優(yōu)質(zhì)高中高二數(shù)學(xué)說(shuō)課稿(匯總14篇)

格式:DOC 上傳日期:2023-11-02 05:54:16
優(yōu)質(zhì)高中高二數(shù)學(xué)說(shuō)課稿(匯總14篇)
時(shí)間:2023-11-02 05:54:16     小編:紫薇兒

跆拳道是一門強(qiáng)調(diào)禮儀和技術(shù)的武術(shù)運(yùn)動(dòng)。較為完美的總結(jié)應(yīng)該能夠給人留下深刻的印象,讓人對(duì)所總結(jié)的內(nèi)容有更深入的思考。通過閱讀這些總結(jié)范文,我們可以拓寬自己的思維,提升自己的寫作水平。

高中高二數(shù)學(xué)說(shuō)課稿篇一

1、地位、作用和特點(diǎn):

《 》是高中數(shù)學(xué)課本第 冊(cè)( 修)的第 章“ ”的第 節(jié)內(nèi)容,高中數(shù)學(xué)課本說(shuō)課稿。

特點(diǎn)之二是: 。

根據(jù)《教學(xué)大綱》的要求和學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力,確定以下教學(xué)目標(biāo):

(1)知識(shí)目標(biāo):a、b、c

(2)能力目標(biāo):a、b、c

(3)德育目標(biāo):a、b

教學(xué)的重點(diǎn)和難點(diǎn):

(1)教學(xué)重點(diǎn):

(2)教學(xué)難點(diǎn):

基于上面的教材分析,我根據(jù)自己對(duì)研究性學(xué)習(xí)“啟發(fā)式”教學(xué)模式和新課程改革的理論認(rèn)識(shí),結(jié)合本校學(xué)生實(shí)際,主要突出了幾個(gè)方面:一是創(chuàng)設(shè)問題情景,充分調(diào)動(dòng)學(xué)生求知欲,并以此來(lái)激發(fā)學(xué)生的探究心理。二是運(yùn)用啟發(fā)式教學(xué)方法,就是把教和學(xué)的各種方法綜合起來(lái)統(tǒng)一組織運(yùn)用于教學(xué)過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學(xué)手段的綜合和課堂內(nèi)外的綜合。并且在整個(gè)教學(xué)設(shè)計(jì)盡量做到注意學(xué)生的心理特點(diǎn)和認(rèn)知規(guī)律,觸發(fā)學(xué)生的思維,使教學(xué)過程真正成為學(xué)生的學(xué)習(xí)過程,以思維教學(xué)代替單純的記憶教學(xué)。三是注重滲透數(shù)學(xué)思考方法(聯(lián)想法、類比法、數(shù)形結(jié)合等一般科學(xué)方法)。讓學(xué)生在探索學(xué)習(xí)知識(shí)的過程中,領(lǐng)會(huì)常見數(shù)學(xué)思想方法,培養(yǎng)學(xué)生的探索能力和創(chuàng)造性素質(zhì)。四是注意在探究問題時(shí)留給學(xué)生充分的時(shí)間,以利于開放學(xué)生的思維。當(dāng)然這就應(yīng)在處理教學(xué)內(nèi)容時(shí)能夠做到葉老師所說(shuō)“教就是為了不教”。因此,擬對(duì)本節(jié)課設(shè)計(jì)如下教學(xué)程序:

導(dǎo)入新課 新課教學(xué)

反饋發(fā)展

學(xué)生學(xué)習(xí)的過程實(shí)際上就是學(xué)生主動(dòng)獲取、整理、貯存、運(yùn)用知識(shí)和獲得學(xué)習(xí)能力的過程,因此,我覺得在教學(xué)中,指導(dǎo)學(xué)生學(xué)習(xí)時(shí),應(yīng)盡量避免單純地、直露地向?qū)W生灌輸某種學(xué)習(xí)方法。有效的能被學(xué)生接受的學(xué)法指導(dǎo)應(yīng)是滲透在教學(xué)過程中進(jìn)行的,是通過優(yōu)化教學(xué)程序來(lái)增強(qiáng)學(xué)法指導(dǎo)的目的性和實(shí)效性。在本節(jié)課的'教學(xué)中主要滲透以下幾個(gè)方面的學(xué)法指導(dǎo)。

1、培養(yǎng)學(xué)生學(xué)會(huì)通過自學(xué)、觀察、實(shí)驗(yàn)等方法獲取相關(guān)知識(shí),使學(xué)生在探索研究過程中分析、歸納、推理能力得到提高。

本節(jié)教師通過列舉具體事例來(lái)進(jìn)行分析,歸納出 ,并依

據(jù)此知識(shí)與具體事例結(jié)合、推導(dǎo)出 ,這正是一個(gè)分析和推理的全過程。

演示,創(chuàng)設(shè)探索 規(guī)律的情境,引導(dǎo)學(xué)生以可靠的事實(shí)為基礎(chǔ),經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學(xué)生領(lǐng)悟到把可靠的事實(shí)和深刻的理論思維結(jié)合起來(lái)的特點(diǎn)。

3、讓學(xué)生在探索性實(shí)驗(yàn)中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)“新”的問題或探索出“新”的規(guī)律。從而培養(yǎng)學(xué)生的發(fā)散思維和收斂思維能力,激發(fā)學(xué)生的創(chuàng)造動(dòng)力。在實(shí)踐中要盡可能讓學(xué)生多動(dòng)腦、多動(dòng)手、多觀察、多交流、多分析;老師要給學(xué)生多點(diǎn)撥、多啟發(fā)、多激勵(lì),不斷地尋找學(xué)生思維和操作上的閃光點(diǎn),及時(shí)總結(jié)和推廣。

4、在指導(dǎo)學(xué)生解決問題時(shí),引導(dǎo)學(xué)生通過比較、猜測(cè)、嘗試、質(zhì)疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢(shì)的消極影響,促進(jìn)知識(shí)的正向遷移。如教師引導(dǎo)學(xué)生對(duì)比中,蘊(yùn)含的本質(zhì)差異,從而擺脫知識(shí)遷移的負(fù)面影響。這樣,既有利于學(xué)生養(yǎng)成認(rèn)真分析過程、善于比較的好習(xí)慣,又有利于培養(yǎng)學(xué)生通過現(xiàn)象發(fā)掘知識(shí)內(nèi)在本質(zhì)的能力。

(一)、課題引入:

教師創(chuàng)設(shè)問題情景(創(chuàng)設(shè)情景:a、教師演示實(shí)驗(yàn)。b、使用多媒體模擬一些比較有趣、與生活實(shí)踐比較有關(guān)的事例,教案《高中數(shù)學(xué)課本說(shuō)課稿》。c、講述數(shù)學(xué)科學(xué)史上的有關(guān)情況。)激發(fā)學(xué)生的探究欲望,引導(dǎo)學(xué)生提出接下去要研究的問題。

(二)、新課教學(xué):

1、針對(duì)上面提出的問題,設(shè)計(jì)學(xué)生動(dòng)手實(shí)踐,讓學(xué)生通過動(dòng)手探索有關(guān)的知識(shí),并引導(dǎo)學(xué)生進(jìn)行交流、討論得出新知,并進(jìn)一步提出下面的問題。

