最優(yōu)因數(shù)與倍數(shù)教案大全(12篇)

格式:DOC 上傳日期:2023-11-01 08:26:15
最優(yōu)因數(shù)與倍數(shù)教案大全(12篇)
時間:2023-11-01 08:26:15     小編:琴心月

通過編寫教案,教師可以更好地掌握教學進度,提高教學效果。教案應該注重對學生的評價和反饋,及時調(diào)整教學策略,提高教學質(zhì)量。希望大家能夠通過閱讀這些范文,掌握一些教案編寫的技巧和方法。

因數(shù)與倍數(shù)教案篇一

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的.方法,提高推理能力。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律

偶數(shù)+偶數(shù)=偶數(shù)

奇數(shù)+奇數(shù)=偶數(shù)

偶數(shù)+奇數(shù)=奇數(shù)

[板書設(shè)計]

數(shù)的奇偶性

12+34=48偶數(shù)+偶數(shù)=偶數(shù)

11+37=48奇數(shù)+奇數(shù)=偶數(shù)

12+11=23奇數(shù)+偶數(shù)=奇數(shù)

因數(shù)與倍數(shù)教案篇二

1、學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;

2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);

4、培養(yǎng)學生的觀察能力。

:掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。

:能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12

所以2是12的因數(shù),6也是12的因數(shù);

12是2的倍數(shù),12也是6的倍數(shù)。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)

師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?

那你還能找出12的其他因數(shù)嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))

齊讀p12的注意。

(一)找因數(shù):

1、出示例1:18的因數(shù)有哪幾個?

學生嘗試完成:匯報

(18的因數(shù)有:1,2,3,6,9,18)

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數(shù)有那些?

匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

仔細看看,36的因數(shù)中,最小的'是幾,最大的是幾?

看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如

18的因數(shù)

小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?

匯報:2、4、6、8、10、16、……

師:為什么找不完?

你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍數(shù)最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。

匯報3的倍數(shù)有:3,6,9,12

師:這樣寫可以嗎?為什么?應該怎么改呢?

改寫成:3的倍數(shù)有:3,6,9,12,……

你是怎么找的?(用3分別乘以1,2,3,……倍)

5的倍數(shù)有:5,10,15,20,……

師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示

2的倍數(shù)3的倍數(shù)5的倍數(shù)

師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

完成練習二1~4題

因數(shù)與倍數(shù)教案篇三

一、引入新課。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12

所以2是12的因數(shù),6也是12的因數(shù);

12是2的倍數(shù),12也是6的倍數(shù)。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)

師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?

那你還能找出12的其他因數(shù)嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))

齊讀p12的注意。

二、新授:

(一)找因數(shù):

1、出示例1:18的因數(shù)有哪幾個?

學生嘗試完成:匯報

(18的因數(shù)有:1,2,3,6,9,18)

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數(shù)有那些?

匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)

師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)

仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?

看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。

3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如

18的因數(shù)

小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?

匯報:2、4、6、8、10、16、……

師:為什么找不完?

你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍數(shù)最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。

匯報3的倍數(shù)有:3,6,9,12

師:這樣寫可以嗎?為什么?應該怎么改呢?

改寫成:3的倍數(shù)有:3,6,9,12,……

你是怎么找的?(用3分別乘以1,2,3,……倍)

5的倍數(shù)有:5,10,15,20,……

師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示

2的倍數(shù)3的倍數(shù)5的倍數(shù)

師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))

三、課堂小結(jié):

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

四、獨立作業(yè):

完成練習二1~4題

因數(shù)與倍數(shù)教案篇四

在學習本單元之前,學生已經(jīng)分階段認識了百以內(nèi)、千以內(nèi)、萬以內(nèi)、億以內(nèi)以及一些整億的數(shù)。較為系統(tǒng)地掌握了十進制計數(shù)法,同時也基本完成了整數(shù)四則運算的學習。但這只是對數(shù)字的淺在認識,為學生進一步學習公倍數(shù)和公因數(shù),以及分數(shù)的約分、通分和四則運算奠定基礎(chǔ)。

教學目標定為以下幾點:

(一)知識、技能目標:

1、使學生結(jié)合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。能在1到100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),能找出100以內(nèi)某個數(shù)的所有因數(shù)。

2、使學生在認識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或者因數(shù)的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。

(二)情感、價值目標:

讓學生初步意識到可以從一個新的角度來研究非零自然數(shù)的特征及其相互關(guān)系,培養(yǎng)學生的觀察、分析和抽象概括能力,體會教學內(nèi)容的奇妙、有趣,產(chǎn)生對數(shù)學的好奇心。

本課的教學重點是理解倍數(shù)和因數(shù)的含義與方法。

教學難點是掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

二、學生學習情況分析。

本班多數(shù)學生在平時的學習中缺少主動性,目的性。一部分學生怕困難,缺乏獨立思考的習慣,同時,考慮問題也不夠全面。在本堂課的教學中,主要調(diào)動學生的學習積極性提高學生課堂活動的參與性,體驗成功的樂趣,通過學生的親自探索和體驗來達到學習知識,掌握所學知識的目的。同時,感受數(shù)學中的奧妙,增加學習數(shù)學的興趣。

三、教法與學法指導。

當今社會、人類的發(fā)展離不開素質(zhì)教育,而實施素質(zhì)教育必須“以學生為本”,課堂教學要圍繞培養(yǎng)學生的探索精神、創(chuàng)新精神出發(fā),為全面提高學生的綜合素質(zhì)打下一定的基礎(chǔ)。本節(jié)課根據(jù)學生的認知能力與心理特征來進行教學策略和方法的設(shè)計。

1、本節(jié)課理論性的知識比較多,課前讓學生結(jié)合學案進行自學教師適當點撥。

2、遵循學生主體、教師主導(組織),學生操作、探究為主線的理念,首先從學生的操作入手,由淺入深,利用學生對乘法運算的已有認識,在操作中引出倍數(shù)和因數(shù)的概念。

3、小組合作討論法。以學生討論、交流、相互評價,促成學生對找一個數(shù)的倍數(shù)、一個數(shù)的因數(shù)的方法進行優(yōu)化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。

4、在教學過程的設(shè)計上,根據(jù)學生的興趣,認知規(guī)律,自己采取用教材,而不搬教材的教學設(shè)計。

四、教學過程:

(一)激發(fā)興趣,引入新課:讓學生針對12個正方形的擺法討論,激發(fā)學生興趣,引入數(shù)學中自然數(shù)和自然數(shù)之間也有各種關(guān)系,初步體會數(shù)和數(shù)的對應關(guān)系,既拉近了數(shù)學和生活的聯(lián)系,又培養(yǎng)了學生的興趣。

