最優(yōu)一元一次方程概念教案(通用23篇)

格式:DOC 上傳日期:2023-10-30 09:49:03
最優(yōu)一元一次方程概念教案(通用23篇)
時(shí)間:2023-10-30 09:49:03     小編:翰墨

教案不僅僅是一份教學(xué)活動(dòng)的安排,更是一種教學(xué)思路和方法的體現(xiàn)。教案的編寫需要考慮學(xué)生的興趣和需求,激發(fā)學(xué)生的學(xué)習(xí)欲望接下來是一些經(jīng)典的教案案例,包含了不同學(xué)科和年級(jí)的教學(xué)內(nèi)容,大家可以參考借鑒。

一元一次方程概念教案篇一

(一).知識(shí)與技能

會(huì)利用合并同類項(xiàng)解一元一次方程.

(二).過程與方法

通過對實(shí)例的分析,體會(huì)一元一次方程作為實(shí)際問題的數(shù)學(xué)模型的作用.

(三).情感態(tài)度與價(jià)值觀

開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.

二、重、難點(diǎn)與關(guān)鍵

(一).重點(diǎn):會(huì)列一元一次方程解決實(shí)際問題,并會(huì)合并同類項(xiàng)解一元一次方程.

(二).難點(diǎn):會(huì)列一元一次方程解決實(shí)際問題.

(三).關(guān)鍵:抓住實(shí)際問題中的數(shù)量關(guān)系建立方程模型.

三、教學(xué)過程

(一)、復(fù)習(xí)提問

1.敘述等式的兩條性質(zhì).

2.解方程:4(x-)=2.

解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:

x-=

兩邊都加,得x=.

解法2:利用乘法分配律,去掉括號(hào),得:

4x-=2

兩邊同加,得4x=

兩邊同除以4,得x=.

(二)、新授

公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點(diǎn)論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個(gè)問題.

分析:設(shè)前年這個(gè)學(xué)校購買了x臺(tái)計(jì)算機(jī),已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺(tái),又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺(tái).

題目中的相等關(guān)系為:三年共購買計(jì)算機(jī)140臺(tái),即

前年購買量+去年購買量+今年購買量=140

列方程:x+2x+4x=140

如何解這個(gè)方程呢?

2x表示2x,4x表示4x,x表示1x.

根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.

這樣就可以把含x的項(xiàng)合并為一項(xiàng),合并時(shí)要注意x的系數(shù)是1,不是0.

下面的框圖表示了解這個(gè)方程的具體過程:

x+2x+4x=140

合并

7x=140

系數(shù)化為1

x=20

由上可知,前年這個(gè)學(xué)校購買了20臺(tái)計(jì)算機(jī).

上面解方程中合并起了化簡作用,把含有未知數(shù)的項(xiàng)合并為一項(xiàng),從而達(dá)到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).

例:某班學(xué)生共60分,外出參加種樹活動(dòng),根據(jù)任何的不同,要分成三個(gè)小組且使甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,求各小組人數(shù).

分析:這里甲、乙、丙三個(gè)小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.

問:本題中相等關(guān)系是什么?

答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.

解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:

2x+3x+5x=60

合并,得10x=60

系數(shù)化為1,得x=6

所以2x=12,3x=18,5x=30

答:甲組12人,乙組18人,丙組30人.

請同學(xué)們檢驗(yàn)一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.

(三)、鞏固練習(xí)

1.課本第89頁練習(xí).

(1)x=3.

(2)可以先合并,也可以先把方程兩邊同乘以2.

具體解法如下:

解法1:合并,得(+)x=7

即2x=7

系數(shù)化為1,得x=

解法2:兩邊同乘以2,得x+3x=14

合并,得4x=14

系數(shù)化為1,得x=

(3)合并,得-2.5x=10

系數(shù)化為1,得x=-4

2.補(bǔ)充練習(xí).

(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)

解:(1)設(shè)每份為x個(gè),則黑色皮塊有3x個(gè),白色皮塊有5x個(gè).

列方程3x+2x=32

合并,得8x=32

系數(shù)化為1,得x=4

黑色皮塊為43=12(個(gè)),白色皮塊有54=20(個(gè)).

(2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x-1)頁.

本問題的相等關(guān)系是:第一天讀的`量+第二天讀的量+還剩23頁=全書頁數(shù).

列方程:x+2+x-1+23=x.

四、課堂小結(jié)

初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實(shí)際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點(diǎn),本節(jié)課的兩個(gè)問題的相等關(guān)系都是:總量=各部分量的和.這是一個(gè)基本的相等關(guān)系.

合并就是把類型相同的項(xiàng)系數(shù)相加合并為一項(xiàng),也就是逆用乘法分配律,合并時(shí),注意x或-x的系數(shù)分別是1,-1,而不是0.

五、作業(yè)布置

1.課本第93頁習(xí)題3.2第1、3(1)、(2)、4、5題.

2.選用課時(shí)作業(yè)設(shè)計(jì).

合并同類項(xiàng)習(xí)題課(第2課時(shí))

一、解方程.

1.(1)3x+3-2x=7;(2)x+x=3;

(3)5x-2-7x=8;(4)y-3-5y=;

(5)-=5;(6)0.6x-x-3=0.

二、解答題.

3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時(shí)行駛60千米,b車每小時(shí)行駛48千米.

(1)兩車同時(shí)出發(fā),相向而行,出發(fā)多少小時(shí)兩車相遇?

4.甲、乙二人從a地去b地,甲步行每小時(shí)走4千米,乙騎車每小時(shí)比甲多走8千米,甲出發(fā)半小時(shí)后乙出發(fā),恰好二人同時(shí)到達(dá)b地,求a、b兩地之間的距離.

答案:

二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320=x-150.

3.(1)4小時(shí),設(shè)出發(fā)后x小時(shí)相遇,列方程60x+48x=460.

(2)3小時(shí),設(shè)b車開出后x小時(shí)兩車相遇,列方程60+60x+48x=460.

4.3千米,設(shè)a、b兩地間的距離為x千米,-=.

5.1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x-250x=400.

一元一次方程概念教案篇二

1、了解方程和一元一次方程的概念;

2、理解方程的解的概念,會(huì)判斷一個(gè)數(shù)值是否是已知方程的解。

環(huán)節(jié)一自主學(xué)習(xí)——對于疑惑的問題盡量小組互助解決。

課前至少閱讀課本兩遍,完成例題與習(xí)題,熟知本節(jié)課學(xué)習(xí)目標(biāo)與重點(diǎn)難點(diǎn)。

環(huán)節(jié)二生生互動(dòng)——課堂5分鐘練習(xí)并與小組成員相互交流心得。

1、下列各式中,是方程的是()

a。b。c。d。

2、方程的概念:含有的等式叫做方程。

3、下列方程中是一元一次方程的是()

a。b。c。d。

4、一元一次方程的概念:只含有個(gè)未知數(shù),并且未知數(shù)的次數(shù)都是,這樣的整式方程叫做一元一次方程。

5、根據(jù)下面所給的條件,能列出方程的是()

a與的'差的b甲數(shù)的2倍與乙數(shù)的的和

c一個(gè)數(shù)的是6d與的差的

6、由第5題可知,問題中必須含有才能列出方程,這正是列方程的關(guān)鍵!