2、組織學(xué)生進(jìn)行新問題的實(shí)驗(yàn)方法設(shè)計(jì)—這時(shí)在設(shè)計(jì)上最好是有對(duì)比性、數(shù)學(xué)方法性的設(shè)計(jì)實(shí)驗(yàn),指導(dǎo)學(xué)生實(shí)驗(yàn)、通過多媒體的輔助,顯示學(xué)生的實(shí)驗(yàn)數(shù)據(jù),模擬強(qiáng)化出實(shí)驗(yàn)情況,由學(xué)生分析比較,歸納總結(jié)出知識(shí)的結(jié)構(gòu)。

(三)、實(shí)施反饋:

1、課堂反饋,遷移知識(shí)(最好遷移到與生活有關(guān)的例子)。讓學(xué)生分析有關(guān)的問題,實(shí)現(xiàn)知識(shí)的升華、實(shí)現(xiàn)學(xué)生的再次創(chuàng)新。

2、課后反饋,延續(xù)創(chuàng)新。通過課后練習(xí),學(xué)生互改作業(yè),課后研實(shí)驗(yàn),實(shí)現(xiàn)課堂內(nèi)外的綜合,實(shí)現(xiàn)創(chuàng)新精神的延續(xù)。

在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫在左側(cè),中間知識(shí)推導(dǎo)過程,右邊實(shí)例應(yīng)用。

的認(rèn)識(shí),使學(xué)生的認(rèn)知活動(dòng)逐步深化,既掌握了知識(shí),又學(xué)會(huì)了方法。

總之,對(duì)課堂的設(shè)計(jì),我始終在努力貫徹以教師為主導(dǎo),以學(xué)生為主體,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力、應(yīng)用知識(shí)解決實(shí)際問題的能力和創(chuàng)造能力為指導(dǎo)思想。并且能從各種實(shí)際出發(fā),充分利用各種教學(xué)手段來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

高中高二數(shù)學(xué)說(shuō)課稿篇二

本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》(人民教育出版社、課程教材研究所a版教材)選修2-2中第§節(jié).作為導(dǎo)數(shù)概念的下位概念課,它是在學(xué)生學(xué)習(xí)了上位概念——平均變化率,瞬時(shí)變化率,及剛剛學(xué)習(xí)了用極限定義導(dǎo)數(shù)基礎(chǔ),進(jìn)一步從幾何意義的基礎(chǔ)上理解導(dǎo)數(shù)的含義與價(jià)值,是可以充分應(yīng)用信息技術(shù)進(jìn)行概念教學(xué)與問題探究的內(nèi)容.導(dǎo)數(shù)的幾何意義的學(xué)習(xí)為下位內(nèi)容——常見函數(shù)導(dǎo)數(shù)的計(jì)算,導(dǎo)數(shù)是研究函數(shù)中的應(yīng)用及研究函數(shù)曲線與直線的位置關(guān)系的基礎(chǔ).因此,導(dǎo)數(shù)的幾何意義有承前啟后的重要作用.

【知識(shí)與技能目標(biāo)】

(1)知道曲線的切線定義,理解導(dǎo)數(shù)的幾何意義;

——讓學(xué)生感知和初步理解函數(shù)在處的導(dǎo)數(shù)的幾何意義就是函數(shù)的圖像在處的切線的斜率,即=切線的斜率.

(2)導(dǎo)數(shù)幾何意義簡(jiǎn)單的應(yīng)用.

——用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,初步體會(huì)“逼近”和“以直代曲”的數(shù)學(xué)思想方法.

【過程與方法目標(biāo)】

(1)回顧圓錐曲線的切線的概念,復(fù)習(xí)導(dǎo)數(shù)概念,尋找在處的瞬時(shí)變化率的幾何意義;

(3)通過學(xué)生經(jīng)歷或觀察感知由割線逼近“變成”切線的過程,理解導(dǎo)數(shù)的幾何意義;

(5)通過分析導(dǎo)數(shù)的幾何意義,研究在實(shí)際生活問題中,用區(qū)間較小的范圍的平均變化率,來(lái)解決實(shí)際問題的瞬時(shí)變化率.

【情感態(tài)度價(jià)值觀目標(biāo)】

(3)增強(qiáng)學(xué)生問題應(yīng)用意識(shí)教育,讓學(xué)生獲得學(xué)習(xí)數(shù)學(xué)的興趣與信心.

重點(diǎn):導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的實(shí)際應(yīng)用,“以直代曲”數(shù)學(xué)思想方法.

難點(diǎn):對(duì)導(dǎo)數(shù)幾何意義的理解與掌握,在每處“附近”變化率與瞬時(shí)變化率的近似關(guān)系的理解.

關(guān)鍵:由割線趨向切線動(dòng)態(tài)變化效果,由割線“逼近”成切線的理解.

高中高二數(shù)學(xué)說(shuō)課稿篇三

各位老師:

大家好!我叫周婷婷,來(lái)自湖南科技大學(xué)。我說(shuō)課的題目是《算法的概念》,內(nèi)容選自于新課程人教a版必修3第一章第一節(jié),課時(shí)安排為兩個(gè)課時(shí),本節(jié)課內(nèi)容為第一課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

1.教材所處的地位和作用

現(xiàn)代社會(huì)是一個(gè)信息技術(shù)發(fā)展很快的社會(huì),算法進(jìn)入高中數(shù)學(xué)正是反映了時(shí)代的需要,它是當(dāng)今社會(huì)必備的基礎(chǔ)知識(shí),算法的學(xué)習(xí)是使用計(jì)算機(jī)處理問題前的一個(gè)必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實(shí)現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實(shí)踐能力。

2.教學(xué)的重點(diǎn)和難點(diǎn)

重點(diǎn):初步理解算法的定義,體會(huì)算法思想,能夠用自然語(yǔ)言描述算法難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。

1.知識(shí)目標(biāo):了解算法的含義,體會(huì)算法的思想;能夠用自然語(yǔ)言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。

2.能力目標(biāo):讓學(xué)生感悟人們認(rèn)識(shí)事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。

3.情感目標(biāo):對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)到計(jì)算機(jī)是人類征服自然的一有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。

采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動(dòng)發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。

算法這部分的使用性很強(qiáng),與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。

1.創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國(guó)古代數(shù)學(xué)與現(xiàn)代計(jì)算機(jī)科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法".

「設(shè)計(jì)意圖」是為了充分挖掘章頭圖的教學(xué)價(jià)值,體現(xiàn)

1)算法概念的由來(lái);

2)我們將要學(xué)習(xí)的算法與計(jì)算機(jī)有關(guān);

3)展示中國(guó)古代數(shù)學(xué)的成就;

4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

2.引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進(jìn)一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗(yàn)計(jì)算機(jī)直接給出方程組的解。目的是讓學(xué)生明白算法是用來(lái)解決某一類問題的,從而提高學(xué)生對(duì)算法的普遍適用性的認(rèn)識(shí),為建立算法的概念做好鋪墊。

之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語(yǔ)言來(lái)表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進(jìn)行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識(shí)算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來(lái),體會(huì)算法思想。(約8分鐘)

3.例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實(shí)際解決問題中去,而不只是單純的對(duì)數(shù)學(xué)思想的領(lǐng)悟。

這兩道例題均選自課本的例1和例2.

