一份好的教案應(yīng)該具備清晰的教學(xué)目標(biāo)、合理的教學(xué)內(nèi)容、靈活的教學(xué)方法和科學(xué)的教學(xué)評價。教案的設(shè)計要注重培養(yǎng)學(xué)生的思維能力和創(chuàng)新能力。以下是小編為大家收集的教案范文,僅供參考,希望對教師備課有所幫助。
數(shù)學(xué)高一教案篇一
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實驗室的所有天平
6)本班級全體高個子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學(xué)號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的'解集是____________________.
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:集合含義及其表示能給您帶來幫助!
數(shù)學(xué)高一教案篇二
對數(shù)函數(shù)(第二課時)是20__人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
二、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:
學(xué)習(xí)目標(biāo):
1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標(biāo):
1、培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標(biāo):
培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:
1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足
2、通過適當(dāng)?shù)木毩?xí),加強(qiáng)對解題方法的掌握及原理的理解
教學(xué)中會在以下3個方面突破教學(xué)難點:
1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強(qiáng)學(xué)生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
四、學(xué)生學(xué)情分析
長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強(qiáng)鍛煉,知識之間的聯(lián)系認(rèn)識上還顯不足。
五、教法特點
新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖耍竟?jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強(qiáng)理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
六、教學(xué)過程分析
1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)
設(shè)計意圖:明確任務(wù),激發(fā)興趣
2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))
設(shè)計意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。
3、預(yù)習(xí)后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機(jī)會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
6、思考題
以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。
7、作業(yè)
包括兩個方面:
1、書寫作業(yè)
2、下節(jié)課前的預(yù)習(xí)作業(yè)
七、教學(xué)效果分析
通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾荆箤W(xué)生都能動起來,課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
數(shù)學(xué)高一教案篇三
學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的'前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的.
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實際需要!
數(shù)學(xué)高一教案篇四
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實驗室的所有天平
6)本班級全體高個子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的'三個性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學(xué)號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________.
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
數(shù)學(xué)高一教案篇五
《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(1)》(人教a版)第44頁。-----《實習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。
該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(1)》(人教a版)第44頁。學(xué)生第一次完成《實習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設(shè)計,做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時,各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。
《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。
2.體驗合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;
3.在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實踐技能和民主價值觀。
重點:了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;
難點:培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。
【課堂準(zhǔn)備】。
1.分組:4~6人為一個實習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。
2.選題:根據(jù)個人興趣初步確定實習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務(wù):根據(jù)個人情況和優(yōu)勢,經(jīng)小組共同商議,由組長確定每人的具體任務(wù)。
4.搜集資料:針對所選題目,通過各種方式(相關(guān)書籍----《函數(shù)在你身邊》、《世界函數(shù)通史》、《世界著名科學(xué)家傳記》等;搜集素材,包括文字、圖片、數(shù)據(jù)以及音像資料等,并記錄相關(guān)資料,寫出實習(xí)報告。
6.把各組的實習(xí)報告,貼在班級的學(xué)習(xí)欄內(nèi),讓學(xué)生學(xué)習(xí)交流。
【教學(xué)過程】。
1.出示課題:交流、分享實習(xí)報告。
2.交流、分享:(由數(shù)學(xué)科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
(1)學(xué)生1:函數(shù)小史。
