)協(xié)作的創(chuàng)造性勞動還有很大的技術(shù)障礙需要克服。

參考文獻(xiàn):

[1]崔政.科學(xué)技術(shù)知識的政治經(jīng)濟(jì)學(xué)研究[m].石家莊:河北人民出版社,2019.

[2]郁振華.當(dāng)代英美認(rèn)識論的困境及出路——基于默會知識維度[j].中國社會科學(xué),2018(7).

[3]eepistemologyandbigdata[a].inmcintyre,lee,andalexrosenberg,tledgecompaniontophilosophyofsocialscience[c].taylor&francis,2016.

[4]董春雨,薛永紅.機(jī)器認(rèn)識論何以可能?[j].自然辯證法研究,2019(8).

人工智能的論文篇十七

摘要:在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。

關(guān)鍵詞:人工智能;空中交通;管理

人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個分支,研究對人的意識及思維的信息過程的模擬并對其進(jìn)行延伸和擴(kuò)展,通過了解人類智能,研究出類似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來越多的運(yùn)用于民航的各個方面,如飛行間隔的控制,空中流量的預(yù)測,飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。

1空中交通流量管理探討

在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時間和空間通過的航空器數(shù)量。通過優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場、航路有效結(jié)合,減少延誤,提高機(jī)場和空域的利用率。從時間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場終端區(qū)流量管理兩部分,從時間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時就要對航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對地面航空器的起飛時間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒有沖突的臨時等待點(diǎn)進(jìn)行盤旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時,航空器可以通過選擇其他航路航線;4)控制航路間隔,通過對航空器進(jìn)入空域的間隔進(jìn)行限制,來達(dá)到流量管理的目的,吸收部分擁擠的流量。

2人工智能的應(yīng)用研究探討

agent在人工智能的研究中,指能自主活動的軟件或者硬件實(shí)體,目前國內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級的航路智能體或機(jī)場終端區(qū)智能體發(fā)出申請,上級智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個過程是通過空中交通管制員指揮航空器實(shí)現(xiàn)的。空中交通管制員在實(shí)際指揮工作中,需要結(jié)合當(dāng)時的空中交通狀況和自身的經(jīng)驗(yàn)知識。航路智能體的主要屬性有航路的`高度、寬度、容量等。航路智能體需要對航班智能體進(jìn)行指揮,管理航路上的智能體,同時與其他航路智能體和機(jī)場終端區(qū)智能體進(jìn)行通信,對航班智能體進(jìn)入和離開航路的時機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報告給上級流量管理部門,接收上級智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評估。通過評估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒有通過容量評估,則要向上級智能體發(fā)送將流量限制的申請,發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場終端區(qū)智能體:在實(shí)際工作中,機(jī)場終端區(qū)的航班管理包括管制指揮、流量控制、地面場面監(jiān)視、進(jìn)離場等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報信息等等,結(jié)合已有知識開展機(jī)場的容量評估。如遇到低云低能見度、雷雨等天氣時可以調(diào)低終端區(qū)/機(jī)場容量,對進(jìn)入離開的航空器進(jìn)行限制。通過容量評估,塔臺會給航班智能體一個slottime,航班智能體按照塔臺的slottime起飛或降落,從而達(dá)到流量控制。如果沒有通過容量評估,則需要通過上級的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過控制進(jìn)入或離開的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場終端區(qū)智能體(塔臺)對終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級的終端去智能體進(jìn)行通信,對航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報告給上級流量管理部門,接收上級智能體的命令。如果出現(xiàn)擁堵機(jī)場終端區(qū)智能體需要通過一些措施來管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。

3結(jié)論

綜上所述,以往在模擬空中交通流量進(jìn)行研究的時候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過程不能解決容量告警問題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過程的工作量。而通過智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來模擬空中流量,增加了模擬流量過程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來模擬空中流量,可以更好的分析空中交通流量問題。

參考文獻(xiàn)

[2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財富,20xx(30):278.

[5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,20xx(14):57-57.

【本文地址:http://www.aiweibaby.com/zuowen/4531048.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