例1是讓我們?cè)O(shè)定一個(gè)程序以判斷一個(gè)數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個(gè)來(lái)探索解題步驟。通過例1讓學(xué)生認(rèn)識(shí)到求解結(jié)構(gòu)中存在"重復(fù)".為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語(yǔ)言表示提供前提。告訴學(xué)生們本算法就是用自然語(yǔ)言的形式描述的。并且設(shè)計(jì)算法一定要做到以下要求:

(1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。

(2)要使算法盡量簡(jiǎn)單、步驟盡量少。

(3)要保證算法正確,且計(jì)算機(jī)能夠執(zhí)行。

在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們?cè)O(shè)計(jì)一個(gè)利用二分法來(lái)求解方程的近似根的程序。我們首先要對(duì)算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計(jì)出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點(diǎn)。因此通過例2可以讓學(xué)生進(jìn)一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會(huì)算法的思想,體會(huì)算法的的特征。同時(shí)也可以鞏固用自然語(yǔ)言描述算法,提高用自然語(yǔ)言描述算法的表達(dá)水平。另外,借助例題加強(qiáng)學(xué)生對(duì)算法概念的理解,體會(huì)算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點(diǎn),算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

4.課堂小結(jié):

(1)算法的概念和算法的基本特征

(2)算法的描述方法,算法可以用自然語(yǔ)言描述。

(3)能利用算法的思想和方法解決實(shí)際問題,并能寫出一此簡(jiǎn)單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點(diǎn),對(duì)所學(xué)知識(shí)有一個(gè)系統(tǒng)整體的認(rèn)識(shí)。(約6分鐘)

5.布置作業(yè):課本練習(xí)1、2題

課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

高中高二數(shù)學(xué)說(shuō)課稿篇四

1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

(1) 本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容。

(2) 包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。

1-2教材所處地位、作用和前后聯(lián)系

本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

可見,本課有承前啟后的作用。

1-3教學(xué)大綱要求

掌握點(diǎn)到直線的距離公式

1-4高考大綱要求及在高考中的顯示形式

掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

1-5教學(xué)目標(biāo)及確定依據(jù)

教學(xué)目標(biāo)

(1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來(lái)求點(diǎn)線距離和線線距離。

(2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

(3) 認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

(4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

確定依據(jù):

中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)

1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

(1) 重點(diǎn):點(diǎn)到直線的距離公式

確定依據(jù):由本節(jié)在教材中的地位確定

(2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

分析“嘗試性題組”解題思路可突破難點(diǎn)

(3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

確定依據(jù):

(1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

2-2教具:多媒體和黑板等傳統(tǒng)教具

3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。

一句話:還課堂以生命力,還學(xué)生以活力。

3-2學(xué)情:

(1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

(2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。

3-3學(xué)具:直尺、三角板

學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

(1) 整理知識(shí)結(jié)構(gòu)。

(2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法。

(3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因。

(4) 談?wù)勀銓?duì)老師教法的建議和要求。

作用:

(1) 通過反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的`一個(gè)心理活動(dòng)過程。

(2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

(3) 及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

5. 板書設(shè)計(jì)

(略)

6. 教學(xué)的反思總結(jié)

心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

高中高二數(shù)學(xué)說(shuō)課稿篇五

知識(shí)與技能目標(biāo):準(zhǔn)確理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程及其推導(dǎo)。

過程與方法目標(biāo):通過引導(dǎo)學(xué)生親自動(dòng)手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進(jìn)而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。

情感、態(tài)度與價(jià)值觀目標(biāo):通過經(jīng)歷橢圓方程的化簡(jiǎn),增強(qiáng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會(huì)數(shù)學(xué)的簡(jiǎn)潔美、對(duì)稱美,通過討論橢圓方程推導(dǎo)的等價(jià)性養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

重點(diǎn)是橢圓的定義及標(biāo)準(zhǔn)方程,難點(diǎn)是推導(dǎo)橢圓的標(biāo)準(zhǔn)方程。

教學(xué)環(huán)節(jié)

教學(xué)內(nèi)容和形式

設(shè)計(jì)意圖

復(fù)習(xí)

提問:

(1)圓的定義是什么?圓的標(biāo)準(zhǔn)方程的形式怎樣?

(2)如何推導(dǎo)圓的標(biāo)準(zhǔn)方程呢?

激活學(xué)生已有的認(rèn)知結(jié)構(gòu),為本課推導(dǎo)橢圓標(biāo)準(zhǔn)方程提供了方法與策略。

(略)

操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活

在動(dòng)手過程中,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力。

在變化的過程中發(fā)現(xiàn)圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的'觀點(diǎn)看問題;為下一節(jié)深入研究方程系數(shù)的幾何意義埋下伏筆。

教學(xué)環(huán)節(jié)

注:1、平面內(nèi)。

2、若,則點(diǎn)p的軌跡為橢圓。

若,則點(diǎn)p的軌跡為線段。

若,則點(diǎn)p的軌跡不存在。

情境1.生活中,你見過哪些類似橢圓的圖形或物體?

情境2.讓學(xué)生觀察傾斜的圓柱形水杯的水面邊界線,并從中抽象出數(shù)學(xué)模型.(教師用多媒體演示)

情境3.觀看天體運(yùn)行的軌道圖片。

準(zhǔn)確理解橢圓的定義。

滲透數(shù)學(xué)源于生活,圓錐曲線在生產(chǎn)和技術(shù)中有著廣泛的應(yīng)用。

例:已知點(diǎn)、為橢圓的兩個(gè)焦點(diǎn),p為橢圓上的任意一點(diǎn),且,其中,求橢圓的方程

點(diǎn)撥-----板演-----點(diǎn)評(píng)

(1)建系設(shè)點(diǎn)

(2)寫出點(diǎn)的集合

(3)寫出代數(shù)方程

(4)化簡(jiǎn)方程:

1請(qǐng)一位基礎(chǔ)較好,書寫規(guī)范的同學(xué)板演。

(5)證明:討論推導(dǎo)的等價(jià)性

掌握橢圓標(biāo)準(zhǔn)方程及推導(dǎo)方法。

培養(yǎng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并感受數(shù)學(xué)的簡(jiǎn)潔美、對(duì)稱美。

養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

應(yīng)用

舉例

教學(xué)環(huán)節(jié)

例1.(1)橢圓的焦點(diǎn)坐標(biāo)為:

(2)橢圓的焦距為4,則m的值為:

活動(dòng)過程:思考-----解答-----點(diǎn)評(píng)

活動(dòng)過程:思考-----解答-----點(diǎn)評(píng)

變式1已知橢圓焦點(diǎn)的坐標(biāo)分別是(-4,0)(4,0),且經(jīng)過點(diǎn),求橢圓的標(biāo)準(zhǔn)方程。

求橢圓的標(biāo)準(zhǔn)方程

思考-----解答-----點(diǎn)評(píng)

認(rèn)清橢圓兩種標(biāo)準(zhǔn)方程形式上的特征。

提問:本節(jié)課學(xué)習(xí)的主要知識(shí)是什么?你學(xué)會(huì)了哪些數(shù)學(xué)思想與方法?