數(shù)學(xué)史表明,重要的數(shù)學(xué)概念的產(chǎn)生和發(fā)展,對數(shù)學(xué)發(fā)展起著不可估量的作用。有些重要的數(shù)學(xué)概念對數(shù)學(xué)分支的產(chǎn)生起著奠定性的作用。我們剛學(xué)過的函數(shù)就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數(shù)等概念日益滲透到科學(xué)技術(shù)的各個領(lǐng)域。最早提出函數(shù)(function)概念的,是17世紀(jì)德國數(shù)學(xué)家萊布尼茨。最初萊布尼茨用“函數(shù)”一詞表示冪。1755年,瑞士數(shù)學(xué)家歐拉把給出了不同的函數(shù)定義。中文數(shù)學(xué)書上使用的“函數(shù)”一詞是轉(zhuǎn)譯詞。是我國清代數(shù)學(xué)家李善蘭在翻譯《代數(shù)學(xué)》(1895年)一書時,把“function”譯成“函數(shù)”的。我們可以預(yù)計到,關(guān)于函數(shù)的爭論、研究、發(fā)展、拓廣將不會完結(jié),也正是這些影響著數(shù)學(xué)及其相鄰學(xué)科的發(fā)展。
(2)教師帶頭鼓掌并簡單評價。
(3)學(xué)生2:函數(shù)概念的縱向發(fā)展:
變革,形成了函數(shù)的現(xiàn)代定義形式。
(4)教師帶頭鼓掌并簡單評價。
(5)學(xué)生3:我國數(shù)學(xué)家李國平與函數(shù)。
學(xué)生3描述了數(shù)學(xué)家中國科學(xué)院數(shù)學(xué)物理學(xué)部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學(xué)數(shù)學(xué)天文系。后歷任中國科學(xué)院數(shù)學(xué)計算技術(shù)研究所所長,中國科學(xué)院武漢數(shù)學(xué)物理研究所所長,中國數(shù)學(xué)會理事,中國科學(xué)院學(xué)部委員等職務(wù)。學(xué)生還通俗地講述了李國平先生在微分方程復(fù)變函數(shù)論領(lǐng)域的卓越貢獻(xiàn)。
(6)教師帶頭鼓掌并簡單評價。
(7)學(xué)生4:函數(shù)概念對數(shù)學(xué)發(fā)展的影響。
(8)教師帶頭鼓掌并簡單評價。
(9)學(xué)生5:函數(shù)概念的歷史演變過程。
上述函數(shù)概念的歷史演變過程,就是一系列弱抽象的過程.學(xué)生展示了下表:早期函數(shù)概念。
代數(shù)函數(shù)。
函數(shù)是這樣一個量,它是通過其它一些量的代數(shù)運算得到的。
近代函數(shù)概念。
映射函數(shù)。
18世紀(jì)函數(shù)概念。
解析函數(shù)。
函數(shù)是指由一個變量與一些常量通過任何方式形成的解析表達(dá)式。
19世紀(jì)函數(shù)概念。
變量函數(shù)。
對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應(yīng),則稱y是x的函數(shù).。
(10)教師帶頭鼓掌并簡單評價。
3.課堂小結(jié):
4.實習(xí)作業(yè)的評定:
數(shù)學(xué)高一教案篇六
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
(3)會用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.。
直線與圓的方程的應(yīng)用.。
一、復(fù)習(xí)引入:
問題1:如何判斷直線與圓的位置關(guān)系?
問題2:如何判斷圓與圓的位置關(guān)系?
二、新課教學(xué):
例1.(課本例4)圖4。2-5是某圓拱形橋的示意圖。這個圓的圓拱跨度ab=20m,拱高op=4m,建造時每間隔4m需要用一根支柱支撐,求支柱的高度(精確到0.01m).
小結(jié)方法:用坐標(biāo)法解決實際應(yīng)用題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成實際結(jié)論,.。
例2.(課本例5)已知內(nèi)接于圓的四邊形的對角線互相垂直,求證圓心到一邊的距離等于這條邊所對邊長的一半.
小結(jié)方法:用坐標(biāo)法解決幾何問題的步驟:
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:將代數(shù)運算結(jié)果“翻譯”成幾何結(jié)論.。
課堂練習(xí):課本練習(xí)第2,3,4題;。
課后作業(yè):課本習(xí)題4.2a組第8,11題.b組第1題。
數(shù)學(xué)高一教案篇七
會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
函數(shù)單調(diào)性的證明及判斷。
函數(shù)單調(diào)性證明及其應(yīng)用。
1、函數(shù)的定義域、值域、圖象、表示方法
2、函數(shù)單調(diào)性
(1)單調(diào)增函數(shù)
(2)單調(diào)減函數(shù)
(3)單調(diào)區(qū)間
例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
(1)(2)(2)
例2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。
例3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論
變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
例4、試判斷函數(shù)在上的單調(diào)性。
1、判斷下列說法正確的是。
(1)若定義在上的函數(shù)滿足,則函數(shù)是上的.單調(diào)增函數(shù);
(2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);
(4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。
2、若一次函數(shù)在上是單調(diào)減函數(shù),則點在直角坐標(biāo)平面的()
a.上半平面b.下半平面c.左半平面d.右半平面
3、函數(shù)在上是______;函數(shù)在上是_______。
3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。
4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。
1、函數(shù)單調(diào)性的判斷及證明。
1、求下列函數(shù)的單調(diào)區(qū)間
(1)(2)
2、畫函數(shù)的圖象,并寫出單調(diào)區(qū)間。
3、求證:函數(shù)在上是單調(diào)增函數(shù)。
4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。
5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。
6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
數(shù)學(xué)高一教案篇八
教學(xué)目標(biāo):
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣。
教學(xué)重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學(xué)過程:
[設(shè)計意圖]引出“集合”一詞。
【問題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計意圖]探討并形成集合的含義。
【問題3】請同學(xué)們舉出認(rèn)為是集合的例子。
[設(shè)計意圖]點評學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無序性。
[設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
[設(shè)計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學(xué)們能用列舉法表示不等式x—73的解集嗎?
