高中數(shù)學教學設計大全(12篇)

格式:DOC 上傳日期:2023-11-05 11:56:14
高中數(shù)學教學設計大全(12篇)
時間:2023-11-05 11:56:14     小編:FS文字使者

培養(yǎng)自己的興趣愛好,享受追求夢想的過程。如何寫一篇思維敏捷的總結(jié)呢?總結(jié)范文中的經(jīng)驗和思考或許能給我們提供新的啟示和思路。

高中數(shù)學教學設計篇一

教學目標:

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。

(2)理解直線與二元一次方程的關系及其證明。

教學用具:計算機。

教學方法:啟發(fā)引導法,討論法。

教學過程:

下面給出教學實施過程設計的簡要思路:

(一)引入的設計。

前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。

肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次。

肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”。

啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。

學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。

學生或獨立研究,或合作研究,教師巡視指導.

經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…。

思路二:…。

教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。

當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。

當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程。

至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統(tǒng)一的形式。

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

師生共同討論,評價不同思路,達成共識:

(1)當時,方程可化為。

這是表示斜率為、在軸上的截距為的直線。

(2)當時,由于、不同時為0,必有,方程可化為。

這表示一條與軸垂直的直線。

因此,得到結(jié)論:

在平面直角坐標系中,任何形如(其中不同時為0)的二元一次方程都表示一條直線。

為方便,我們把(其中不同時為0)稱作直線方程的一般式是合理。

【動畫演示】。

演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線。

至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關系.

(三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設計。

高中數(shù)學教學設計篇二

1)。

2)掌握等比數(shù)列的定義理解等比數(shù)列的通項公式及其推導。

2、能力目標。

1)學會通過實例歸納概念。

2)通過學習等比數(shù)列的通項公式及其推導學會歸納假設。

3)提高數(shù)學建模的能力。

3、情感目標:

1)充分感受數(shù)列是反映現(xiàn)實生活的模型。

2)體會數(shù)學是來源于現(xiàn)實生活并應用于現(xiàn)實生活。

3)數(shù)學是豐富多彩的而不是枯燥無味的。

1、教學對象分析:

1)高中生已經(jīng)有一定的學習能力,對各方面的知識有一定的基礎,理解能力較強。并掌握了函數(shù)及個別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學習了等差數(shù)列,在學習這一章節(jié)時可聯(lián)系以前所學的進行引導教學。

2)對歸納假設較弱,應加強這方面教學。

2、學習需要分析:

1.課前復習。

1)復習等差數(shù)列的概念及通向公式。

2)復習指數(shù)函數(shù)及其圖像和性質(zhì)。

2.情景導入。

高中數(shù)學教學設計篇三

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質(zhì)后,再一次強調(diào)定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析。

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

三、設計思想。

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率.

四、教學目標。

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3.借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣.

五、教學重點與難點:。

教學重點。

1.對圓錐曲線定義的理解。

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程。

教學難點:。

巧用圓錐曲線定義解題。

【設計思路】。

(一)開門見山,提出問題。

一上課,我就直截了當?shù)亟o出——。

例題1:(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。

(a)橢圓(b)雙曲線(c)線段(d)不存在。

(2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。

(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。

【設計意圖】。

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數(shù)學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

高中數(shù)學教學設計篇四

函數(shù)是高中數(shù)學的重要內(nèi)容。高中數(shù)學對于函數(shù)的定義比較抽象,不易理解。高中數(shù)學相比初中數(shù)學來說更偏重于理解,所以,理解函數(shù)的定義是學好函數(shù)這一重要部分的基礎。理解函數(shù)的定義關鍵在于理解對應關系。

學情分析。

初中數(shù)學對于函數(shù)的定義比較好理解,而在高中數(shù)學里函數(shù)的定義是從集合的角度來描述的。函數(shù)的三要素是定義域、對應關系、值域。函數(shù)本質(zhì)是一種對應關系。直接講定義時學生時難于理解的,尤其是對抽象的函數(shù)符號的理解。

教法分析。

現(xiàn)在的教學理念是以學生的學為中心的,要將學生的學寓于教學活動中去,讓學生去體驗,去感悟。本節(jié)課以學生熟知的消消樂游戲開始,由問題引出對應的概念,進而引導學生們?nèi)ヂ?lián)想生活中的對應關系,比如健康碼、一個蘿卜一個坑兒等。這些生活中的現(xiàn)象之中就蘊含著函數(shù)的概念,從而自然引入函數(shù)的概念。

教學重難點。

學習結(jié)果評價。

能自己描述一個函數(shù)的例子。能判斷是否為函數(shù)。

教學過程。

一、游戲?qū)搿?/p>

學生體驗消消樂游戲后,思考:兩個圖形怎么樣才能消失。

二、想一想生活中的對應關系。

健康碼、一個蘿卜一個坑兒。

三、

再看一個例子。

旅行前了解當?shù)氐奶鞖狻?/p>

問題1:該氣溫變化圖中有哪些變量?

問題2:變量之間是什么關系?

問題3:能否用集合語言來闡述它們之間的關系?