活動(dòng)過程:教師提問-----學(xué)生小結(jié)-----師生補(bǔ)充完善。

讓學(xué)生回顧本節(jié)所學(xué)知識(shí)與方法,以逐步提高學(xué)生自我獲取知識(shí)的能力。

作業(yè):教材第95頁(yè),練習(xí)2、4,第96頁(yè)習(xí)題8-1,1、2、3、

分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識(shí);為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。

8.1橢圓及其標(biāo)準(zhǔn)方程

本節(jié)課的設(shè)計(jì)力圖貫徹"以人的發(fā)展為本"的教育理念,體現(xiàn)"教師為主導(dǎo),學(xué)生為主體"的現(xiàn)代教學(xué)思想。在對(duì)橢圓定義的講授中,遵循從生動(dòng)直觀到抽象概括的教學(xué)原則和教學(xué)途徑,通過引導(dǎo)學(xué)生親自動(dòng)手嘗試畫圖、發(fā)現(xiàn)橢圓的形成過程進(jìn)而歸納出橢圓的定義,培養(yǎng)學(xué)生觀察、辨析、歸納問題的能力;讓橢圓生動(dòng)靈活地呈現(xiàn)在學(xué)生面前,更有助于學(xué)生理解橢圓的內(nèi)涵和外延。對(duì)本課另一難點(diǎn)標(biāo)準(zhǔn)方程推導(dǎo)的講授中,在關(guān)鍵處設(shè)疑,以疑導(dǎo)思,讓學(xué)生先從目的、再?gòu)姆椒ㄉ峡紤],引導(dǎo)學(xué)生對(duì)比、分析,師生共同完成。通過經(jīng)歷橢圓方程的化簡(jiǎn),增強(qiáng)了學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會(huì)數(shù)學(xué)的簡(jiǎn)潔美、對(duì)稱美.通過討論橢圓方程推導(dǎo)的等價(jià)性養(yǎng)成學(xué)生扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。設(shè)計(jì)的例題及變式練習(xí),充分利用新知識(shí)解決問題,使所學(xué)內(nèi)容得以鞏固。變式(2)的設(shè)計(jì)讓學(xué)生站在方程的角度認(rèn)清橢圓兩種標(biāo)準(zhǔn)方程形式上的特征,將學(xué)生的思維提升到了一個(gè)新的高度。課后分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識(shí);課后探索更為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。在教學(xué)中借助多媒體生動(dòng)、直觀、形象的特點(diǎn)來(lái)突出教學(xué)重點(diǎn)。自始至終很好地調(diào)動(dòng)學(xué)生的積極性,挖掘他們的內(nèi)在潛能,提高學(xué)生的綜合素質(zhì)。

高中高二數(shù)學(xué)說(shuō)課稿篇六

1、教材的地位與作用

導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對(duì)導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識(shí),本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動(dòng)畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運(yùn)用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會(huì)導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。

2、教學(xué)的重點(diǎn)、難點(diǎn)、關(guān)鍵

教學(xué)重點(diǎn):導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。

教學(xué)難點(diǎn):理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵

1) 從割線到切線的過程中采用的逼近方法;

2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來(lái),例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點(diǎn)x附近的變化快慢,導(dǎo)數(shù)是曲線上某點(diǎn)切線的斜率,等等.

根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下:

1、知識(shí)與技能 :

通過實(shí)驗(yàn)探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點(diǎn)的切線的概念,會(huì)求簡(jiǎn)單函數(shù)在某點(diǎn)的切線方程。

過程與方法:

通過逼近、數(shù)形結(jié)合思想的具體運(yùn)用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。

3、情感態(tài)度與價(jià)值觀:

對(duì)于直線來(lái)說(shuō)它的導(dǎo)數(shù)就是它的斜率,學(xué)生會(huì)很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對(duì)曲線的切線的概念也有了一些認(rèn)識(shí),基于以上學(xué)情分析,我確定下列教法:

學(xué)法:為了發(fā)揮學(xué)生的主觀能動(dòng)性,提高學(xué)生的綜合能力,本節(jié)課采取了

自主 、合作、探究的學(xué)習(xí)方法。

教具: 幾何畫板、幻燈片

1.創(chuàng)設(shè)情境

學(xué)生活動(dòng)——問題系列

問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

問題2 如圖直線l是曲線c的切線嗎?

(1)與 (2)與 還有直線與雙曲線的位置關(guān)系

問題3 那么對(duì)于一般的曲線,切線該如何定義呢?

【設(shè)計(jì)意圖】:通過類比構(gòu)建認(rèn)知沖突。

學(xué)生活動(dòng)——復(fù)習(xí)回顧

導(dǎo)數(shù)的定義

【設(shè)計(jì)意圖】:從理論和知識(shí)基礎(chǔ)兩方面為本節(jié)課作鋪墊。

2.探索求知

學(xué)生活動(dòng)——試驗(yàn)探究

問一;求導(dǎo)數(shù)的步驟是怎樣的?

第一步:求平均變化率;第二步:當(dāng)趨近于0時(shí),平均變化率無(wú)限趨近于的常數(shù)就是。

【設(shè)計(jì)意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。

問二;你能借助圖像說(shuō)說(shuō)平均變化率表示什么嗎?請(qǐng)?jiān)诤瘮?shù)圖像中畫出來(lái)。

【設(shè)計(jì)意圖】:通過學(xué)生動(dòng)手實(shí)踐得到平均變化率表示割線pq的斜率。

問三;在的過程中,你能描述一下割線pq的變化情況嗎?請(qǐng)?jiān)趫D像中畫出來(lái)。

【設(shè)計(jì)意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,q();從形的角度看, 的過程中,q點(diǎn)向p點(diǎn)無(wú)限趨近,割線pq趨近于確定的位置,這個(gè)位置的直線叫做曲線在 處的切線。

探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢(shì),教師引導(dǎo)給出一般曲線的切線定義。

【設(shè)計(jì)意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點(diǎn);學(xué)生在過程中,可以體會(huì)逼近的思想方法。能夠同時(shí)從數(shù)與形兩個(gè)角度強(qiáng)化學(xué)生對(duì)導(dǎo)數(shù)概念的理解。

問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?

【設(shè)計(jì)意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說(shuō)出:,割線pq切線pt,所以割線

pq的斜率切線pt的斜率。因此,=切線pt的斜率。

1、通過學(xué)生參加活動(dòng)是否積極主動(dòng),能否與他人合作探索,對(duì)學(xué)生的學(xué)習(xí)過程評(píng)價(jià);

2、通過學(xué)生對(duì)方法的選擇,對(duì)學(xué)生的學(xué)習(xí)能力評(píng)價(jià);

3、通過練習(xí)、課后作業(yè),對(duì)學(xué)生的學(xué)習(xí)效果評(píng)價(jià).