(二)情境體驗,理解概念:分三個層次進行教學。(1)情境體驗,初步感知倍數(shù)和因數(shù)的意義。讓學生根據(jù)12個正方形的不同擺放方式寫出算式,讓學生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。(2)在具體的乘法算式中,理解倍數(shù)和因意義。這樣做不僅降低了難度,而且為學生的后續(xù)學習拓展了空間。根據(jù)算式介紹倍數(shù)和因數(shù)的意義,然后讓學生根據(jù)其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數(shù),36是倍數(shù)嗎?這一反例的教學,充分感受倍數(shù)和因數(shù)是相互依存的。

明確:倍數(shù)和因數(shù)表示的是兩個數(shù)之間的關(guān)系,所以不能單說誰是倍數(shù),誰是因數(shù)。

(設(shè)計意圖:結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù)時,讓學生充分地讀一讀,使學生初步感受倍數(shù)和因數(shù)是相互依存的,再通過對反例的辨析,使學生的感受更加深刻。)。

接下來結(jié)合板書算式,考考大家誰是誰的倍數(shù),誰是誰的因數(shù)?

若學生沒有舉到除法算式,就由老師舉例一道除法算式?!澳苷f誰是誰的倍數(shù),誰是誰的因數(shù)嗎?”

學生自由發(fā)言,統(tǒng)一認識。

小結(jié):除法可以轉(zhuǎn)化成乘法,只要滿足兩個自然數(shù)的乘積等于另外一個自然數(shù),它們之間就存在倍數(shù)和因數(shù)的關(guān)系。

第三個環(huán)節(jié)是探索方法,發(fā)現(xiàn)特征:分兩個層次進行,首先找一個數(shù)的因數(shù),為了考查學生的動手有的可能是用乘法想(乘積是20的兩個數(shù)是20的因數(shù))有的可能是用除法想(除數(shù)和商都是20的因數(shù))這兩種方法都出現(xiàn)一個問題:無序。從而導致重復、遺漏現(xiàn)象。為了解決問題,我再次放手,小組交流,并在此基礎(chǔ)上讓學生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結(jié),最后師生達成共識:按一定的順序一對對的找,找到兩個數(shù)接近為止。并通過找三個數(shù)的所有因數(shù),而找出引述的特征,從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。

(“從學生的角度看問題是教學取得實效的關(guān)鍵”。本環(huán)節(jié)對學生可能出現(xiàn)的情況做了充分的預設(shè),并通過兩次針對性的比較,使學生學會靈活地、有序地思考,及時引導學生用自己的語言總結(jié)找一個數(shù)因數(shù)的方法。然后通過嘗試做題鞏固方法。)。

接下來找一個數(shù)的倍數(shù)。我將教學過程設(shè)計成了一個個問題鏈,什么樣的數(shù)是3的倍數(shù)?,怎樣找才能有條理?比一比誰找的倍數(shù)多?能把3的倍數(shù)全找完嗎,應該怎樣表示問題的答案?你有什么竅門找一個數(shù)的倍數(shù)?在學生自主探索的基礎(chǔ)上,小組合作,全班交流,并在找因數(shù)特征的基礎(chǔ)找到倍數(shù)的特征。

五、課后反思。

學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我應該結(jié)合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。但由于時間緊,我只口頭說了一下這樣學生找出所有的因數(shù)可能會慢些。如果能書寫下來,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的,今后這方面要多注意。

因數(shù)與倍數(shù)教案篇五

人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是?

(父子、母子、母女關(guān)系)我和你們的關(guān)系是?(師生關(guān)系)

在數(shù)學中,數(shù)與數(shù)之間也存在著多種關(guān)系,這節(jié)課,我們一起研究兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。

(二)探究新知-理解因數(shù)和倍數(shù)的意義

教學例1:

1.觀察算式的特點,進行分類。

(1)仔細觀察算式的特點,你能把這些算式分類嗎?

(2)交流學生的分類情況。(預設(shè):學生會根據(jù)算式的計算結(jié)果分成兩類)

第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。

2.明確因數(shù)和倍數(shù)的意義。

(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。

(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?

(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。

3.理解因數(shù)和倍數(shù)的依存關(guān)系。

(1)獨立完成教材第5頁“做一做”。

(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?

4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。

(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?

課件出示:

乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。

(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?

“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。

(3)交流匯報。

(三)探究新知-找一個數(shù)的因數(shù)

教學例2:

1.探究找18的因數(shù)的方法。

(1)18的因數(shù)有哪些?你是怎么找的?

(2)交流方法。

預設(shè):方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。

因為18÷1=18,所以1和18是18的因數(shù)。

因為18÷2=9,所以2和9是18的因數(shù)。

因為18÷3=6,所以3和6是18的.因數(shù)。

方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。

因為1×18=18,所以1和18是18的因數(shù)。

因為2×9=18,所以2和9是18的因數(shù)。

因為3×6=18,所以3和6是18的因數(shù)。

2.明確18的因數(shù)的表示方法。

(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?

(2)交流方法。

預設(shè):列舉法,18的因數(shù)有:1,2,3,6,9,18。

集合圖的方法(如下圖所示)。

3.練習找一個數(shù)的因數(shù)。

(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?

(2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?

(四)探究新知-找一個數(shù)的倍數(shù)

教學例3:

1.探究找2的倍數(shù)的方法。

(1)2的倍數(shù)有哪些?你是怎么找的?

(2)想方法:利用乘法算式找2的倍數(shù)。

因為2×1=2,所以2是2的倍數(shù)。

因為2×2=4,所以4是2的倍數(shù)。

因為2×3=6,所以6是2的倍數(shù)?!?/p>

(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?

(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設(shè):列舉法、集合圖的方法)

2.練習找一個數(shù)的倍數(shù)。

你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?

(五)我的發(fā)現(xiàn)-因數(shù)與倍數(shù)的特征

舉例子,找規(guī)律,勾畫知識點,讀一讀。

預設(shè):一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。

(六)智慧樂園

1.在練習本上完成下列填空題。(獨立完成后,師訂正答案)

一個數(shù)的最大因數(shù)是17,這個數(shù)是(),它的最小的因數(shù)是()。

一個數(shù)的最小倍數(shù)是17,這個數(shù)是(),它()最大的倍數(shù),17的倍數(shù)的個數(shù)是().

一個數(shù)既是12的因數(shù),又是12的倍數(shù),這個數(shù)是()。

2.在練習本上完成下列判斷題。(獨立完成后,師訂正答案)

(1)在算式6×4=24中,6是因數(shù),24是倍數(shù)。()

(2)15的倍數(shù)一定大于15。()

(3)1是除0以外所有自然數(shù)的因數(shù)。()

(4)40以內(nèi)6的倍數(shù)有12、18、24、30、36這5個。()

(5)34的最小倍數(shù)是34;34的最小因數(shù)是17。()

(6)1.2是3的倍數(shù)。()

(七)全課總結(jié),交流收獲

這節(jié)課我們學了哪些知識?你有什么收獲?