7、下列以為解的方程是()

a。b。c。d。

8、解方程與方程的解的概念:解方程就是求出使方程中等號(hào)的值,而這個(gè)值就是。

環(huán)節(jié)三師生互動(dòng)——你惑我釋,合作交流,知識(shí)提升。

一元一次方程概念教案篇三

學(xué)習(xí)目標(biāo)

1.了解一元一次方程及其相關(guān)概念

2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則

3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法

5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的實(shí)際問題。

重點(diǎn)

難點(diǎn)重點(diǎn):解方程、用方程解決實(shí)際問題

難點(diǎn):用方程解決實(shí)際問題

教學(xué)流程

師生活動(dòng)時(shí)間復(fù)備標(biāo)注

二、典例回顧

1.一元一次方程的概念:

例1.試判斷下列方程是否為一元一次方程.

(1).x=5(2).x2+3x=2(3).2x+3y=5

2.一元一次方程的解(根):

判斷下列x值是否為方程3x-5=6x+4的解.

(1).x=3(2)x=3

3.解一元一次方程的基本思路:

4.解決問題的基本步驟

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40

去括號(hào),得4x+8x+16=40

移項(xiàng)及合并,得12x=24

系數(shù)化為1,得x=2

答:應(yīng)先安排2名工人工作4小時(shí).

注意:工作量=人均效率人數(shù)時(shí)間

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8

五、達(dá)標(biāo)訓(xùn)練:3.7

五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?

學(xué)生作業(yè)

課件出示問題明確知識(shí)要點(diǎn)

學(xué)生練習(xí)基礎(chǔ)上,教師點(diǎn)撥

一元一次方程概念教案篇四

教學(xué)目標(biāo):

1、能說出什么叫一元一次方程;

2、知道“元”和“次”的含義;

3、熟練掌握最簡一元一次方程的解法及理論依據(jù);

能力目標(biāo):

1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;

2、培養(yǎng)學(xué)生觀察、分析和概括的能力;

3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.

德育目標(biāo):

1、滲透由特殊到一般的辯證唯物主義思想;

2、通過對方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;

3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;

重點(diǎn):

1、一元一次方程的概念;

2、最簡方程的解法;

難點(diǎn):正確地解最簡方程。

教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法

教學(xué)過程

一、舊知識(shí)的復(fù)習(xí):

1.什么叫等式?等式具有哪些性質(zhì)?

2.什么叫方程?方程的解?解方程?

二、新知識(shí)的教學(xué):

(1)只含有一個(gè)未知數(shù);

(2)未知數(shù)的次數(shù)都是一次。

想一想:

(1)你認(rèn)為最簡單的一元一次方程是什么樣的?

(2)怎樣求最簡方程(其中是未知數(shù))的解?

三、鞏固練習(xí)

1、通過練習(xí),請你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡單。

2、檢測:

3、課堂小結(jié):

四、本節(jié)學(xué)習(xí)的主要內(nèi)容

1、一元一次方程定義;

2、最簡方程(其中是未知數(shù));

3、解最簡方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。

五、課堂作業(yè)。

一元一次方程概念教案篇五

1、了解方程的概念和一元一次方程的概念;

2、知道什么是解方程,會(huì)檢驗(yàn)?zāi)硞€(gè)值是不是方程的解;

3、培養(yǎng)學(xué)生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。

教學(xué)重點(diǎn)

1、一元一次方程的概念及方程的解;

2、能驗(yàn)證一個(gè)數(shù)是否是一個(gè)方程的解。

教學(xué)難點(diǎn)

尋找問題中的等量關(guān)系,列出方程。

教學(xué)過程

一、情景誘導(dǎo)

如果設(shè)大象的體重為xt,藍(lán)鯨的體重應(yīng)如何表示呢?怎樣解決這個(gè)問題呢?(學(xué)生思考并回答:25x-1=124,)我們把這個(gè)式子給它起個(gè)名字,叫一元一次方程,這就是我們今天要學(xué)習(xí)的一元一次方程(板書課題),那——什么叫做一元一次方程——呢?,請同學(xué)們帶著這些問題,閱讀課本114頁-115頁練習(xí)前的內(nèi)容,對照課本找出自學(xué)提綱里問題的答案。

要求:先完成得請你幫幫沒有完成的同學(xué),不會(huì)做的同學(xué)請教會(huì)做的同學(xué)。

二、自學(xué)指導(dǎo)

學(xué)生自學(xué)課本,并完成自學(xué)提綱。老師可以先進(jìn)行板書準(zhǔn)備,再到學(xué)生中進(jìn)行巡視指導(dǎo),掌握學(xué)生的學(xué)習(xí)狀況,為展示歸納做準(zhǔn)備。

附:自學(xué)提綱:

1、什么是方程?請舉出1—2個(gè)例子。未知數(shù)通常用什么表示?

2、什么是一元一次方程?請舉出1—2個(gè)例子。

3、在課本“例1”中,你知道這些方程中等號(hào)兩邊各表示什么意思嗎?

4、什么是方程的解?x=1和x=-1中哪一個(gè)是方程x+3=2的解?為什么?

5、什么是解方程?

三、展示歸納

1、請有問題的同學(xué)逐個(gè)回答自學(xué)提綱中的問題,生說師寫;

2、發(fā)動(dòng)學(xué)生進(jìn)行評(píng)價(jià)、補(bǔ)充、完善;

3、教師根據(jù)展示情況進(jìn)行必要的講解和強(qiáng)調(diào)。

四、變式練習(xí)

1、2題口答,要求說理由;其它各題,先讓學(xué)生獨(dú)立完成,教師做必要的板書準(zhǔn)備后,巡回指導(dǎo),了解情況,再讓學(xué)生匯報(bào)結(jié)果,并請同學(xué)評(píng)價(jià)、完善,然后教師根據(jù)需要進(jìn)行重點(diǎn)強(qiáng)調(diào)。

附:變式練習(xí)

1、下列各式中,哪些是一元一次方程?

2、請你說出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。

3、練習(xí)本每本0.8元,小明拿了10元錢買了y本,找回4.4元,列方程是

4、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:

(1)某數(shù)比它的2倍小3;

(2)某數(shù)與5的差比它的2倍少11;

(3)把某數(shù)增加它的10%后恰為80.

6、若x=1是方程kx-1=0的解,則k=.

五、課堂小結(jié)

通過本節(jié)課的學(xué)習(xí)你學(xué)到了什么?還有沒有要提醒同學(xué)們注意的?