5、本節(jié)課設(shè)計(jì)目標(biāo)力求使學(xué)生體會(huì)微積分的基本思想,感受近似與精確的統(tǒng)一,運(yùn)動(dòng)和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.

高中高二數(shù)學(xué)說(shuō)課稿篇七

各位領(lǐng)導(dǎo)和教師,大家好!我說(shuō)課的資料是蘇教版必修1第1章第3節(jié)第一課時(shí)《交集、并集》,下頭我想談?wù)勎覍?duì)這節(jié)課的教學(xué)構(gòu)想:

與傳統(tǒng)的教材處理不一樣,本章在學(xué)生經(jīng)過觀察具體集合得到集合的補(bǔ)集的概念后,上升到數(shù)學(xué)內(nèi)部,將"補(bǔ)"理解為集合間的一種"運(yùn)算".在此基礎(chǔ)上,經(jīng)過實(shí)例,使學(xué)生感受和掌握集合之間的另外兩種運(yùn)算—交和并。設(shè)計(jì)的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數(shù)學(xué)語(yǔ)言,在后續(xù)的學(xué)習(xí)中是一種重要的工具。所以,在教學(xué)過程中要針對(duì)具體問題,引導(dǎo)學(xué)生恰當(dāng)使用自然語(yǔ)言、圖形語(yǔ)言和集合語(yǔ)言來(lái)描述相應(yīng)的數(shù)學(xué)資料。有了集合的語(yǔ)言,能夠更清晰的表達(dá)我們的思想。所以,集合是整個(gè)數(shù)學(xué)的基礎(chǔ),在以后的學(xué)習(xí)中有著極為廣泛的應(yīng)用。

基于以上的分析制定以下的教學(xué)目標(biāo)。

1、理解交集與并集的概念;掌握有關(guān)集合的術(shù)語(yǔ)和符號(hào),并會(huì)用它們正確表示一些簡(jiǎn)單的集合。能用venn圖表示集合之間的關(guān)系;掌握兩個(gè)集合的交集、并集的求法。

2、經(jīng)過對(duì)交集、并集概念的學(xué)習(xí),培養(yǎng)學(xué)生觀察、比較、分析、概括的本事,使學(xué)生認(rèn)識(shí)由具體到抽象的思維過程。

3、經(jīng)過對(duì)集合符號(hào)語(yǔ)言的學(xué)習(xí),培養(yǎng)學(xué)生符號(hào)表達(dá)本事,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)作風(fēng),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

針對(duì)以上的分析我把教學(xué)重點(diǎn)放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導(dǎo)學(xué)生經(jīng)過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學(xué)難點(diǎn)。

針對(duì)我們師范學(xué)校學(xué)生的特點(diǎn),我本著低起點(diǎn)、高要求、循序漸進(jìn),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性的原則,采用"五環(huán)節(jié)教學(xué)法".同時(shí)利用多媒體輔助教學(xué)。

下頭我重點(diǎn)說(shuō)一說(shuō)教學(xué)過程。

第一個(gè)環(huán)節(jié):?jiǎn)栴}情境。

經(jīng)過實(shí)例:學(xué)校舉辦了排球賽,08小教(2)56名同學(xué)中有12名同學(xué)參賽,之后又舉辦了田徑賽,這個(gè)班有20名同學(xué)參賽。已知兩項(xiàng)都參賽的有6名同學(xué)。兩項(xiàng)比賽中,這個(gè)班共有多少名同學(xué)沒有參加過比賽?讓學(xué)生感受到數(shù)學(xué)與我們的生活息息相關(guān),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。

學(xué)生思考后回答,然后教師加以引導(dǎo),讓學(xué)生的回答到達(dá)這樣三個(gè)層次:

層次一:發(fā)現(xiàn)要求沒有參加比賽的人數(shù),首先應(yīng)當(dāng)算出參加比賽的人數(shù),并且明白參加比賽的人數(shù)是12+20-6,而不是12+20,因?yàn)橛?人既參加排球賽又參加田徑賽。

層次二:教師引導(dǎo)學(xué)生利用集合的觀點(diǎn)再來(lái)研究這個(gè)問題。先設(shè)利用venn圖來(lái)表示集合a,b,c.發(fā)現(xiàn)集合a,b的公共部分就是集合c.

層次三:引導(dǎo)學(xué)生發(fā)現(xiàn)集合c的元素的構(gòu)成與集合a,b的元素的關(guān)系。學(xué)生能夠發(fā)現(xiàn)集合c中的元素是由既參加排球比賽又參加田徑比賽的同學(xué)構(gòu)成的,更進(jìn)一步集合c的元素是由既屬于集合a的元素又屬于集合b的元素構(gòu)成的。

經(jīng)過對(duì)三個(gè)層次的探究和分析讓學(xué)生體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

第二環(huán)節(jié):最終抽象、歸納出交集的文字?jǐn)⑹龅亩x。

定義給出后,讓學(xué)生利用數(shù)學(xué)符號(hào)語(yǔ)言寫出的集合表示。充分體現(xiàn)使用集合語(yǔ)言,能夠簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些資料。

第三環(huán)節(jié):經(jīng)過兩個(gè)例子鞏固定義。

例1是較為簡(jiǎn)單的不用動(dòng)筆,同學(xué)直接口答即可;例2是必須動(dòng)筆計(jì)算的,并且還要經(jīng)過數(shù)軸輔助解決,充分體現(xiàn)了數(shù)形結(jié)合的思想。經(jīng)過這兩個(gè)例子的解決,使學(xué)生不僅僅掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,同時(shí)也體現(xiàn)出了數(shù)學(xué)的思想方法,發(fā)展學(xué)生的應(yīng)用意識(shí)和創(chuàng)新意識(shí)。

第四環(huán)節(jié):最終對(duì)交集進(jìn)行再認(rèn)識(shí),并利用venn圖歸納、總結(jié)出交集的性質(zhì)。

在這一環(huán)節(jié)中教師只是引導(dǎo)著,學(xué)生是主體,充分發(fā)揮學(xué)生的積極主動(dòng)性,使學(xué)生在學(xué)習(xí)的過程中成為在教師引導(dǎo)下的"再創(chuàng)造"過程。應(yīng)當(dāng)準(zhǔn)備預(yù)案。

第五環(huán)節(jié):經(jīng)過綜合性較強(qiáng)的例子進(jìn)一步鞏固定義和性質(zhì)。

這樣的五個(gè)環(huán)節(jié)不僅僅充分研究到學(xué)生的認(rèn)知規(guī)律,并且為學(xué)生和教師的積極活動(dòng)供給了空間和可能。更印證了低起點(diǎn)、高要求、循序漸進(jìn),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性的原則。

交集的定義、性質(zhì)研究清楚之后,并集的定義、性質(zhì)就順理成章了,仿照交集的研究方法去研究。這樣不僅僅讓學(xué)生學(xué)到了知識(shí),并且學(xué)會(huì)了探究問題的方法。