(八)布置作業(yè)

完成課時練第3、4頁,提交家校本。

因數(shù)與倍數(shù)教案篇六

7--16頁的學習內(nèi)容。

1.進一步學習求一個數(shù)的所有因數(shù)和倍數(shù);掌握一般方法,學會用常見的幾種形式表達。

2.經(jīng)過多次的求解經(jīng)歷過程,在事實面前讓學生進一步明確因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的,其中最大的因數(shù)自己;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)也是自己。

掌握求一個數(shù)的因數(shù)和倍數(shù)的常用方法及常用的幾種書寫表達形式。

完整地求出一個數(shù)的因數(shù)和倍數(shù)。

實物投影。

口答:

根據(jù)下面算式,說說哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)?

4×9=3625×40=100032×7=224。

解答題:

18的因數(shù)有哪些?10是哪些數(shù)的倍數(shù)?

典型例題:

1.教學:

(1)你還能找出18的因數(shù)碼?并說出你的找法(要板書)。

(2)小比賽??凑l既快又能完整地把30和36所有因數(shù)找出來(基礎(chǔ)練習)?

(3)分享冠軍經(jīng)驗(介紹方法)。

(4)我們再來一次尋找32和48的所有因數(shù)的比賽(基礎(chǔ)練習)?

(5)請你試著把18所有找出的因數(shù)表述出來。(如果學生能用常見的兩種表達最好;如果不能需要教師的引導)。

第一種習慣書面表達形式。18的'因數(shù)有(有可能是亂的):

第二種集合圖的書面表達形式。18的因數(shù)。

(6)通過眼看,自我感覺調(diào)整這些因數(shù)最好按序排列。

第一種習慣書面表達形式。18的因數(shù)有(按大小順序):

第二種集合圖的書面表達形式。18的因數(shù)。

(7)做基礎(chǔ)練習第2題。

小結(jié):

1.尋找的方法。

2.能否找全?

3.教學。

(1)讓學生自己嘗試找。

(2)有沒有發(fā)什么問題?如何解決?

(3)如何表達?

(4)找出3和5的倍數(shù)。

小結(jié):

1.尋找的方法。

2.能否找全?

基礎(chǔ)練習:

1.用盡快的速度找出30、36、32和48的所有因數(shù)?

2.填空。30的因數(shù)有:36的因數(shù)有:

3.5的倍數(shù)有:3的倍數(shù)。

提高練習:

1.分別寫出17的因數(shù)和倍數(shù),再寫出28。

拓展練習:數(shù)學小知識:了解完全數(shù)。

有的學生認為某個數(shù)的最小倍數(shù)是0倍,因此最小倍數(shù)是0。要向?qū)W生強調(diào),小學階段學倍數(shù)不涉及到0,因此,某個數(shù)的最小倍數(shù)應該是它的1倍。

因數(shù)與倍數(shù)教案篇七

(1)能直接在方格圖上,數(shù)出相關(guān)圖形的面積。

(2)能利用分割的方法,將較復雜的圖形轉(zhuǎn)化為簡單的圖形,并用較簡單的方法計算面積。

2、過程與方法

(1)在解決問題的過程中,體會策略、方法的多樣性。

(2)學會與人交流思維過程與結(jié)果。

3、情感態(tài)度與價值觀

積極參與數(shù)學學習活動,體驗數(shù)學活動充滿著探索、體驗數(shù)學與日常生活密切相關(guān)。

1、重點是指導學生如何將圖形進行分割,從而讓學生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。

2、借助圖形,讓學生動手,自主探索、合作交流解決問題的方法。

一、創(chuàng)設(shè)情境、揭示新課。

我要說班里每位同學都是優(yōu)秀的設(shè)計師!因為大家都在設(shè)計著自己美好的將來,所以在很用功的學習。希望大家繼續(xù)努力,使自己美好的設(shè)計成為現(xiàn)實。下面我們來看一看,我們的同行——一位地毯圖案設(shè)計師,設(shè)計的圖案。

展示地毯上的圖形,讓學生仔細觀察圖形特點,說發(fā)現(xiàn)。

地毯是正方形,邊長為14米藍色部分圖形是對稱的,……

師:看這副地毯圖,請你提出數(shù)學問題。

根據(jù)學生的回答展示問題:“地毯上藍色部分的面積是多少?”

師板書課題:地毯上的圖形面積

二、自主探索、學習新知

如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?

1、學生獨立解決問題

要求學生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。

2、小組內(nèi)交流、討論

3、班內(nèi)反饋

請學生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學生說得合理都給以肯定。

學生的答案也許有:

(1)直接一個一個地數(shù),為了不重復,在圖上編號;(數(shù)方格法)

(2)因為這個圖形是對稱的,所以平均分成4份,先數(shù)出一份中藍色的面積,再乘4;(化整為零法)

(3)用總正方形面積減去白色部分的面積;(大減小法)

(4)將中間8個藍色小正方形轉(zhuǎn)移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉(zhuǎn)移填補法)

4、學生總結(jié)求藍色部分面積的方法。

三、鞏固練習、拓展運用(課本第19頁練一練)

1、第1題

(1)學生獨立思考,求圖1的面積。

(2)說一說計算圖形面積的方法。引導學生了解“不滿一格的當作半格數(shù)”。

2、第2題

獨立解決后班內(nèi)反饋。

3、第3題

(1)學生獨立填空。求出每組圖形的面積。學生完成后班內(nèi)交流反饋答案。

(2)學生觀察結(jié)果,說發(fā)現(xiàn)。

第(1)題的4個圖形面積分別為1、2、3、4的平方數(shù);第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。

四、全課小結(jié),課后拓展

今天我們進行了那些活動,你收獲了什么?

師:對于計算方格圖中規(guī)則圖形的面積,我們可以分割,可以直接數(shù),可以“大減小”,還可以轉(zhuǎn)移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數(shù)學課上我們將繼續(xù)學習。課后,有興趣的同學可以在空白方格紙上設(shè)計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。

因數(shù)與倍數(shù)教案篇八

[教學內(nèi)容]。

數(shù)的世界。

[教學目標]。

1、結(jié)合具體情境,認識自然數(shù)和整數(shù),聯(lián)系乘法認識倍數(shù)和因數(shù)。??。

2、探索找一個數(shù)的倍數(shù)的方法,能在1-100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù).