六、布置作業(yè)

課本83頁習(xí)題3.1第1題。

一元一次方程概念教案篇六

1、本節(jié)內(nèi)容的地位和作用

(1)本節(jié)課是七年級(jí)第七章《用一元一次方程解決實(shí)際問題》的第3課時(shí),主要學(xué)習(xí)用一元一次方程解決路程問題。通過上兩節(jié)課的學(xué)習(xí),學(xué)生已經(jīng)初步掌握了用一元一次方程解決實(shí)際問題的方法,本節(jié)課在此基礎(chǔ)上,結(jié)合路程問題,進(jìn)一步學(xué)習(xí)如何從實(shí)際問題中分析數(shù)量關(guān)系,用一元一次方程解決實(shí)際問題。對學(xué)習(xí)函數(shù)、不等式與其他方程解實(shí)際問題都具有重要的意義和作用。

2、教學(xué)目標(biāo)(認(rèn)知、能力、情感)

(1)知識(shí)目標(biāo)

能借助“列表”的方法審題、找等量關(guān)系,進(jìn)而用一元一次方程解決路程問題。

(2)能力目標(biāo)

進(jìn)一步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題的能力。

(3)情感目標(biāo)

通過實(shí)際問題的解決,讓學(xué)生認(rèn)識(shí)數(shù)學(xué)的價(jià)值和學(xué)習(xí)數(shù)學(xué)的必要性;通過問題情境的設(shè)置,讓學(xué)生熱愛生活、熱愛體育。

3、教學(xué)重點(diǎn):

引導(dǎo)學(xué)生經(jīng)歷借助“列表法”找等量關(guān)系,用一元一次方程模型解決路程問題的過程。

知識(shí)、方法重要,其獲取過程更重要,在教學(xué)中不能只重結(jié)果而忽視過程中學(xué)生經(jīng)歷的觀察、分析、交流等活動(dòng),不然學(xué)生就不具備主動(dòng)建構(gòu)知識(shí)的能力和持續(xù)發(fā)展的動(dòng)力,只會(huì)成為解題工具,所以我把方法獲取過程作為本課的重點(diǎn)。

4、教學(xué)難點(diǎn)

掌握用列表的方法審清題意,抽象具體問題中的數(shù)學(xué)背景,建立數(shù)量間的等量關(guān)系。

用一元一次方程解決實(shí)際問題的關(guān)鍵是找到等量關(guān)系。體會(huì)“列表法”在把握路程問題等量關(guān)系的優(yōu)越性,進(jìn)而掌握這種方法是學(xué)生感到困難的,所以把它是本節(jié)課的難點(diǎn)。

5、教法學(xué)法

優(yōu)選教法

指導(dǎo)學(xué)法

學(xué)生不是被動(dòng)的接受信息,而是在“結(jié)合具體情景、設(shè)計(jì)解決策略、與他人合作交流、自我反思”的過程中學(xué)習(xí)。

二、教學(xué)環(huán)節(jié)

我把本節(jié)課設(shè)計(jì)為5個(gè)環(huán)節(jié):

1、情境引入相遇問題,初步感知列表方法

通過救人情境的創(chuàng)設(shè),既對學(xué)生已有知識(shí)的檢測,又激發(fā)學(xué)生解決問題的興趣,在不知不覺中引入路程問題――相遇問題。

引入問題后,學(xué)生獨(dú)立思考如何確定問題中的等量關(guān)系,然后課堂交流理清題意、找到等量關(guān)系的方法(畫圖或列表)。在此基礎(chǔ)上,引導(dǎo)學(xué)生探究如何用列表的方法理清題目中的數(shù)量,讓學(xué)生初步感受“列表”表示數(shù)量關(guān)系的優(yōu)越性。

本環(huán)節(jié)讓學(xué)生在獨(dú)立思考、交流探討中感受“列表法”,讓學(xué)生參與的`知識(shí)獲取過程,真正體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人。

2、感悟故事中的追及問題,拓展提高對列表的認(rèn)識(shí)

以同學(xué)們熟悉的故事為背景,配以形象生動(dòng)的動(dòng)畫,引入路程問題――追擊問題。然后讓學(xué)生應(yīng)用列表法表示追擊問題的數(shù)量關(guān)系,思考解決問題的多種方法(根據(jù)不同等量關(guān)系,設(shè)不同未知數(shù),列出不同的方程),進(jìn)一步體會(huì)“列表”表示數(shù)量關(guān)系的威力。

教學(xué)過程不能簡單地重復(fù),學(xué)習(xí)過程也不能使機(jī)械地模仿,而應(yīng)在螺旋上升的過程中不斷提高。由相遇問題到追擊問題,由一種方法到兩種方法,就是這一理念的直接體現(xiàn)。學(xué)生在應(yīng)用“列表”法的過程中,提高對“列表”法表示數(shù)量關(guān)系優(yōu)越性的認(rèn)識(shí)。

3、回歸現(xiàn)實(shí),梳理新知

本環(huán)節(jié)讓學(xué)生應(yīng)用所學(xué)知識(shí)解決現(xiàn)實(shí)生活中的問題。

本題以“奧運(yùn)”為背景,不僅反映了數(shù)學(xué)來源于實(shí)際生活,同時(shí)也體現(xiàn)了知識(shí)的實(shí)用價(jià)值,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。這一環(huán)節(jié)既對路程問題進(jìn)行了鞏固練習(xí)又滲透了愛國主義教育。

4、合作互動(dòng),深化提高

編寫一道應(yīng)用題,使它的題意適合一元一次方程60x=40x+100,要求題意清楚、聯(lián)系生活、符合實(shí)際、有一定的創(chuàng)意。

本環(huán)節(jié)讓學(xué)生以小組為單位編寫題目。

前面的環(huán)節(jié)是由實(shí)際問題到數(shù)學(xué)模型,現(xiàn)在是由數(shù)學(xué)模型到實(shí)際問題,不僅有利于學(xué)生獲取知識(shí),而且也有利于學(xué)生展示聰明才智、形成獨(dú)特個(gè)性和發(fā)展創(chuàng)新。以小組為單位編寫題目不僅可以發(fā)揮學(xué)生的集體智慧,而且還可以培養(yǎng)他們的合作和團(tuán)隊(duì)意識(shí)。

5、暢談收獲,內(nèi)化提高

這節(jié)課體驗(yàn)到了什么?

讓學(xué)生本節(jié)學(xué)習(xí)收獲和感受,全體同學(xué)交流。

對學(xué)生數(shù)學(xué)學(xué)習(xí)的既要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在數(shù)學(xué)活動(dòng)中所表現(xiàn)出來的情感與態(tài)度,課后設(shè)計(jì)的暢談收獲,把課堂還給了學(xué)生,他們收獲,交流疑問,當(dāng)堂消化本節(jié)內(nèi)容,讓每一個(gè)學(xué)生都體驗(yàn)到成功的喜悅,學(xué)生的主體地位得以充分體現(xiàn)。

設(shè)計(jì)亮點(diǎn)

(1)本節(jié)課在情境的創(chuàng)設(shè)上,突出了現(xiàn)實(shí)性、趣味性和挑戰(zhàn)性,學(xué)生喜聞樂見,使他們能快速進(jìn)入問題的解決。

(2)讓學(xué)生經(jīng)歷實(shí)踐―c認(rèn)識(shí)――再實(shí)踐――再認(rèn)識(shí)的過程,在這個(gè)過程中,學(xué)生分析問題和解決問題的能力螺旋上升,符合學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律。

一元一次方程概念教案篇七

2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的'能力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

教學(xué)重點(diǎn)和難點(diǎn)

一元一次方程解簡單的應(yīng)用題的方法和步驟.