交集、并集的定義、性質(zhì)研究完了以后,設(shè)計(jì)"感受理解、思考運(yùn)用、拓展探究"三個(gè)不一樣層次的練習(xí)題進(jìn)行檢測(cè)本節(jié)課的學(xué)習(xí)效果,同時(shí)要研究到不一樣水平,不一樣興趣學(xué)生的學(xué)習(xí)需要。

小結(jié)應(yīng)先由學(xué)生總結(jié),然后教師強(qiáng)調(diào)兩點(diǎn):一是交集與并集的區(qū)別與聯(lián)系;二是對(duì)本節(jié)課進(jìn)行科學(xué)的評(píng)價(jià),既要關(guān)注學(xué)生學(xué)習(xí)數(shù)學(xué)的結(jié)果,又要關(guān)注它們?cè)跀?shù)學(xué)活動(dòng)中所表現(xiàn)出的情感態(tài)度的變化,關(guān)注學(xué)生個(gè)性與潛能的發(fā)展,關(guān)注學(xué)生數(shù)學(xué)地提出、分析、解決問題的過程的評(píng)價(jià),以及在過程中華表現(xiàn)出來(lái)的與人合作的態(tài)度,表達(dá)與交流的意識(shí)和探索精神。

作業(yè)、板書設(shè)計(jì)。

以上就是我說(shuō)課的資料,多謝大家!

高中高二數(shù)學(xué)說(shuō)課稿篇八

《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

2.從學(xué)生認(rèn)知角度看。

從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò).

3.學(xué)情分析。

教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

4.重點(diǎn)、難點(diǎn)。

教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.

教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.

公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).

知識(shí)與技能目標(biāo):

理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.

過程與方法目標(biāo):

通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

情感與態(tài)度價(jià)值觀:

通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).

學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:

1.創(chuàng)設(shè)情境,提出問題。

設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).

此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù).帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.

設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.

2.師生互動(dòng),探究問題。

探討1:,記為(1)式,注意觀察每一項(xiàng)的.特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)。

設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).

設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

3.類比聯(lián)想,解決問題。

這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,

這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).

設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.

對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)。

再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)。

設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.

4.討論交流,延伸拓展。

高中高二數(shù)學(xué)說(shuō)課稿篇九

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

教學(xué)重點(diǎn)、難點(diǎn)。

重點(diǎn):集合的含義與表示方法。

難點(diǎn):表示法的恰當(dāng)選擇。

教學(xué)目標(biāo)。

l.知識(shí)與技能。

(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

(2)知道常用數(shù)集及其專用記號(hào);

(3)了解集合中元素的確定性。互異性。無(wú)序性;

(4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;

2.過程與方法。

(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義。

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí)。

3.情感、態(tài)度與價(jià)值觀。

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性。

1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。

2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。

(一)創(chuàng)設(shè)情景,揭示課題。

1、教師首先提出問題:

(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。

(2)問題:像"家庭"、"學(xué)校"、"班級(jí)"等,有什么共同特征?

引導(dǎo)學(xué)生互相交流。與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。

2.活動(dòng):

(1)列舉生活中的集合的例子;

(2)分析、概括各實(shí)例的共同特征。

由此引出這節(jié)要學(xué)的內(nèi)容。

設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊。

(二)研探新知,建構(gòu)概念。

1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

(1)1-20以內(nèi)的所有質(zhì)數(shù);

(2)我國(guó)古代的四大發(fā)明;

(3)所有的安理會(huì)常任理事國(guó);

(4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交橋;

(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

(7)國(guó)興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。

2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

3.每個(gè)小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。

一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集)。集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素。

4.教師指出:集合常用大寫字母a,b,c,d,…表示,元素常用小寫字母…表示。

設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神。

(三)質(zhì)疑答辯,發(fā)展思維。

1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性?;ギ愋院蜔o(wú)序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等。

2.教師組織引導(dǎo)學(xué)生思考以下問題:

判斷以下元素的全體是否組成集合,并說(shuō)明理由:

(1)大于3小于11的偶數(shù);

(2)我國(guó)的小河流。

讓學(xué)生充分發(fā)表自己的建解。

3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由。教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。

4.教師提出問題,讓學(xué)生思考。

(1)如果用a表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

如果是集合a的元素,就說(shuō)屬于集合a,記作。

如果不是集合a的元素,就說(shuō)不屬于集合a,記作。

(2)如果用a表示"所有的安理會(huì)常任理事國(guó)"組成的集合,則中國(guó)。日本與集合a的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示。

(3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題。

5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號(hào)。并讓學(xué)生完成習(xí)題1.1a組第1題。

6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:

(1)要表示一個(gè)集合共有幾種方式?

(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。

設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

(四)鞏固深化,反饋矯正。

教師投影學(xué)習(xí):

(1)用自然語(yǔ)言描述集合{1,3,5,7,9};。

(2)用例舉法表示集合。

(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題。

小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問題:

1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?

2.你認(rèn)為學(xué)習(xí)集合有什么意義?

3.選擇集合的表示法時(shí)應(yīng)注意些什么?

設(shè)計(jì)意圖:通過回顧,對(duì)概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):

1.課后書面作業(yè):第13頁(yè)習(xí)題1.1a組第4題。

2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請(qǐng)同學(xué)們通過預(yù)習(xí)教材。

高中高二數(shù)學(xué)說(shuō)課稿篇十

(1)本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容。

(2)包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。

1-2教材所處地位、作用和前后聯(lián)系。

本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

可見,本課有承前啟后的作用。

1-3教學(xué)大綱要求。

掌握點(diǎn)到直線的距離公式。

1-4高考大綱要求及在高考中的顯示形式。

掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

1-5教學(xué)目標(biāo)及確定依據(jù)。

教學(xué)目標(biāo)。

(1)掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來(lái)求點(diǎn)線距離和線線距離。

(2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

(3)認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

確定依據(jù):

中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)。

1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵。

(1)重點(diǎn):點(diǎn)到直線的距離公式。

確定依據(jù):由本節(jié)在教材中的地位確定。

(2)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)。

確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

分析“嘗試性題組”解題思路可突破難點(diǎn)。

(3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

2.教法。

2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

確定依據(jù):

(1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

2-2教具:多媒體和黑板等傳統(tǒng)教具。

3.學(xué)法。

3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。

一句話:還課堂以生命力,還學(xué)生以活力。

3-2學(xué)情:

(1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

(2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。

3-3學(xué)具:直尺、三角板。

4.教學(xué)評(píng)價(jià)。

學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

(1)整理知識(shí)結(jié)構(gòu)。

(2)總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法。

(3)總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因。

(4)談?wù)勀銓?duì)老師教法的建議和要求。

作用:

(1)通過反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過程。

(2)報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

(3)及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

5.板書設(shè)計(jì)。

(略)。

6.教學(xué)的反思總結(jié)。

心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

高中高二數(shù)學(xué)說(shuō)課稿篇十一

(1)正確理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)的標(biāo)準(zhǔn)差。

(2)能根據(jù)實(shí)際問題的需要合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并做出合理的解釋。