3.培養(yǎng)學生綜合應用的能力。

教具準備。

多媒體課件、圖片。

[教學重、難點]。

探索找一個數(shù)的倍數(shù)的方法,能在1-100的自然數(shù)中,找出10以內(nèi)某個自然數(shù)的所有倍數(shù)。

[教學過程]。

創(chuàng)設(shè)“水果店”的情境,呈現(xiàn)了生活中的數(shù)有自然數(shù)、負數(shù)、小數(shù)。在比較中認識自然數(shù)、整數(shù),使對數(shù)的認識進一步系統(tǒng)化。

先讓學生觀察情境圖,說說圖中有哪些數(shù),并給它們分類。

學生匯報觀察結(jié)果,通過比較認識自然數(shù)、整數(shù),使學生對數(shù)的認識進一步系統(tǒng)化。

1、在解決書上提出的問題的過程中引出算式。

5×4=20(元)。

以這個乘法算式為例說明倍數(shù)和因數(shù)的含義,即20是4的倍數(shù),20也是5的倍數(shù),4是20的因數(shù),5也是20的因數(shù)。引導學生認識倍數(shù)與因數(shù),體會倍數(shù)與因數(shù)的含義。

在利用乘法算式說明倍數(shù)和因數(shù)的含義的基礎(chǔ)上,出示一個除法算式,如:18÷6=3啟發(fā)學生思考:根據(jù)整數(shù)除法算式能不能確定兩個數(shù)之間的倍數(shù)關(guān)系。

說明:在研究倍數(shù)和因數(shù),范圍限制為不是零的自然數(shù)。

2、你寫我說。

讓學生同桌間互相寫算式,再說一說。算式可以是乘法算式,也可以是除法算式。

三、找一找。

1、判斷題目中給的數(shù)是不是7的倍數(shù)。

先讓學生用自己的方法判斷,再組織學生交流,使學生逐步體會可以通過想乘法算式或除法算式的方法來判斷。

2、找7的倍數(shù):

四、練一練:

第2題:先讓學生自己找一找4的倍數(shù)和6的倍數(shù),并用不同的符號做好記號。然后組織學生交流,并讓學生說說找倍數(shù)的方法。最后,說說哪幾個數(shù)既是???4的倍數(shù)有是6的倍數(shù)。

第3題:先讓學生獨立寫一寫,再組織學生交流各自的方法,并在交流比較的過程中體會怎樣做到不重復、不遺漏。體會到像這樣找一個數(shù)的倍數(shù),一般用乘法想比較方便。

[板書設(shè)計]。

像0、1、2、3、4、5、…這樣的數(shù)是自然數(shù)。

像-3、-2、-1、0、1、2、…這樣的數(shù)是整數(shù)。

5×4=20(元)??????20是4和5的倍數(shù)。

第2課時。

[教學內(nèi)容]。

2、5的倍數(shù)特征。

[教學目標]。

1、經(jīng)歷探索2、5倍數(shù)的特征的過程,理解2、5倍數(shù)的特征,能判斷一個數(shù)是不是2或5的倍數(shù)。

2、知道奇數(shù)、偶數(shù)的含義,能判斷一個數(shù)是奇數(shù)或是偶數(shù)。

3、在觀察、猜測和討論過程中,提高探究問題的能力。

[教學重、難點]。

探索2,5的倍數(shù)的特征。

[教學準備]。

多媒體課件1到100的數(shù)字表格。

[教學過程]。

一、5的倍數(shù)的特征的探究。

讓學生在100以內(nèi)的數(shù)表中找出5的倍數(shù),用自己的方式做記號,并觀察、思考5的倍數(shù)有什么特征。在此基礎(chǔ)上組織學生交流。

引導學生歸納。

5的倍數(shù)的特征:個位上是0或5的數(shù)是5的倍數(shù)。

試一試:

嘗試用5的倍數(shù)特征來判斷一個數(shù)是不是5的倍數(shù)。

二、2的倍數(shù)的特征的探究。

讓學生在100以內(nèi)的數(shù)表中找出2的倍數(shù),用自己的方式做記號,并觀察、思考2的倍數(shù)有什么特征。在此基礎(chǔ)上組織學生交流。

引導學生歸納2的倍數(shù)的特征:

個位上是0、2、4、6、8的數(shù)是2的倍數(shù)。

在學生理解2的倍數(shù)的特征后再揭示偶數(shù)、奇數(shù)的含義,并進行你問我答的。

判斷練習。

偶數(shù):是2的倍數(shù)的數(shù)叫做偶數(shù)。

奇數(shù):不是2的倍數(shù)的數(shù)叫做奇數(shù)。

四、練一練:

第2題:引導學生先獨立思考,然后組織學生交流自己的思考方法。在引導學生判斷時,應根據(jù)2、5的倍數(shù)特征說明理由。如“因為85不是2的倍數(shù),所以不能正好裝完”;又如:“因為85是5的倍數(shù),所以能正好裝完?!?/p>

五、數(shù)學游戲:

這是圍繞“2、5的倍數(shù)的特征”設(shè)計的數(shù)學游戲,通過游戲加深學生對2、5的倍數(shù)的特征的理解。

[板書設(shè)計]。

2、5的倍數(shù)的特征。

5的倍數(shù)的特征:個位上是0或5的數(shù)是5的倍數(shù)。

2的倍數(shù)的特征:個位上是0、2、4、6、8的數(shù)是2的倍數(shù)。

是2的倍數(shù)的數(shù)叫偶數(shù)。

不是2的倍數(shù)的數(shù)叫奇數(shù)。

第3課時。

[教學內(nèi)容]。

[教學目標]。

1、經(jīng)歷探索3倍數(shù)的特征的過程,理解3倍數(shù)的特征,能判斷一個數(shù)是不是3的倍數(shù)。

2、發(fā)展分析、比較、猜測、驗證的能力。

3、滲透集合思想和不完全歸納法。

[教學重、難點]發(fā)展分析、比較、猜測、驗證的能力。

[教具準備]。

多媒體課件和1到100的數(shù)字表格。

[教學過程]。

一、3的倍數(shù)的特征的猜想。

我們研究了2、5的倍數(shù)的特征,那么3的倍數(shù)有什么特征呢?引導學生提出猜想。學生可能會猜想:個位上能被3整除的數(shù)能被3整除等,老師引導學生進行討論、研究。

二、3的倍數(shù)的特征的探究。

3的倍數(shù)的特征每個數(shù)位的各個數(shù)字加起來是3的倍數(shù)。

試一試:

嘗試用3的倍數(shù)特征來判斷一個數(shù)是不是3的倍數(shù)。

三、練一練:

第2題:

讓學生準備幾張卡片:3、0、4、5邊擺邊想,再交流討論思考的過程。

(1)30、45、54(2)30、54?(3)30、45?(4)30。

四、實踐活動:

[板書設(shè)計]。

3的倍數(shù)的特征:這個數(shù)各位數(shù)字之和是3的倍數(shù)。

第4課時。

[教學目標]。

1、用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有條理思考的習慣和能力。

2、在1-100的自然數(shù)中,能找到某個自然數(shù)的所有因數(shù)。

3、培養(yǎng)學生的分析能力和不完全歸納的數(shù)學思想。

[教學重、難點]。

用小正方形拼長方形的活動中,體會找一個數(shù)的因數(shù)的方法,提高有條理思考的習慣和能力。

[教學準備]。

多媒體課件和邊長是1厘米的小正方形紙片。

[教學過程]。

1。動手拼長方形。

用12個小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,再交流不同的拼法。

學生一般會用乘法思路思考:哪兩個數(shù)相乘等于12?然后找出:

1×12、2×6、3×4。這種思路就是找一個數(shù)的因數(shù)的基本方法,要引導學生關(guān)注有序思考,并體會一個數(shù)的因數(shù)個數(shù)是有限的。

2。試一試。

找因數(shù)的基本練習:找9和15的因數(shù)。讓學生獨立完成,注意引導學生有序思考。

3.練一練。

第2題:先讓學生自己找一找18的因數(shù)和21的因數(shù),并用不同的符號做好記號,然后讓學生說說找因數(shù)的方法。最后,說說哪幾個數(shù)既是18的因數(shù),又是21的因數(shù)。

第3題;

利用數(shù)形結(jié)合,進一步體會找因數(shù)的方法。

第5題:可以引導學生用找因數(shù)的方法進行思考,鼓勵學生將想到的排列方法列出來,在交流的基礎(chǔ)上,使學生經(jīng)歷有條理的思考過程。48=1×48=2×24=3×16=4×12=6×8,48有10個因數(shù),就有10種排法。如每行12人,排4行;每行4人,排12行等。37只有兩個因數(shù),只有兩種排法。

【板書設(shè)計】。

找因數(shù)。

面積是12的長方形有:6種圖形????????1×12=12。

2×6=12。

3×4=12。

第5課時。

[教學內(nèi)容]找質(zhì)數(shù)。

[教學目標]。

1、用小正方形拼長方形的活動中,經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)和合數(shù)的意義。

2、能正確判斷質(zhì)數(shù)和合數(shù)。

3、在研究質(zhì)數(shù)的過程中豐富對數(shù)學發(fā)展的認識,感受數(shù)學文化的魅力。

[教學重、難點]。

1、用小正方形拼長方形的活動中,經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)和合數(shù)的意義。

[教學準備]。

多媒體課件和邊長是1厘米的小正方形紙片。

[教學過程]。

一、動手拼長方形,揭示質(zhì)數(shù)、合數(shù)的意義。

1、用小正方形拼成長方形有幾種拼法。讓學生自己先嘗試著拼一拼,邊拼邊填寫書上的表格。

2、引導學生觀察并提出問題:“這些小正方形有的只能拼成一種長方形,有的能拼成兩種或兩種以上的長方形,為什么?”

3、揭示質(zhì)數(shù)、合數(shù)的意義。

組織學生觀察、比較、分析逐步發(fā)現(xiàn)特征,并把幾個自然數(shù)分類,揭示質(zhì)數(shù)和合數(shù)的意義。

從概念出發(fā)理解“1既不是質(zhì)數(shù),也不是合數(shù)?!?/p>

二、討論判斷質(zhì)數(shù)、合數(shù)的方法。

1、嘗試判斷:2、8、9、13、51、37、91、52是質(zhì)數(shù)還是合數(shù)。

先讓學生獨立判斷,再組織交流“怎樣判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)”

2、歸納方法:

只要找到一個1和本身以外的因數(shù),這個數(shù)就是合數(shù)。如果除了1和它本身找不到其他的因數(shù),這個數(shù)就是質(zhì)數(shù)。

三、探索活動:

第1題:

用“篩法”找100以內(nèi)的質(zhì)數(shù)。引導學生有步驟、有目的地操作、觀察和交流,找出100以內(nèi)的質(zhì)數(shù)。

介紹這種方法是兩千多年前希臘數(shù)學家提出的研究質(zhì)數(shù)的方法,稱為“篩法”?,F(xiàn)在隨著計算機的發(fā)展,這種操作方法可以編成程序讓計算機進行操作。這樣,可以使學生了解數(shù)學發(fā)展的歷史,感受到數(shù)學文化的魅力,豐富學生對數(shù)學發(fā)展的認識,激起學生探究知識的欲望和興趣。

第2題:

本題引導學生通過操作、觀察,探索規(guī)律。

第(1)、(2)題,學生會發(fā)現(xiàn)這些質(zhì)數(shù)都分布在第1列和第5列,為什么?

[板書設(shè)計]。

找質(zhì)數(shù)。

一個數(shù)除了1和它本身以外還有別的因數(shù),這個數(shù)就叫合數(shù)。?????????????????????????????一個數(shù)只有1和它本身兩個因數(shù),這個數(shù)叫做質(zhì)數(shù)。

1既不是質(zhì)數(shù),也不是合數(shù)。

第6課時。

[教學內(nèi)容]數(shù)的奇偶性。

[教學目標]。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

[教學重、難點]。

1、嘗試用“列表”“畫示意圖”等解決問題的策略發(fā)現(xiàn)規(guī)律,運用數(shù)的奇偶性解決生活中的一些簡單問題。

2、經(jīng)歷探索加法中數(shù)的奇偶性變化的過程,在活動中發(fā)現(xiàn)加法中數(shù)的奇偶性變化規(guī)律,在活動中體驗研究的方法,提高推理能力。

[教學過程]。

活動1:利用數(shù)的奇偶性解決一些簡單的實際問題。

讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發(fā)現(xiàn)規(guī)律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。

試一試:

本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結(jié)果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。

活動2:探索奇數(shù)、偶數(shù)相加的規(guī)律。

[

[板書設(shè)計]。

數(shù)的奇偶性。

例子:???????????????????結(jié)論:

因數(shù)與倍數(shù)教案篇九

蘇教版義務教育教科書《數(shù)學五年級下冊第47~48頁整理與練習“回顧與整理”和“練習與應用”第1~7題。

1.使學生加深認識因數(shù)和倍數(shù),能找一個數(shù)的因數(shù)或倍數(shù),進一步認識質(zhì)數(shù)和合數(shù);掌握2、5、3的倍數(shù)的特征,進一步認識偶數(shù)和奇數(shù);加深理解質(zhì)因數(shù),能正確分解質(zhì)因數(shù)。

2.使學生能整理因數(shù)和倍數(shù)的知識內(nèi)容,感受知識之間的內(nèi)在聯(lián)系;能應用相關(guān)概念進行分析、判斷、推理,進一步掌握思考、解決數(shù)學問題的方法,積累數(shù)學思維的初步經(jīng)驗,提高分析、推理、判斷等思維能力;加深對數(shù)的認識,進一步發(fā)展數(shù)感。

3.使學生主動參與回顧、整理知識和分析、解決問題等活動,培養(yǎng)樂于思考的品質(zhì)和與同伴互相交流、傾聽等合作意識和能力;感受數(shù)學方面的知識積累和進步,提高學好數(shù)學的自信心。

整理、應用因數(shù)和倍數(shù)的知識。

應用概念正確判斷、推理。

一、揭示課題

談話:最近的數(shù)學課,我們學習了哪方面的內(nèi)容?回憶一下,都學到了哪些知識?