【問題7】例2的講解。請同學(xué)們思考課本第6頁的思考題。
[設(shè)計意圖]幫助學(xué)生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會?
[設(shè)計意圖]學(xué)習(xí)小結(jié)。對本節(jié)課所學(xué)知識進(jìn)行回顧。
布置作業(yè)。
數(shù)學(xué)高一教案篇九
1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
2.會根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點坐標(biāo)與準(zhǔn)線方程;
3.會求拋物線的標(biāo)準(zhǔn)方程。
1.完成下表:
標(biāo)準(zhǔn)方程
圖形
焦點坐標(biāo)
準(zhǔn)線方程
開口方向
2.求拋物線的焦點坐標(biāo)和準(zhǔn)線方程.
3.求經(jīng)過點的拋物線的標(biāo)準(zhǔn)方程.
二、問題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
例1.已知拋物線的頂點在原點,對稱軸為坐標(biāo)軸,焦點在直線上,求拋物線的方程.
例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標(biāo)與準(zhǔn)線方程.
三、思維訓(xùn)練
1.在平面直角坐標(biāo)系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標(biāo)為.
2.拋物線的焦點到其準(zhǔn)線的距離是.
3.設(shè)為拋物線的焦點,為該拋物線上三點,若,則=.
4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.
5.(理)已知拋物線,有一個內(nèi)接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準(zhǔn)線方程是.
2.拋物線上一點到焦點的距離為,則點到軸的.距離為.
3.已知拋物線,焦點到準(zhǔn)線的距離為,則.
4.經(jīng)過點的拋物線的標(biāo)準(zhǔn)方程為.
5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.
6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點,其橫坐標(biāo)為,它到焦點的距離為10,求拋物線方程和點的坐標(biāo)。
數(shù)學(xué)高一教案篇十
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標(biāo)準(zhǔn)方程中的幾何意義
3、能利用上述知識進(jìn)行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
數(shù)學(xué)高一教案篇十一
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點。
(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。
(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
數(shù)學(xué)高一教案篇十二
學(xué)習(xí)是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第項與項數(shù)的關(guān)系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的.計算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應(yīng)精心設(shè)計例題,使這一例題為寫通項公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項公式與各項的結(jié)構(gòu)關(guān)系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學(xué)生學(xué)習(xí)中的一個難點,要幫助學(xué)生分析各項中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時不能寫出通項公式,可讓學(xué)生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關(guān)系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運用函數(shù)知識是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實際需要!
數(shù)學(xué)高一教案篇十三
三維目標(biāo)的具體內(nèi)容和層次劃分
請闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學(xué)的出發(fā)點,又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)。“過程和方法”維度的目標(biāo)立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動力系統(tǒng)。“情感、態(tài)度和價值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報社會。
三維目標(biāo)不是三個目標(biāo),也不是三種目標(biāo),是一個問題的三個方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
數(shù)學(xué)高一教案篇十四
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時安排]:1課時
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
數(shù)學(xué)高一教案篇十五
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個班一個普高一個職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進(jìn)一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機(jī)補(bǔ)充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
俗話說的好,好的教學(xué)計劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計劃很有必要。
總結(jié):制定教學(xué)計劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進(jìn)教師的教學(xué)。希望上面的,能受到大家的歡迎!