(3)會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征。

(4)形成對(duì)數(shù)據(jù)處理過程進(jìn)行初步評(píng)價(jià)的意識(shí)。

在解決統(tǒng)計(jì)問題的過程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,理解數(shù)形結(jié)合的數(shù)學(xué)思想和邏輯推理的數(shù)學(xué)方法。

會(huì)用隨機(jī)抽樣的方法和樣本估計(jì)總體的思想解決一些簡(jiǎn)單的實(shí)際問題,認(rèn)識(shí)統(tǒng)計(jì)的作用,能夠辨證地理解數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系。

2重點(diǎn)難點(diǎn)。

重點(diǎn):用樣本平均數(shù)和標(biāo)準(zhǔn)差估計(jì)總體的平均數(shù)與標(biāo)準(zhǔn)差。

難點(diǎn):能應(yīng)用相關(guān)知識(shí)解決簡(jiǎn)單的實(shí)際問題。

3教學(xué)過程3.1第一學(xué)時(shí)評(píng)論(0)新設(shè)計(jì)。

【創(chuàng)設(shè)情境】。

在一次射擊比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕。

甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4;。

乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7.

觀察上述樣本數(shù)據(jù),你能判斷哪個(gè)運(yùn)動(dòng)員發(fā)揮的更穩(wěn)定些嗎?為了從整體上更好地把握總體的規(guī)律,我們要通過樣本的數(shù)據(jù)對(duì)總體的數(shù)字特征進(jìn)行研究。——用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征(板出課題)。

【探究新知】。

一、眾數(shù)、中位數(shù)、平均數(shù)。

〖探究〗:p62。

(1)怎樣將各個(gè)樣本數(shù)據(jù)匯總為一個(gè)數(shù)值,并使它成為樣本數(shù)據(jù)的“中心點(diǎn)”?

(2)能否用一個(gè)數(shù)值來(lái)描寫樣本數(shù)據(jù)的離散程度?(讓學(xué)生回憶初中所學(xué)的一些統(tǒng)計(jì)知識(shí),思考后展開討論)。

初中我們?cè)?jīng)學(xué)過眾數(shù),中位數(shù),平均數(shù)等各種數(shù)字特征,應(yīng)當(dāng)說(shuō),這些數(shù)字都能夠?yàn)槲覀兲峁╆P(guān)于樣本數(shù)據(jù)的特征信息。例如前面一節(jié)在調(diào)查100位居民的月均用水量的問題中,從這些樣本數(shù)據(jù)的頻率分布直方圖可以看出,月均用水量的眾數(shù)是2.25t(最高的矩形的中點(diǎn))(圖略見課本第62頁(yè))它告訴我們,該市的月均用水量為2.25t的居民數(shù)比月均用水量為其他值的居民數(shù)多,但它并沒有告訴我們到底多多少。

〖提問〗:請(qǐng)大家翻回到課本第56頁(yè)看看原來(lái)抽樣的數(shù)據(jù),有沒有2.25這個(gè)數(shù)值呢?根據(jù)眾數(shù)的定義,2.25怎么會(huì)是眾數(shù)呢?為什么?(請(qǐng)大家思考作答)。

分析:這是因?yàn)闃颖緮?shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失的原因,而2.25是由樣本數(shù)據(jù)的頻率分布直方圖得來(lái)的,所以存在一些偏差。

〖提問〗:那么如何從頻率分布直方圖中估計(jì)中位數(shù)呢?

分析:在樣本數(shù)據(jù)中,有50%的個(gè)體小于或等于中位數(shù),也有50%的個(gè)體大于或等于中位數(shù)。因此,在頻率分布直方圖中,矩形的面積大小正好表示頻率的大小,即中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等。由此可以估計(jì)出中位數(shù)的值為2.02。(圖略見課本63頁(yè)圖2.2-6)。

〖思考〗:2.02這個(gè)中位數(shù)的估計(jì)值,與樣本的中位數(shù)值2.0不一樣,你能解釋其中的原因嗎?(原因同上:樣本數(shù)據(jù)的頻率分布直方圖把原始的一些數(shù)據(jù)給遺失了)。

課本63頁(yè)圖2.2-6)顯示,大部分居民的月均用水量在中部(2.02t左右),但是也有少數(shù)居民的月均用水量特別高,顯然,對(duì)這部分居民的用水量作出限制是非常合理的。

〖思考〗:中位數(shù)不受少數(shù)幾個(gè)極端值的影響,這在某些情況下是一個(gè)優(yōu)點(diǎn),但是它對(duì)極端值的不敏感有時(shí)也會(huì)成為缺點(diǎn),你能舉例說(shuō)明嗎?(讓學(xué)生討論,并舉例)。

二、標(biāo)準(zhǔn)差、方差。

1.標(biāo)準(zhǔn)差。

平均數(shù)為我們提供了樣本數(shù)據(jù)的重要信息,可是,有時(shí)平均數(shù)也會(huì)使我們作出對(duì)總體的片面判斷。某地區(qū)的統(tǒng)計(jì)顯示,該地區(qū)的中學(xué)生的平均身高為176㎝,給我們的印象是該地區(qū)的中學(xué)生生長(zhǎng)發(fā)育好,身高較高。但是,假如這個(gè)平均數(shù)是從五十萬(wàn)名中學(xué)生抽出的五十名身高較高的學(xué)生計(jì)算出來(lái)的話,那么,這個(gè)平均數(shù)就不能代表該地區(qū)所有中學(xué)生的身體素質(zhì)。因此,只有平均數(shù)難以概括樣本數(shù)據(jù)的實(shí)際狀態(tài)。

例如,在一次射擊選拔比賽中,甲、乙兩名運(yùn)動(dòng)員各射擊10次,命中環(huán)數(shù)如下﹕。

甲運(yùn)動(dòng)員﹕7,8,6,8,6,5,8,10,7,4;。

乙運(yùn)動(dòng)員﹕9,5,7,8,7,6,8,6,7,7.

我們知道,。

兩個(gè)人射擊的平均成績(jī)是一樣的。那么,是否兩個(gè)人就沒有水平差距呢?(觀察p66圖2.2-8)直觀上看,還是有差異的。很明顯,甲的成績(jī)比較分散,乙的成績(jī)相對(duì)集中,因此我們從另外的角度來(lái)考察這兩組數(shù)據(jù)。

考察樣本數(shù)據(jù)的分散程度的大小,最常用的統(tǒng)計(jì)量是標(biāo)準(zhǔn)差。標(biāo)準(zhǔn)差是樣本數(shù)據(jù)到平均數(shù)的一種平均距離,一般用s表示。

樣本數(shù)據(jù)的標(biāo)準(zhǔn)差的算法:

(1)、算出樣本數(shù)據(jù)的平均數(shù)。

(2)、算出每個(gè)樣本數(shù)據(jù)與樣本數(shù)據(jù)平均數(shù)的差:

(3)、算出(2)中的平方。

(4)、算出(3)中n個(gè)平方數(shù)的'平均數(shù),即為樣本方差。

(5)、算出(4)中平均數(shù)的算術(shù)平方根,,即為樣本標(biāo)準(zhǔn)差。

其計(jì)算公式為:

顯然,標(biāo)準(zhǔn)差較大,數(shù)據(jù)的離散程度較大;標(biāo)準(zhǔn)差較小,數(shù)據(jù)的離散程度較小。

〖提問〗:標(biāo)準(zhǔn)差的取值范圍是什么?標(biāo)準(zhǔn)差為0的樣本數(shù)據(jù)有什么特點(diǎn)?