揭題:我們已經(jīng)學完了因數(shù)和倍數(shù)這一單元的內(nèi)容,今天開始主要整理與練習這一單元內(nèi)容。(板書課題)通過整理與練習,我們要進一多認識因數(shù)與倍數(shù),2.5.3的倍數(shù)的特征,能熟練掌握找一個數(shù)的因數(shù)或倍數(shù)的方法;能判斷偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù),了解這些概念之間的聯(lián)系與區(qū)別,能正確分解質(zhì)因數(shù),提高對數(shù)的特征的認識,加深對數(shù)的認識。

二、回顧與整理

1.回顧討論。

出示討論題:

(1)你是怎樣理解因數(shù)和倍數(shù)的?舉例說明你的認識。

(2)2、5、3的倍數(shù)有什么特征?我們是怎樣發(fā)現(xiàn)的?

(3)自然數(shù)可以怎樣分類,各能分成哪幾類?舉例說說什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)。

(4)什么是兩個數(shù)的公因數(shù)和最大公因數(shù),公倍數(shù)和最小公倍數(shù)?

讓學生在小組里討論,結(jié)合討論適當記錄自己的認識或例子。

2.交流整理。

圍繞討論題,引導學生展開交流,結(jié)合交流板書主要內(nèi)容。

(1)提問:能說說什么是因數(shù)和倍數(shù)嗎?可以用例子說明。(結(jié)合交流板書一兩個乘法或除法算式)

(指名學生說一說,再集體說一說)

你能找出6的因數(shù)嗎?(板書因數(shù))6的倍數(shù)呢?(板書倍數(shù))

能說說找一個數(shù)的因數(shù)或倍數(shù)的方法嗎?

說明:一個數(shù)的因數(shù)可以從小到大一對一對地找,到中間兩個因數(shù)之間沒有因數(shù)為止;一個數(shù)的倍數(shù)可以用依次乘1、2、3……這樣的方法找,注意一個數(shù)的倍數(shù)是無限的,寫一個數(shù)的倍數(shù)要注意用省略號。

(2)提問:2、5、3的倍數(shù)各有什么特征?我們是怎樣發(fā)現(xiàn)的?

自然數(shù)可以怎樣分類,各可以分成哪幾類?

你能舉出偶數(shù)和奇數(shù)、質(zhì)數(shù)和合數(shù)的一些例子嗎?(學生舉出各類數(shù)的例子)

說明:按是不是2的倍數(shù)可以把自然數(shù)分成偶數(shù)和奇數(shù)兩類,是2的倍數(shù)的是偶數(shù),不是2的倍數(shù)的是奇數(shù);按因數(shù)的個數(shù)可以把自然數(shù)分成1和質(zhì)數(shù)、合數(shù)三類,只有兩個因數(shù)的是質(zhì)數(shù),有兩個以上因數(shù)的是合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。

什么是質(zhì)因數(shù)和分解質(zhì)因數(shù)?6有哪些質(zhì)因數(shù)?怎樣把6分解質(zhì)因數(shù)?(板書式子,并說明其中的質(zhì)因數(shù))

(3)提問:什么是公因數(shù)和最大公因數(shù),什么是公倍數(shù)和最小公倍數(shù)?

說明:兩個數(shù)公有的因數(shù)叫公因數(shù),其中最大的叫最大公因數(shù);兩個數(shù)公有的倍數(shù)叫公倍數(shù),其中最小的叫最小公倍數(shù)。

結(jié)合交流內(nèi)容,逐步板書成:

l

質(zhì)數(shù)質(zhì)因數(shù)

合數(shù)分解質(zhì)因數(shù)

因數(shù)公因數(shù)最大公因數(shù)

(互相依存)

倍數(shù)公倍數(shù)最小公倍數(shù)

2、5、3的倍數(shù)的特征

偶數(shù)

奇數(shù)

(4)引導:請同學們現(xiàn)在觀察我們整理的這一單元學過的內(nèi)容,了解知識之間的聯(lián)系,同桌互相說說知識是怎樣發(fā)展的。

學生互相交流,教師巡視、傾聽。

交流:哪位同學能看黑板上整理的內(nèi)容,說說我們怎樣逐步認識這些知識的,知識是怎樣發(fā)展起來的。

三、練習與應用

1.做“練習與應用”第1題。

指名學生交流,說說每組里因數(shù)和倍數(shù)關(guān)系。

提問:3和7有沒有因數(shù)和倍數(shù)關(guān)系?為什么沒有?

2.做“練習與應用”第2題。

(1)讓學生獨立寫出前四個數(shù)的所有因數(shù),指名兩人板演。

交流:你是怎樣找它們的因數(shù)的?(檢查板演題)

(2)口答后三個數(shù)的因數(shù)。

引導:能說出后面每個數(shù)的全部因數(shù)嗎?(學生口答,教師板書)

提問:一個數(shù)的因數(shù)有什么特點?

說明:一個數(shù)因數(shù)的個數(shù)是有限的,最小的是1.最大的是它本身。

3.分別說出下面各數(shù)的倍數(shù)。

581217

分別指名學生說出各數(shù)的倍數(shù),教師板書。

提問:為什么要寫省略號?一個數(shù)的倍數(shù)有什么特點?

說明:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的倍數(shù)。

4.做“練習與應用”第3題。

(1)讓學生獨立完成填數(shù)。

交流:題里各是怎樣填的?(呈現(xiàn)結(jié)果)填數(shù)時怎樣想的?

提問:哪些數(shù)既是3的倍數(shù),又是5的倍數(shù)?你是怎樣想的?

同時是2和5的倍數(shù)的數(shù)有什么特征?