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.

我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.

本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.

二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原來有50000千克面粉.

(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)

教師應(yīng)指出:

(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

(4)求出所列方程的解;

(5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.

一元一次方程概念教案篇八

教學(xué)目標(biāo)

2.培養(yǎng)學(xué)生觀察潛力,提高他們分析問題和解決問題的潛力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

教學(xué)重點(diǎn)和難點(diǎn)

一元一次方程解簡單的應(yīng)用題的方法和步驟.

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

(還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)

(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書寫格式)

解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得

3x+9=5x-(5-4),

解這個(gè)方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學(xué),共摘蘋果24個(gè).

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.

(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)

三、課堂練習(xí)

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

四、師生共同小結(jié)

首先,讓學(xué)生回答如下問題:

1.本節(jié)課學(xué)習(xí)了哪些資料?

2.列一元一次方程解應(yīng)用題的方法和步驟是什么?

3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.

五、作業(yè)

1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?

2.用76厘米長的鐵絲做一個(gè)長方形的教具,要使寬是16厘米,那么長是多少厘米?

一元一次方程概念教案篇九

1、能說出什么叫一元一次方程;

2、知道“元”和“次”的含義;

3、熟練掌握最簡一元一次方程的解法及理論依據(jù);

能力目標(biāo):

1、培養(yǎng)學(xué)生準(zhǔn)確運(yùn)算的能力;

2、培養(yǎng)學(xué)生觀察、分析和概括的能力;

3、通過解方程的教學(xué),了解化歸的數(shù)學(xué)思想.

德育目標(biāo):

1、滲透由特殊到一般的辯證唯物主義思想;

2、通過對方程的解進(jìn)行檢驗(yàn)的習(xí)慣的培養(yǎng),培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、細(xì)致的學(xué)習(xí)習(xí)慣和責(zé)任感;

3、在學(xué)習(xí)和探索知識(shí)中提高學(xué)生的學(xué)習(xí)能力、合作精神及勇于探索的精神;

1、一元一次方程的概念;

2、最簡方程的解法;

正確地解最簡方程。

引導(dǎo)發(fā)現(xiàn)法

1.什么叫等式?等式具有哪些性質(zhì)?

2.什么叫方程?方程的解?解方程?

(1)只含有一個(gè)未知數(shù);

(2)未知數(shù)的次數(shù)都是一次。

想一想:

(1)你認(rèn)為最簡單的一元一次方程是什么樣的?

(2)怎樣求最簡方程(其中是未知數(shù))的解?

1、通過練習(xí),請你總結(jié)一下,解方程(是未知數(shù))把系數(shù)化為1時(shí),怎樣運(yùn)用等式的性質(zhì)2,使計(jì)算比較簡單。

2、檢測:

3、課堂小結(jié):

1、一元一次方程定義;

2、最簡方程(其中是未知數(shù));

3、解最簡方程的主要思路和解題的關(guān)鍵步驟及依據(jù)。

一元一次方程概念教案篇十

1.了解一元一次方程及其相關(guān)概念

2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則

3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法

5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的實(shí)際問題。

難點(diǎn)重點(diǎn):

解方程、用方程解決實(shí)際問題

難點(diǎn):用方程解決實(shí)際問題

教學(xué)流程

二、典例回顧

1.一元一次方程的概念:

例1.試判斷下列方程是否為一元一次方程.

(1).x=5(2).x2+3x=2(3).2x+3y=5

2.一元一次方程的解(根):

判斷下列x值是否為方程3x-5=6x+4的解.

(1).x=3(2)x=3

3.解一元一次方程的基本思路:

4.解決問題的基本步驟

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40

去括號(hào),得4x+8x+16=40

移項(xiàng)及合并,得12x=24

系數(shù)化為1,得x=2

答:應(yīng)先安排2名工人工作4小時(shí).

注意:工作量=人均效率人數(shù)時(shí)間

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8

五、達(dá)標(biāo)訓(xùn)練:3.7

六、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?

一元一次方程概念教案篇十一

學(xué)習(xí)目標(biāo)

1.了解一元一次方程及其相關(guān)概念

2.掌握等式的性質(zhì),理解掌握移項(xiàng)法則

3.會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法

5.初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的.實(shí)際問題。

難點(diǎn)重點(diǎn):

解方程、用方程解決實(shí)際問題

難點(diǎn):用方程解決實(shí)際問題

教學(xué)流程

二、典例回顧

1.一元一次方程的概念:

例1.試判斷下列方程是否為一元一次方程.

(1).x=5(2).x2+3x=2(3).2x+3y=5

2.一元一次方程的解(根):

判斷下列x值是否為方程3x-5=6x+4的解.

(1).x=3(2)x=3

3.解一元一次方程的基本思路:

4.解決問題的基本步驟

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40

去括號(hào),得4x+8x+16=40

移項(xiàng)及合并,得12x=24

系數(shù)化為1,得x=2

答:應(yīng)先安排2名工人工作4小時(shí).

注意:工作量=人均效率人數(shù)時(shí)間

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系.

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8

五、達(dá)標(biāo)訓(xùn)練:3.7

五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?

一元一次方程概念教案篇十二

1、學(xué)生通過旅游、選燈、用電、水費(fèi)、用氣、電信等問題的方案設(shè)計(jì),弄清各類問題中的等量關(guān)系,掌握用方程來解決一些生活中的實(shí)際問題的技巧.

2、通過一個(gè)開放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問題和用方程去解決實(shí)際問題的能力.

3、讓學(xué)生在生動(dòng)活潑的問題情境中感受數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流的樂趣。

把生活中的實(shí)際問題抽象出數(shù)學(xué)問題。

引導(dǎo)學(xué)生弄清題意,設(shè)計(jì)出各類問題的最佳方案

(師生活動(dòng))設(shè)計(jì)理念

提出問題問題:小江一家三口準(zhǔn)備國慶節(jié)外出旅游.現(xiàn)有兩家

由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實(shí)際生活問題,引入新課,并由學(xué)生自己設(shè)計(jì)出選擇旅行社的方案,為新授哪種燈省錢埋下伏筆。

分析問題出示教科書94頁探究2:用哪種燈省錢?

師生共同探討完成下列問題:

1、上述問題中基本等量關(guān)系有哪些?

(費(fèi)用=燈的售價(jià)+電費(fèi),電費(fèi)=0.5×燈的功率(千

瓦)×照明時(shí)間(時(shí))

2、列式表示兩種燈的費(fèi)用各為多少?