從標(biāo)準(zhǔn)差的定義和計(jì)算公式都可以得出:。當(dāng)時(shí),意味著所有的樣本數(shù)據(jù)都等于樣本平均數(shù)。

(在課堂上,如果條件允許的話,可以給學(xué)生簡(jiǎn)單的介紹一下利用計(jì)算機(jī)來(lái)計(jì)算標(biāo)準(zhǔn)差的方法。)。

2.方差。

從數(shù)學(xué)的角度考慮,人們有時(shí)用標(biāo)準(zhǔn)差的平方(即方差)來(lái)代替標(biāo)準(zhǔn)差,作為測(cè)量樣本數(shù)據(jù)分散程度的工具:

在刻畫樣本數(shù)據(jù)的分散程度上,方差和標(biāo)準(zhǔn)差是一樣的,但在解決實(shí)際問題時(shí),一般多采用標(biāo)準(zhǔn)差。

【例題精析】。

〖例1〗:畫出下列四組樣本數(shù)據(jù)的直方圖,說(shuō)明他們的異同點(diǎn)。

(1)5,5,5,5,5,5,5,5,5。

(2)4,4,4,5,5,5,6,6,6。

(3)3,3,4,4,5,6,6,7,7。

(4)2,2,2,2,5,8,8,8,8。

分析:先畫出數(shù)據(jù)的直方圖,根據(jù)樣本數(shù)據(jù)算出樣本數(shù)據(jù)的平均數(shù),利用標(biāo)準(zhǔn)差的計(jì)算公式即可算出每一組數(shù)據(jù)的標(biāo)準(zhǔn)差。

解:(圖略,可查閱課本p68)。

四組數(shù)據(jù)的平均數(shù)都是5.0,標(biāo)準(zhǔn)差分別為:0.00,0.82,1.49,2.83。

他們有相同的平均數(shù),但他們有不同的標(biāo)準(zhǔn)差,說(shuō)明數(shù)據(jù)的分散程度是不一樣的。

〖例2〗:(見課本p69)。

分析:比較兩個(gè)人的生產(chǎn)質(zhì)量,只要比較他們所生產(chǎn)的零件內(nèi)徑尺寸所組成的兩個(gè)總體的平均數(shù)與標(biāo)準(zhǔn)差的大小即可,根據(jù)用樣本估計(jì)總體的思想,我們可以通過抽樣分別獲得相應(yīng)的樣本數(shù)據(jù),然后比較這兩個(gè)樣本數(shù)據(jù)的平均數(shù)、標(biāo)準(zhǔn)差,以此作為兩個(gè)總體之間的差異的估計(jì)值。

【課堂精練】練習(xí)1.2.34。

【課堂小結(jié)】。

用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征分兩類:

用樣本平均數(shù)估計(jì)總體平均數(shù)。

用樣本標(biāo)準(zhǔn)差估計(jì)總體標(biāo)準(zhǔn)差。樣本容量越大,估計(jì)就越精確。

平均數(shù)對(duì)數(shù)據(jù)有“取齊”的作用,代表一組數(shù)據(jù)的平均水平。

標(biāo)準(zhǔn)差描述一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小,反映了一組數(shù)據(jù)變化的幅度。

高中高二數(shù)學(xué)說(shuō)課稿篇十二

本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對(duì)于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

會(huì)求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

高三年級(jí)學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對(duì)求函數(shù)極值還不熟練,特別是對(duì)優(yōu)化解題過程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

(1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

(2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

(3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

(1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

(2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

(3)會(huì)求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

(1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

(2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

(3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

對(duì)于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

高中高二數(shù)學(xué)說(shuō)課稿篇十三

拋物線焦點(diǎn)性質(zhì)的探索(說(shuō)課)

一、

1 教材的地位與作用 “拋物線焦點(diǎn)的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對(duì)于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

2 教學(xué)目的 全日制普通高級(jí)中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁(yè)“重視現(xiàn)代教育技術(shù)的運(yùn)用”中明確提出:在數(shù)學(xué)教學(xué)過程中,應(yīng)有意識(shí)地利用計(jì)算機(jī)網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認(rèn)識(shí)計(jì)算機(jī)的智能圖形、快速計(jì)算、機(jī)器證明、自動(dòng)求解及人機(jī)交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計(jì)和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動(dòng),支持和鼓勵(lì)學(xué)生運(yùn)用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開展課題研究,改進(jìn)學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識(shí)。因此本人在現(xiàn)行高中新教材(試驗(yàn)修訂本·必修)數(shù)學(xué)第二冊(cè)(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場(chǎng)地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計(jì)了一堂《拋物線焦點(diǎn)性質(zhì)的探索》,具體目標(biāo)如下:

(2) 能力目標(biāo):使學(xué)生學(xué)會(huì)研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運(yùn)動(dòng)與靜止)培養(yǎng)學(xué)生通過計(jì)算機(jī)來(lái)自主學(xué)習(xí)的能力與創(chuàng)新的能力。

(3) 情感目標(biāo):培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長(zhǎng)鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。

3 教學(xué)內(nèi)容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節(jié)安排兩節(jié)課,

第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);

第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

重點(diǎn):

(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

(2)如何證明這些性質(zhì)。

難點(diǎn);

(1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

(2)如何證明這些性質(zhì)。

學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī)),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個(gè)學(xué)生的窗口,其他學(xué)生及教師都可以通過教師機(jī)切換,從而和其他學(xué)生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。

學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī))中有幾何畫板軟件,學(xué)生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗(yàn)、猜想,通過自已的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

4.1 使學(xué)生學(xué)會(huì)研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點(diǎn)在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個(gè)創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過網(wǎng)絡(luò)學(xué)習(xí),得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點(diǎn)性質(zhì)的基本圖形。

高中高二數(shù)學(xué)說(shuō)課稿篇十四

1、教材內(nèi)容

2、教材所處地位、作用

3、教學(xué)目標(biāo)

(1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

的方法;

4、重點(diǎn)與難點(diǎn)

教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

(2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.

教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;

(2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.

二、教法分析與學(xué)法指導(dǎo)

本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.

在學(xué)法上:

三、教學(xué)過程

教學(xué)

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)意圖

問題

情境

(播放中央電視臺(tái)天氣預(yù)報(bào)的音樂)

滿足在定義域上的單調(diào)性的討論.

3、重視學(xué)生的動(dòng)手實(shí)踐過程.通過對(duì)定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義.

4、重視課堂問題的設(shè)計(jì).通過對(duì)問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題.

【本文地址:http://www.aiweibaby.com/zuowen/6592677.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