哪些數(shù)既是2的倍數(shù),又是5和3的倍數(shù)?說說你的判斷方法。

(2)這里哪些數(shù)是偶數(shù)?奇數(shù)呢?

你是怎樣判斷偶數(shù)和奇數(shù)的?

5.做“練習與應用”第4題。

要求學生獨立思考,自己選出兩張卡片,按各題的要求分別組成兩位數(shù),把能組成的數(shù)記錄下來。

交流:同時是5和3的倍數(shù)的數(shù)有哪些?(板書:30)如果是三位數(shù)呢?

(板書:180810)

組成的兩位數(shù)中最大的偶數(shù)是多少?(板書:80)最小的奇數(shù)呢?(板書:13)

6.做“練習與應用”第5題。

讓學生把質(zhì)數(shù)圈出來,在合數(shù)下面畫線。

交流:哪些是質(zhì)數(shù),哪些是合數(shù)?(板書成兩類)質(zhì)數(shù)和合數(shù)是按什么分的?

說明:質(zhì)數(shù)只有2個因數(shù),合數(shù)至少有3個因數(shù)。

7.做“練習與應用’’第6題。

讓學生選出質(zhì)數(shù)和偶數(shù)。

交流、呈現(xiàn)結(jié)果。

提問:觀察表里選出的質(zhì)數(shù)和偶數(shù),所有的質(zhì)數(shù)都是奇數(shù)嗎?請舉出一個具體例子。

所有的合數(shù)都是偶數(shù)嗎?你能舉例子說明嗎?

指出:如果要說明一個結(jié)論是錯誤的,只要舉一個反例。比如,要判斷質(zhì)數(shù)都是奇數(shù)的說法是錯的,只要舉出質(zhì)數(shù)2是偶數(shù)這個例子。這里質(zhì)數(shù)2是偶數(shù)就是一個反例。要判斷合數(shù)都是偶數(shù)是錯的,也只要舉一個反例,比如合數(shù)9就是奇數(shù)。

8.下面的說法正確嗎?

(1)大于0的自然數(shù)不是奇數(shù)就是偶數(shù)。

(2)大于0的自然數(shù)不是質(zhì)數(shù)就是合數(shù)。

(3)奇數(shù)都是質(zhì)數(shù),偶數(shù)都是合數(shù)。

(4)自然數(shù)中最小的偶數(shù)是2,最小的合數(shù)是4。

(5)一個數(shù)本身既是它的因數(shù),又是它的倍數(shù)。

9.做“練習與應用”第7題。

(1)讓學生填空,指名板演。交流并確認結(jié)果。

提問:這里填寫的質(zhì)數(shù)都叫積的什么數(shù)?為什么稱它是積的質(zhì)因數(shù)?

說明:這里把合數(shù)寫成這種質(zhì)數(shù)相乘的形式,叫什么?

(2)把30、42分別分解質(zhì)因數(shù)。

學生完成,交流板書,檢查訂正。

四、全課總結(jié)

提問:這節(jié)課主要復習的哪些內(nèi)容?你有哪些收獲?

因數(shù)與倍數(shù)教案篇十

【知識點】:

1、認識自然數(shù)和整數(shù),聯(lián)系乘法認識倍數(shù)與因數(shù)。

像0,1,2,3,4,5,6,…這樣的數(shù)是自然數(shù)。

像-3,-2,-1,0,1,2,3,…這樣的數(shù)是整數(shù)。

2、我們只在自然數(shù)(零除外)范圍內(nèi)研究倍數(shù)和因數(shù)。

3、倍數(shù)與因數(shù)是相互依存的關(guān)系,要說清誰是誰的倍數(shù),誰是誰的因數(shù)。

補充【知識點】:

一個數(shù)的倍數(shù)的個數(shù)是無限的。

探索活動(一)2,5的倍數(shù)的特征。

【知識點】:

1、2的倍數(shù)的特征。

個位上是0,2,4,6,8的數(shù)是2的倍數(shù)。

2、5的倍數(shù)的特征。

個位上是0或5的數(shù)是5的倍數(shù)。

3、偶數(shù)和奇數(shù)的定義。

是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫奇數(shù)。

4、能判斷一個數(shù)是不是2或5的倍數(shù)。能判斷一個非零自然數(shù)是奇數(shù)或偶數(shù)。

補充【知識點】:

既是2的倍數(shù),又是5的倍數(shù)的特征。個位上是0的數(shù)既是2的倍數(shù),又是5的倍數(shù)。

探索活動(二)3的倍數(shù)的特征。

【知識點】:

1、3的倍數(shù)的特征。

一個數(shù)各個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。

2、能判斷一個數(shù)是不是3的倍數(shù)。

補充【知識點】:

1、同時是2和3的倍數(shù)的特征。

個位上的數(shù)是0,2,4,6,8,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2的倍數(shù),又是3的倍數(shù)。

2、同時是3和5的倍數(shù)的特征。

個位上的數(shù)是0或5,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是3的倍數(shù),又是5的倍數(shù)。

3、同時是2,3和5的倍數(shù)的特征。

個位上的數(shù)是0,并且各個數(shù)位上的數(shù)字的和是3的倍數(shù)的數(shù),既是2和5的倍數(shù),又是3的倍數(shù)。

找因數(shù)。

【知識點】:

在1~100的自然數(shù)中,找出某個自然數(shù)的所有因數(shù)。方法:運用乘法算式,思考:哪兩個數(shù)相乘等于這個自然數(shù)。

補充【知識點】:

一個數(shù)的因數(shù)的個數(shù)是有限的。其中最小的因數(shù)是1,最大的因數(shù)是它本身。

找質(zhì)數(shù)。

【知識點】:

一個數(shù)只有1和它本身兩個因數(shù),這個數(shù)叫作質(zhì)數(shù)。

一個數(shù)除了1和它本身以外還有別的因數(shù),這個數(shù)叫作合數(shù)。

3、判斷一個數(shù)是質(zhì)數(shù)還是合數(shù)的方法:

一般來說,首先可以用“2,5,3的倍數(shù)的特征”判斷這個數(shù)是否有因數(shù)2,5,3;如果還無法判斷,則可以用7,11等比較小的質(zhì)數(shù)去試除,看有沒有因數(shù)7,11等。只要找到一個1和它本身以外的因數(shù),就能肯定這個數(shù)是合數(shù)。如果除了1和它本身找不到其他因數(shù),這個數(shù)就是質(zhì)數(shù)。

數(shù)的奇偶性。

【知識點】:

1、運用“列表”“畫示意圖”等方法發(fā)現(xiàn)規(guī)律:

小船最初在南岸,從南岸駛向北岸,再從北岸駛回南岸,不斷往返。通過“列表”“畫示意圖”的方法會發(fā)現(xiàn)“奇數(shù)次在北岸,偶數(shù)次在南岸”的規(guī)律。