(節(jié)能燈用t小時(shí)的費(fèi)用(元)為:60+0.5×0-o.11t

白熾燈用t小時(shí)的費(fèi)用(元)為:3十0.06×0.5t)

3、當(dāng)照明時(shí)間t取何值時(shí),(1)白熾燈比節(jié)能燈省錢,

(2)節(jié)能燈比白熾燈省錢?(3)白熾燈與節(jié)能燈費(fèi)用一樣?(精確到1小時(shí))

4、如果計(jì)劃照明3500小時(shí),則需要購買兩個(gè)燈,試設(shè)計(jì)你認(rèn)為能省錢的選燈方案。

以課本例題中實(shí)際生活問題為素材,使學(xué)生感受數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問題中的探討的幾個(gè)問題,體現(xiàn)了以學(xué)生為主體,教師作為問題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。

探索創(chuàng)新下面問題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實(shí)際問題,每一大組完成一個(gè),分四個(gè)小組討論后設(shè)計(jì)出最佳方案。

10分鐘后,大組派代表交流發(fā)言.

1、電價(jià)問題

據(jù)我們調(diào)查,我市居民生活用電價(jià)格為每天早晨7時(shí)到晚上23時(shí)每度0.47元,每天23時(shí)到第二天7時(shí)每度0.25元.請根據(jù)你家每月用電情況,設(shè)計(jì)出用電的最佳方案.

2、水費(fèi)問題

我市為鼓勵(lì)節(jié)約用水,對自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸部分按0.45元/噸收費(fèi),超過10噸而不超過20噸部分按0.8元/噸收費(fèi),超過20噸部分按0.50元/噸收費(fèi),某月甲戶比乙戶多交水費(fèi)3.75元,已知乙戶交水費(fèi)3.15元.

問:(1)甲、乙兩戶該月各用水多少噸?(自來水按整噸收費(fèi))

(2)根據(jù)你家用水情況,設(shè)計(jì)出最佳用水方案.

3、用氣問題

某市按下列規(guī)定收取每月的煤氣費(fèi):用煤氣如果不超過60立方米,按每立方米o(hù).8元收費(fèi);如果超過60立方米,超過部分按每立方米1.2元收費(fèi).怎樣用氣最節(jié)約?請?jiān)O(shè)計(jì)出方案來.

4、電信支費(fèi)

隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請你通過市場調(diào)查,為你家設(shè)計(jì)出一種通訊方案.

(1)兩地間打長途電話所付電費(fèi)有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過3分鐘以后,每分鐘付1元.

根據(jù)上述資料,(1)你認(rèn)為一個(gè)月通話多少分鐘,兩種移動(dòng)通訊費(fèi)用相同?(2)某人估計(jì)一個(gè)月內(nèi)通話300分鐘,應(yīng)選擇哪種移動(dòng)通訊或用長途電話合算些?提供給學(xué)生一個(gè)開放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過學(xué)生合作交流來設(shè)計(jì)最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)和創(chuàng)新意識(shí)。

課堂小結(jié)可用教師對各小組交流的方案進(jìn)行簡單的評(píng)價(jià)作為小結(jié)。

布置作業(yè)1、必做題:課本第98頁習(xí)題2.4第5、7題

2、選做題:

分層次布置作業(yè)。

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

本課以生活中的實(shí)際問題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計(jì)的

幾個(gè)問題,教師在學(xué)生接受新知識(shí)的過程中,起到了一個(gè)組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動(dòng)的.通過學(xué)生課前的社會(huì)調(diào)查,對生活中的一些方案以開放形式設(shè)計(jì)問題,學(xué)生通過小組合作交流,設(shè)計(jì)出不同的方案,讓學(xué)生在生動(dòng)活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價(jià)值,產(chǎn)生對數(shù)學(xué)的興趣.同時(shí)養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂趣.通過用電、用水最佳方案的設(shè)計(jì),培養(yǎng)學(xué)生節(jié)約用電、用水的意識(shí).

一元一次方程概念教案篇十三

本節(jié)課的教學(xué)設(shè)計(jì)中堅(jiān)持以學(xué)生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個(gè)與生活密切相關(guān)的實(shí)際問題,抽象出相等的數(shù)量關(guān)系,建立數(shù)學(xué)模型。啟發(fā)學(xué)生逐層深入,多方位、多角度地思考問題,加強(qiáng)知識(shí)的綜合運(yùn)用,尊重個(gè)體差異,幫助學(xué)生在自主探索與合作交流的過程中獲得數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高靈活解決實(shí)際問題的能力。

教學(xué)內(nèi)容分析

本節(jié)課是人民教育出版社的義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》七年級(jí)上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實(shí)際問題,是初中階段應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問題的開端,同時(shí)也是今后學(xué)習(xí)列其它方程或方程組解決實(shí)際問題的基礎(chǔ)。

教學(xué)對象分析

學(xué)生在小學(xué)學(xué)習(xí)時(shí)就已接觸過有關(guān)實(shí)際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關(guān)系,并會(huì)解決一些簡單問題,同時(shí),在本章前階段的學(xué)習(xí)中學(xué)習(xí)了一元一次方程的解法及列一元一次方程解實(shí)際問題建模的思想,但由于學(xué)生的認(rèn)知起點(diǎn)和學(xué)習(xí)能力存在差異,部分學(xué)生對于抽象數(shù)學(xué)模型可能感到困難,因此,教學(xué)時(shí)要注意學(xué)生的學(xué)習(xí)傾向,挖掘積極因素,力求不同的學(xué)生獲得不同的發(fā)展。

知識(shí)與技能目標(biāo)

進(jìn)一步掌握生活中實(shí)際問題的方程解法,能找出實(shí)際問題中已知數(shù)、未知數(shù)和全部的等量關(guān)系,列一元一次方程加以解決。

過程與方法目標(biāo)

主動(dòng)參與數(shù)學(xué)活動(dòng),通過問題的`對比體會(huì)數(shù)學(xué)建模思想,形成良好的思維習(xí)慣。

情感、態(tài)度和價(jià)值觀目標(biāo)

經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實(shí)際問題的過程,樹立多種方法解決問題的創(chuàng)新意識(shí),品嘗成功的喜悅,激發(fā)應(yīng)用數(shù)學(xué)的熱情。

教學(xué)重點(diǎn):1.體驗(yàn)用多種方法解決實(shí)際問題的過程。

2.列一元一次方程解決實(shí)際問題的方法。

教學(xué)難點(diǎn):體會(huì)實(shí)際問題的生活情節(jié),將數(shù)量關(guān)系抽象概括成為方程模型。

教學(xué)關(guān)鍵:調(diào)動(dòng)全體學(xué)生的積極性,讓學(xué)生參與實(shí)踐,在實(shí)踐中提問、交流、合作、探索,正確地列出方程,解決問題。

利用多媒體課件引入問題,讓學(xué)生在實(shí)際背景下發(fā)現(xiàn)和理解數(shù)學(xué)問題。

問題1:銷售中的盈虧:

分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進(jìn)這兩件衣服時(shí)花了多少錢,如果進(jìn)價(jià)大于售價(jià)就虧損,反之就盈利。

小組討論:

問題2:用那種燈省錢

分析:問題中有基本的等量關(guān)系

費(fèi)用=燈的售價(jià)+電費(fèi)

一元一次方程概念教案篇十四

1、經(jīng)歷由實(shí)際問題抽象為方程模型的過程,進(jìn)一步體會(huì)模型化的思想。

2、通過探究實(shí)際問題與一元一次方程的關(guān)系,感受數(shù)學(xué)的應(yīng)用價(jià)值,提高分析問題,解決問題的能力。

探究實(shí)際問題與一元一次方程的關(guān)系。

建立一元一次方程解決實(shí)際問題

(師生活動(dòng))設(shè)計(jì)理念

創(chuàng)設(shè)情境提出問題

信息社會(huì),人們溝通交流方式多樣化,移動(dòng)電話已很普及,選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有理實(shí)意義。

出示教科書80頁的例2;觀察下列兩種移動(dòng)電話計(jì)費(fèi)方式表:

全球通神州行

月租費(fèi)50元/月0

本地通話費(fèi)0.40元/分0.60元/分

1、你能從中表中獲得哪些信息,試用自己的話說說。

2、猜一猜,使用哪一種計(jì)費(fèi)方式合算?

3、一個(gè)月內(nèi)在本地通話200分和300分,按兩種計(jì)費(fèi)方式各需交費(fèi)多少元?

4、對于某個(gè)本地通通話時(shí)間,會(huì)出現(xiàn)兩種計(jì)費(fèi)方式的收費(fèi)一樣的情況嗎?本例是一道與生活相關(guān)的移動(dòng)電話收費(fèi)的問題,讓學(xué)生討論選擇經(jīng)濟(jì)實(shí)惠的收費(fèi)方式很有現(xiàn)實(shí)意義。

理解問題是本身是列方程的基礎(chǔ),本例是通過表格形式給出已知數(shù)據(jù)的,通過設(shè)計(jì)問題1、2、3讓學(xué)生展開討論,幫助理解,培養(yǎng)學(xué)生的讀題能力和收集信息的能力。

解決問題學(xué)生充分交流討論、整理歸納

解:1、用全球通每月收月租費(fèi)50元,此外根據(jù)累計(jì)通話時(shí)間按0.40元/分加收通話費(fèi);用神州行不收月租費(fèi),根據(jù)累計(jì)通話時(shí)間按0.60元/分收通話費(fèi)。

2、不一定,具體由當(dāng)月累計(jì)通話時(shí)間決定。

3、全球通神州行

200分130元120元

300分170元180元

0.6t=50+0.4t

移項(xiàng)得0.6t-0.4t=50

合并,得0.2t=50

系數(shù)化為1,得t=250

以表格的形式呈現(xiàn)數(shù)據(jù),簡單明了,易于比較。

通過探究實(shí)際問題與一元一次方程的關(guān)系,提高分析問題,解決問題的能力。

學(xué)生練習(xí),教師巡視,指導(dǎo),討論解是否合理

知識(shí)梳理小組討論,試用框圖概括用一元一次方程分析和解決實(shí)際問題的基本過程

學(xué)生思考、討論、整理。

實(shí)際問題題

列方程

數(shù)學(xué)問題(一元一次方程)

實(shí)際問題的答案

數(shù)學(xué)問題的解

這是第一次比較完整地用框圖反映實(shí)際問題與一元一次方程的關(guān)系。

讓學(xué)生結(jié)合自己的解題過程概括整理,幫助理解,培養(yǎng)模型化的思想和應(yīng)用數(shù)學(xué)于現(xiàn)實(shí)生活的意識(shí)。

小結(jié)與作業(yè)

布置作業(yè)

1、必做題:教科書82頁習(xí)題2.2第2題。

2、一個(gè)兩位數(shù),個(gè)位數(shù)字是十位數(shù)字的3倍,如果把個(gè)位數(shù)字與十位數(shù)字對調(diào),那么得到的新數(shù)比原數(shù)大54,求原來的兩位數(shù)。

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

課程改革的目的之一是促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,加強(qiáng)學(xué)習(xí)的主動(dòng)性和探究性,本章內(nèi)容涉及大量的實(shí)際問題,豐富多彩的問題情境和解決實(shí)際問題的快樂更容易激起學(xué)生對數(shù)學(xué)的興趣,在本節(jié)中,引導(dǎo)學(xué)生從身邊的移動(dòng)電話收費(fèi),旅游費(fèi)用等問題展開探究,使學(xué)生在現(xiàn)實(shí)、富有挑戰(zhàn)性的問題情境中經(jīng)歷多角度認(rèn)識(shí)問題,多種策略思考問題,嘗試解釋答案的合性的活動(dòng),培養(yǎng)探索精神和創(chuàng)新意識(shí)。

在前面幾節(jié)學(xué)習(xí)中,已經(jīng)對利用一元一次方程解決問題的基本過程進(jìn)行多次滲透,逐步細(xì)化,本節(jié)要求學(xué)生用框圖概括,使學(xué)生對應(yīng)用一元一次方程解決實(shí)際問題有較理性的認(rèn)識(shí),進(jìn)一步體會(huì)模型化的思想。

一元一次方程概念教案篇十五

一、教材分析

(一)教材的地位和作用

(二)教材的重難點(diǎn)

二、教學(xué)目標(biāo)分析

(一)知識(shí)技能目標(biāo)

1.目標(biāo)內(nèi)容

(2)培養(yǎng)學(xué)生建立方程模型來分析、解決實(shí)際問題的能力以及探索精神、合作意識(shí).

2.目標(biāo)分析

(二)過程目標(biāo)

1.目標(biāo)內(nèi)容

在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí).

2.目標(biāo)分析

(三)情感目標(biāo)

1.目標(biāo)內(nèi)容

2.目標(biāo)分析

三、教材處理與教法分析

一元一次方程概念教案篇十六

一、教材分析

1、地位和作用

地位:本節(jié)位于青島版七年級(jí)上冊第八章第4節(jié)第三課時(shí),在研究了解簡單的一元一次方程的基礎(chǔ)上進(jìn)行的,其后是第5節(jié)一元一次方程的應(yīng)用。

作用:是一元一次方程解應(yīng)用題的基礎(chǔ),也是解其他方程的基礎(chǔ)。

2、教學(xué)目標(biāo)

(1)知識(shí)與技能:讓學(xué)生掌握解一元一次方程的基本步驟,會(huì)解一元一次方程。

(2)過程與方法:讓學(xué)生經(jīng)歷解一元一次方程的探索過程,總結(jié)出解一元一次方程的一般步驟。

(3)情感、態(tài)度與價(jià)值觀:通過自主學(xué)習(xí)、合作交流,培養(yǎng)學(xué)生的自信心與團(tuán)結(jié)互助精神,讓學(xué)生體會(huì)到解方程中分析與轉(zhuǎn)化的思想方法。