數(shù)學(xué)高一教案篇十六
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進(jìn)行說課。
一、教材分析。
(一)教材的地位和作用。
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容。
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點分析。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析。
(一)學(xué)法指導(dǎo)。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析。
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點,指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
數(shù)學(xué)高一教案篇十七
重難點分析
本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
本節(jié)的難點是正確理解與應(yīng)用公式.這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計問題引導(dǎo)啟發(fā):由設(shè)計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進(jìn)行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對比、歸納、總結(jié)
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
數(shù)學(xué)高一教案篇十八
(1)通過實物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進(jìn)行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。 難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學(xué)思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1 a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本p8 練習(xí)題1.1 b組第1題
課外練習(xí) 課本p8 習(xí)題1.1 b組第2題
數(shù)學(xué)高一教案篇十九
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解。
本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系。
教學(xué)重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。
數(shù)學(xué)高一教案篇二十
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點e正北55海里處有一個雷達(dá)觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
數(shù)學(xué)高一教案篇二十一
(1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.
1.新課導(dǎo)入
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)
學(xué)生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學(xué)議論結(jié)果,答案是肯定的.)
教師提問:什么是命題?
(學(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學(xué)的回答,并作板書.)
(教師利用投影片,和學(xué)生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
命題可分為簡單命題和復(fù)合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)
對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .
3.鞏固新課
(1)5 ;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學(xué)生有充分的時間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
數(shù)學(xué)高一教案篇二十二
本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會借助計算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗從特殊到一般的認(rèn)識過程,滲透逐步逼近和無限逼近思想(極限思想),體會“近似是普遍的、精確則是特殊的”辯證唯物主義觀點。引導(dǎo)學(xué)生用聯(lián)系的觀點理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會知識之間的聯(lián)系。
所以本節(jié)課的本質(zhì)是讓學(xué)生體會函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。
二、本節(jié)課內(nèi)容的地位、作用。
“二分法”的理論依據(jù)是“函數(shù)零點的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個前奏和準(zhǔn)備;同時滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。
三、學(xué)生情況分析。
學(xué)生已初步理解了函數(shù)圖象與方程的根之間的`關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點附近的函數(shù)值符號提供了知識準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點的關(guān)系,對于高次方程、超越方程與對應(yīng)函數(shù)零點之間的聯(lián)系的認(rèn)識比較模糊,計算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。
四、教學(xué)目標(biāo)定位。
根據(jù)教材內(nèi)容和學(xué)生的實際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:
通過具體實例理解二分法的概念及其適用條件,了解二分法是求方程近似解的一種方法,會用二分法求某些具體方程的近似解,從中體會函數(shù)與方程之間的聯(lián)系,體會程序化解決問題的思想。
借助計算器用二分法求方程的近似解,讓學(xué)生充分體驗近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識準(zhǔn)備。
通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識。
通過具體問題體會逼近過程,感受精確與近似的相對統(tǒng)一。
五、教學(xué)診斷分析。
“二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識較少,算法流程比較簡潔,便于編寫計算機(jī)程序;利用計算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗,所以易于被學(xué)生理解和掌握。但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。
六、教學(xué)方法和特點。
本節(jié)課采用的是問題驅(qū)動、啟發(fā)探究的教學(xué)方法。
通過分組合作、互動探究、搭建平臺、分散難點的學(xué)習(xí)指導(dǎo)方法把問題逐步推進(jìn)、拾級而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。
本節(jié)課特點主要有以下幾方面:
1、以問題驅(qū)動教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。
2、注重與現(xiàn)實生活中案例相結(jié)合,讓學(xué)生體會數(shù)學(xué)來源于現(xiàn)實生活又可以解決現(xiàn)實生活中的問題。
以李詠主持的幸運52猜商品價格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測的過程中體會二分法思想。
3、注重學(xué)生參與知識的形成過程,使他們“聽”有所思,“學(xué)”有所獲。
本節(jié)課中的每一個問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識。
4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。
程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。
七、預(yù)期效果分析。
以方程的根與函數(shù)的零點知識作基礎(chǔ),通過對求方程近似解的探究討論,使學(xué)生主動參與數(shù)學(xué)實踐活動;采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。
另外盡管使用了科學(xué)計算器,但求一個方程的近似解也是很費時的,學(xué)生容易出現(xiàn)計算錯誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時間存在差異,教師要適時指導(dǎo)。
【本文地址:http://www.aiweibaby.com/zuowen/6673913.html】