2、能夠運用上面發(fā)現(xiàn)的數(shù)的奇偶性解決生活中的一些簡單問題。

3、通過計算發(fā)現(xiàn)奇數(shù)、偶數(shù)相加奇偶性變化的規(guī)律:

偶數(shù)+偶數(shù)=偶數(shù)奇數(shù)+奇數(shù)=偶數(shù)。

因數(shù)與倍數(shù)教案篇十一

一個數(shù)因數(shù)的求法和一個數(shù)倍數(shù)的求法(教材第6頁例2、例3,教材第7~8頁練習二第2~8題)。

1.通過學習使學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;

2.學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;

3.能熟練地找一個數(shù)的因數(shù)和倍數(shù);

4.在解決問題的過程中,培養(yǎng)學生思維的有序性、條理性,增強學生的探究意識和求索精神。

掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,能熟練地找一個數(shù)的因數(shù)和倍數(shù)。

說出下列各式中誰是誰的因數(shù)?誰是誰的倍數(shù)?20÷4=56×3=18。

在上面的算式中,6和3都是18的因數(shù),你知道還有哪些數(shù)是18的因數(shù)嗎?18是3的倍數(shù),你知道還有哪些數(shù)是3的倍數(shù)嗎?這節(jié)課我們就來學習如何找一個數(shù)的因數(shù)和倍數(shù)。

(一)找因數(shù):

1.出示例1:18的因數(shù)有哪幾個?

一個數(shù)的因數(shù)還不止一個,我們一起找找18的因數(shù)有哪些?

學生嘗試完成后匯報。

(18的因數(shù)有:1,2,3,6,9,18)教師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。

教師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2.用這樣的方法,請你再找一找36的因數(shù)有哪些?

舉錯例(1,2,3,4,6,6,9,12,18,36)。

教師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。

仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?

教師板書:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

3.你還想找哪個數(shù)的因數(shù)?(18、42……)請你選擇其中的一個在自練本上寫一寫,然后匯報。

從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數(shù):

教師:這樣寫可以嗎?為什么?應該怎么改呢?

教師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示2的倍數(shù),3的`倍數(shù),5的倍數(shù)。

教師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?

(一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))。

1.完成課本第7頁練習二第2~5題。

2.完成教材第8頁練習二第6~8題。

我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?

一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身。一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

本節(jié)課是在學生認識因數(shù)和倍數(shù)的基礎(chǔ)上進行教學的,在找一個數(shù)的因數(shù)時,如何做到既不重復又不遺漏,對于剛剛對因數(shù)和倍數(shù)有感性認識的學生來說有一定的困難,教學時充分發(fā)揮小組學習的優(yōu)勢,在小組交流的過程中,學生對自己的方法進行反思,吸取同伴的好方法,很好的體現(xiàn)了自主探索和合作交流的教學理念。

因數(shù)與倍數(shù)教案篇十二

第四課時。

:1、經(jīng)歷探索3的倍數(shù)特征的過程,理解3的倍數(shù)的特征,能正確判斷一個數(shù)是不是3的倍數(shù)。

2、在觀察、猜測和小組合作學習討論的過程中,提高探究問題的能力。

:1、經(jīng)歷探索3的倍數(shù)特征的過程,理解3的倍數(shù)的特征,能正確判斷一個數(shù)是不是3的倍數(shù)。

2、在觀察、猜測和小組合作學習討論的過程中,提高探究問題的能力。

:圖片。

師:看來只觀察個位不能確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來研究。(揭示課題)。

師:先請在下表中找出3的倍數(shù),并做上記號。(教師出示百以內(nèi)數(shù)表,學生人手一張。在學生的活動后,教師組織學生進行交流,并呈現(xiàn)學生已圈出3的倍數(shù)的百以內(nèi)的數(shù)表。)(如下圖)。

師:請觀察這個表格,你發(fā)現(xiàn)3的倍數(shù)什么特征呢,把你的發(fā)現(xiàn)與同桌交流一下。

學生同桌交流后,再組織全班交流。

生1:我發(fā)現(xiàn)10以內(nèi)的數(shù)只有3、6、9能被3整除。

生2:我發(fā)現(xiàn)不管橫的看或豎的看,3的倍數(shù)都是隔兩個數(shù)出現(xiàn)一次。

生3:我全部看了一下,剛才前面這位同學的猜想是不對的,3的倍數(shù)個位上0~9這十個數(shù)字都有可能。

師:個位上的數(shù)字沒有什么規(guī)律,那么十位上的數(shù)有規(guī)律嗎?

生:也沒有規(guī)律,1~9這些數(shù)字都出現(xiàn)了。

師:其他同學還有什么發(fā)現(xiàn)嗎?

生:我發(fā)現(xiàn)3的倍數(shù)按一條一條斜線排列很有規(guī)律。

師:你觀察的角度與其他同學不同,那么每條斜線上的數(shù)有規(guī)律嗎?

生:從上往下觀察,連續(xù)兩數(shù)都是十位數(shù)增加1,而個位數(shù)減少1。

師:十位數(shù)加1、個位數(shù)減1組成的數(shù)與原來的數(shù)有什么相同的地方?

生:我發(fā)現(xiàn)“3”的那條斜線,另外兩個數(shù)12和21的十位和個位上的數(shù)字加起來都等于3。

師:這是一個重大發(fā)現(xiàn),其他斜線呢?

生1:我發(fā)現(xiàn)“6”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于6。

生2:“9”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于9。

生3:我發(fā)現(xiàn)另外幾列,除了邊上的30、60、90兩個數(shù)字的和是3、6、9,另外的數(shù)兩個數(shù)字的和是12、15、18。

師:現(xiàn)在誰能歸納一下3的倍數(shù)有什么特征呢?

生:一個數(shù)各個數(shù)位上數(shù)字之和等于3、6、9、12、15、18等,這個數(shù)就一定是3的倍數(shù)。

生:一個數(shù)各個數(shù)位上數(shù)字之和是3的倍數(shù),這個數(shù)就一定是3的倍數(shù)。

師:剛才是從100以內(nèi)數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?請大家再找?guī)讉€數(shù)來驗證一下。

學生先自己寫數(shù)并驗證,然后小組交流,得出了同樣的結(jié)論。

練習:第7頁的1、2題。

個性化教學思路。

:學生的判斷方法就很多樣了,學生對后面的這種方法接受很快,也很樂意運用。但在實際作業(yè)中,我感到學生對3的特征的運用不是很主動,不象2和5的特征來得快,似乎有些想不到。因此,要加強練習。

【本文地址:http://www.aiweibaby.com/zuowen/6156743.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