3、重難點(diǎn)與關(guān)鍵

重點(diǎn):解一元一次方程的一般步驟。

難點(diǎn):解一元一次方程的一般步驟的歸納。

關(guān)鍵:每一步的`依據(jù)及應(yīng)注意的問題。

二、學(xué)情分析

學(xué)生已經(jīng)歷了兩節(jié)簡單的解一元一次方程,大部分學(xué)生應(yīng)已經(jīng)初步了解了去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1等方法,對本節(jié)學(xué)習(xí)大有幫助,但在去分母及其余各步驟中都有易錯(cuò)點(diǎn),是學(xué)生難以全面掌握的。

三、教學(xué)思想

新課改理念強(qiáng)調(diào)學(xué)生的主體地位,把課堂還給學(xué)生,學(xué)生是每一環(huán)節(jié)的主體。數(shù)學(xué)是思維的體操。這節(jié)課的目的是讓學(xué)生真正思考,將知識(shí)與技能內(nèi)化成自己的東西,同時(shí)養(yǎng)成良好的行為、學(xué)習(xí)習(xí)慣。

四、教學(xué)過程教學(xué)環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)目的一、師生定向

了解學(xué)情出示上節(jié)

習(xí)題練習(xí)了解具體學(xué)情確定新舊知識(shí)的銜接點(diǎn)三、自主預(yù)習(xí)

預(yù)習(xí)檢測布置任務(wù)

巡視督導(dǎo)

板書例題

預(yù)習(xí)檢測

抽查學(xué)生

指導(dǎo)學(xué)生自改自評(píng)

自學(xué)課本內(nèi)容,思考解方程的每一步變化的名稱及具體做法,思考易錯(cuò)點(diǎn)

閉卷答題

自改、自評(píng)預(yù)習(xí)效果

教師指明做法,幫學(xué)生走進(jìn)教材,理解文本,把握重點(diǎn)。

通過學(xué)生閱讀思考讓學(xué)生將部分知識(shí)內(nèi)化。

檢查預(yù)習(xí)情況,暴曬問題

讓學(xué)生將技能內(nèi)化,培養(yǎng)學(xué)生獨(dú)立學(xué)習(xí)能力

四、合作探究

展示交流指導(dǎo)學(xué)生互評(píng)

引導(dǎo)學(xué)生討論總結(jié)步驟及具體做法,易錯(cuò)點(diǎn)小組合作解決自學(xué)未能解決的問題

由會(huì)的同學(xué)展示

小組討論總結(jié)每一步的易錯(cuò)點(diǎn)兵教兵

在互動(dòng)中提高學(xué)生的分析能力、判斷能力,培養(yǎng)團(tuán)結(jié)互助精神五、達(dá)標(biāo)自測

拓展應(yīng)用引導(dǎo)學(xué)生完成相應(yīng)學(xué)案上的問題

獨(dú)立完成

自評(píng)互評(píng)

小組交流后當(dāng)堂完成檢驗(yàn)學(xué)生學(xué)習(xí)成果用以確定課后作業(yè)六簡談收獲

布置作業(yè)引導(dǎo)學(xué)生談?wù)勥@節(jié)課的收獲

布置作業(yè)

從知識(shí)、方法、情感等方面談?wù)n堂收獲了解學(xué)生收獲情況

布置課下任務(wù),讓學(xué)生繼續(xù)牢固學(xué)習(xí)成果

一元一次方程概念教案篇十七

去括號(hào),移項(xiàng),合并同類項(xiàng),系數(shù)化為1。

4、鞏固練習(xí)

(1)解方程(2)當(dāng)y為何值時(shí),2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)

(鞏固練習(xí),抽兩個(gè)同學(xué)上黑板去完成,其余的同學(xué)在演草紙上完成,待同學(xué)們完成后給予點(diǎn)評(píng)。)

5、小結(jié):和同學(xué)們一起回顧我們這節(jié)課學(xué)習(xí)了什么?

一元一次方程概念教案篇十八

2.培養(yǎng)學(xué)生觀察潛力,提高他們分析問題和解決問題的潛力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

一元一次方程解簡單的應(yīng)用題的方法和步驟.

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運(yùn)出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原先有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原先有50000千克面粉.

(還有,原先重量=運(yùn)出重量+剩余重量;原先重量-剩余重量=運(yùn)出重量)

(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

(4)求出所列方程的解;

(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤.并嚴(yán)格規(guī)范書寫格式)

解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得

3x+9=5x-(5-4),

解這個(gè)方程:2x=10,

所以x=5.

其蘋果數(shù)為3×5+9=24.

答:第一小組有5名同學(xué),共摘蘋果24個(gè).

學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.

(設(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)

三、課堂練習(xí)

2.我國城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款到達(dá)3802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元.求1978年末的儲(chǔ)蓄存款。

3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).

四、師生共同小結(jié)

首先,讓學(xué)生回答如下問題:

1.本節(jié)課學(xué)習(xí)了哪些資料?

2.列一元一次方程解應(yīng)用題的方法和步驟是什么?

3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?

依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:

(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.

五、作業(yè)

1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?

2.用76厘米長的鐵絲做一個(gè)長方形的教具,要使寬是16厘米,那么長是多少厘米?

5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù)撸坏泉?jiǎng)每人200元,二等獎(jiǎng)每人50元.求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。

一元一次方程概念教案篇十九

知識(shí)與能力

1.通過對典型實(shí)際問題的分析,體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步.

2.在根據(jù)問題尋找相等關(guān)系、根據(jù)相等關(guān)系列出方程的過程中,培養(yǎng)獲取信息、分析問題、處理問題的能力.

3.在方程的概念“含有未知數(shù)的等式”指引下經(jīng)歷把實(shí)際問題抽象為數(shù)學(xué)方程的.過程,認(rèn)識(shí)到方程是刻畫現(xiàn)實(shí)世界的一種有效的數(shù)學(xué)模型,初步體會(huì)建立數(shù)學(xué)模型的思想.

1.能結(jié)合實(shí)際問題情境發(fā)現(xiàn)并提出數(shù)學(xué)問題.

2.通過學(xué)習(xí)進(jìn)一步體會(huì)方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,增強(qiáng)從實(shí)際問題出發(fā)建立數(shù)學(xué)模型的能力.

情感態(tài)度與價(jià)值觀目標(biāo)

1.勤于思考,樂于探究,敢于發(fā)表自己的觀點(diǎn);

2.以積極的態(tài)度與同伴合作,從解決實(shí)際問題中體驗(yàn)數(shù)學(xué)價(jià)值.

教學(xué)重難點(diǎn)

重點(diǎn)

會(huì)用一元一次方程解決實(shí)際問題.

難點(diǎn)

將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過列方程解決問題.

一元一次方程概念教案篇二十

教學(xué)目標(biāo)

基礎(chǔ)知識(shí):掌握一元一次方程得解法,了解銷售中的數(shù)量關(guān)系。

基本技能:能夠分析實(shí)際問題中的數(shù)量關(guān)系,找相等關(guān)系,列出一元一次方程。

基本思想

方法:通過將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,培養(yǎng)學(xué)生的建模思想;

基本活動(dòng)經(jīng)驗(yàn)體會(huì)解決實(shí)際問題的一般步驟及盈虧中的關(guān)系

教學(xué)重點(diǎn)

探索并掌握列一元一次方程解決實(shí)際問題的方法,

教學(xué)難點(diǎn)

找出已知量與未知量之間的關(guān)系及相等關(guān)系。

教具資料準(zhǔn)備

教師準(zhǔn)備:課件

學(xué)生準(zhǔn)備:書、本

教學(xué)過程

一、創(chuàng)設(shè)情景引入新課

觀察圖片引課(見大屏幕)

二、探究

探究銷售中的盈虧問題:

1、商品原價(jià)200元,九折出售,賣價(jià)是元.

2、商品進(jìn)價(jià)是30元,售價(jià)是50元,則利潤

是元.

2、某商品原來每件零售價(jià)是a元,現(xiàn)在每件降價(jià)10%,降價(jià)后每件零售價(jià)是元.

3、某種品牌的`彩電降價(jià)20%以后,每臺(tái)售價(jià)為a元,則該品牌彩電每臺(tái)原價(jià)應(yīng)為元.

4、某商品按定價(jià)的八折出售,售價(jià)是14.8元,則原定售價(jià)是.

(學(xué)生總結(jié)公式)

熟悉各個(gè)量之間的聯(lián)系有助于熟悉利潤、利潤率售價(jià)進(jìn)價(jià)之間聯(lián)系

三、探究一

分析:售價(jià)=進(jìn)價(jià)+利潤

售價(jià)=(1+利潤率)進(jìn)價(jià)

虧?

(2)某文具店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣64元,

其中一個(gè)盈利60%,另一個(gè)虧本20%.這次交易中的盈虧情況?

(3)某商場把進(jìn)價(jià)為1980元的商品按標(biāo)價(jià)的八折出售,仍

獲利10%,則該商品的標(biāo)價(jià)為元.

注:標(biāo)價(jià)n/10=進(jìn)(1+率)

(4)2、我國政府為解決老百姓看病難的問題,決定下調(diào)藥品的

價(jià)格,某種藥品在漲價(jià)30%后,降價(jià)70%至a元,

則這種藥品在20漲價(jià)前價(jià)格為元.

四、小結(jié)

通過本節(jié)課的學(xué)習(xí)你有哪些收獲?你還有哪些疑惑?

虧損還是盈利對比售價(jià)與進(jìn)價(jià)的關(guān)系才能加以判斷

小組研究解決提出質(zhì)疑

優(yōu)生展示講解質(zhì)疑

五、作業(yè)布置:

板書設(shè)計(jì)

一元一次方程的應(yīng)用-----盈虧問題

相關(guān)的關(guān)系式:例題

課后反思售價(jià)、進(jìn)價(jià)、利潤、利潤率、標(biāo)價(jià)、折扣數(shù)這幾個(gè)量之間的關(guān)系一定清楚,之后才能靈活運(yùn)用,通過變式練習(xí)加強(qiáng)記憶提高能力。

一元一次方程概念教案篇二十一

知識(shí)與能力:

1、通過對典型實(shí)際問題的分析,體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步、

過程與方法:

1、能結(jié)合實(shí)際問題情境發(fā)現(xiàn)并提出數(shù)學(xué)問題、

情感態(tài)度與價(jià)值觀目標(biāo):

1、勤于思考,樂于探究,敢于發(fā)表自己的觀點(diǎn);

2、以積極的態(tài)度與同伴合作,從解決實(shí)際問題中體驗(yàn)數(shù)學(xué)價(jià)值、

重點(diǎn)

會(huì)用一元一次方程解決實(shí)際問題、

難點(diǎn)

將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過列方程解決問題、

一元一次方程概念教案篇二十二

2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;

3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.

教學(xué)重點(diǎn)和難點(diǎn)

一元一次方程解簡單的應(yīng)用題的方法和步驟.

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題.

例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).

(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)

解法1:(4+2)÷(3-1)=3.

答:某數(shù)為3.

(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)

解法2:設(shè)某數(shù)為x,則有3x-2=x+4.

解之,得x=3.

答:某數(shù)為3.

縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一.

我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系.因此對于任何一個(gè)應(yīng)用題中提供的條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程.

本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟.

二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟

師生共同分析:

1.本題中給出的已知量和未知量各是什么?

2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)

上述分析過程可列表如下:

解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得

x-15%x=42500,

所以x=50000.

答:原來有50000千克面粉.

(還有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)

教師應(yīng)指出:

(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.

依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:

(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.(這是關(guān)鍵一步);

(4)求出所列方程的解;

(5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義.

一元一次方程概念教案篇二十三

我們這堂課主要有五個(gè)特色:

1、學(xué)而時(shí)習(xí)之

2、新課當(dāng)舊課上

3、重視引導(dǎo)學(xué)生再創(chuàng)造,再發(fā)現(xiàn)

4、突出學(xué)習(xí)和強(qiáng)度,角度和反思

5、創(chuàng)設(shè)情景,讓學(xué)生主動(dòng)積極參與

一、學(xué)而時(shí)習(xí)之

二、新課當(dāng)舊課上

三、重視引導(dǎo)學(xué)生再創(chuàng)造、再發(fā)現(xiàn)

b組訓(xùn)練題較a組靈活,適用于學(xué)有余力的學(xué)生

第(4)題,學(xué)生要考慮兩種情況;目的是通過分類討論的思想,培養(yǎng)學(xué)生思維的嚴(yán)密性

四、突出學(xué)習(xí)的速度、角度、強(qiáng)度和反思

例如:課前訓(xùn)練一和作業(yè)中對新舊知識(shí)的系統(tǒng)復(fù)習(xí),通過多次鞏固達(dá)到強(qiáng)化訓(xùn)練的目的

另外,我們設(shè)計(jì)了強(qiáng)化a組題,在學(xué)生完成a組訓(xùn)練題后,可以自由選擇是進(jìn)入強(qiáng)化a組題還是進(jìn)入b組訓(xùn)練題中這部分的設(shè)計(jì)主要是讓學(xué)生養(yǎng)成客觀的自我評(píng)價(jià),和為在a組訓(xùn)練中未能形成基本技能的學(xué)生再次創(chuàng)造一個(gè)條件和空間,務(wù)求使學(xué)生掌握基礎(chǔ)知識(shí),再次有機(jī)會(huì)形成基本技能,充分體現(xiàn)學(xué)習(xí)強(qiáng)度和分層教學(xué)。

五、創(chuàng)設(shè)情境,讓學(xué)生主動(dòng)積極參與

【本文地址:http://www.aiweibaby.com/zuowen/5217481.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