問題4:再了解函數(shù)的概念之后,你能否再舉一些函數(shù)的例子?

問題5:我也來舉一些例子,你們看看是不是函數(shù)關系?

四、課堂小結(jié)。

理解函數(shù)的概念關鍵在于理解其中的對應關系。

高中數(shù)學教學設計篇五

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

二、教材分析。

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

三、學情分析。

本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容.

四、教學目標。

(1).基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。

(4).個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.

五、教學重點和難點。

1.教學重點。

理解并掌握誘導公式.

2.教學難點。

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.

六、教法學法以及預期效果分析。

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.

1.教法。

數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).

在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.

2.學法。

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.

在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.

3.預期效果。

本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.

(一)創(chuàng)設情景。

1.復習銳角300,450,600的三角函數(shù)值;。

2.復習任意角的三角函數(shù)定義;。

3.問題:由,你能否知道sin2100的值嗎?引如新課.

設計意圖。

自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

(二)新知探究。

1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;。

2.讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;。

2100與sin300之間有什么關系.

設計意圖:由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊.

(三)問題一般化。

探究一。

1.探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;。

2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;。

3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系.

(四)練習。

利用誘導公式(二),口答三角函數(shù)值。

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

(五)問題變形。

高中數(shù)學教學設計篇六

數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。

三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六)。本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎上,利用對稱思想發(fā)現(xiàn)任意角與、終邊的對稱關系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關系,即發(fā)現(xiàn)、掌握、應用三角函數(shù)的誘導公式公式(二)、(三)、(四)。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位。

本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應該能輕松的完成本節(jié)課的教學內(nèi)容。

(1)基礎知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;

(4)個性品質(zhì)目標:通過誘導公式的學習和應用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀。

1、教學重點。

理解并掌握誘導公式。

2、教學難點。

正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式。

“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究。下面我從教法、學法、預期效果等三個方面做如下分析。

1、教法。

數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì)。

在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅。

2、學法。

“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情。如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題。

在本節(jié)課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現(xiàn)探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習。

3、預期效果。

本節(jié)課預期讓學生能正確理解誘導公式的發(fā)現(xiàn)、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題。

(一)創(chuàng)設情景。

1、復習銳角300,450,600的三角函數(shù)值;

2、復習任意角的三角函數(shù)定義;

3、問題:由你能否知道sin2100的值嗎?引如新課。

設計意圖。

自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法。

(二)新知探究。

1、讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關系;

2、讓學生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;

3、sin2100與sin300之間有什么關系。

設計意圖。

由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系做好鋪墊。

(三)問題一般化。

探究一。

1、探究發(fā)現(xiàn)任意角的終邊與的終邊關于原點對稱;

2、探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;

3、探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關系。

設計意圖。

(四)練習。

利用誘導公式(二),口答下列三角函數(shù)值。

喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題。

(五)問題變形。

高中數(shù)學教學設計篇七

解三角形及應用舉例。

解三角形及應用舉例。

一.基礎知識精講。

掌握三角形有關的定理。

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;。

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題.

二.問題討論。

思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.

思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關性質(zhì).

例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。

一.小結(jié):

1.利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;。

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);。

2.利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;。

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問題常用的手段.

三.作業(yè):p80闖關訓練。

高中數(shù)學教學設計篇八

教材第67頁例1、“做一做”和練習十五第1、2題。

1.根據(jù)等式的性質(zhì),使學生初步掌握解方程及方程檢驗的方法,并理解方程和方程的解的概念。

2.培養(yǎng)學生的分析能力及應用所學知識解決實際問題的能力。

3.幫助學生養(yǎng)成自覺檢驗的良好習慣。

理解并掌握解方程的方法。

實物投影及多媒體課件。

1.提問:什么是方程?等式有什么性質(zhì)?

2.你會根據(jù)下面的圖形列出方程嗎?

3.填一填。

4.導入新課:前面兩節(jié)課我們借助天平平衡,學習了方程的意義和等式的性質(zhì),今天這節(jié)課我們繼續(xù)研究與方程有關的新知識。

1.方程的解與解方程的概念。

(1)理解“方程的解”和“解方程”的意義。

教師演示:先在左盤放上一個重100g的杯子,再往杯子里加入xg的水,天平失去平衡。

提問:怎樣才能使天平保持平衡呢?

請學生到臺前操作:天平右邊的砝碼加到250g時,天平平衡。

提問:你能根據(jù)天平兩邊物體質(zhì)量的相等關系列出方程嗎?

根據(jù)學生的回答,板書:100+x=250。

啟發(fā):怎樣才能求出方程中未知數(shù)x的值呢?你有什么辦法?把你的辦法和小組的同學交流。

學生活動后,組織反饋。

方法一:根據(jù)加減法之間的關系。

方法二:根據(jù)數(shù)的組成。

因為100+150=250,所以x=150。

方法三:根據(jù)等式的性質(zhì)。

講解:當x=150時,100+x=250這個方程的左右兩邊相等,像這樣使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。求方程解的過程叫解方程。這節(jié)課我們就來學習解方程。(出示課題)。

(2)比較“方程的解”和“解方程”。

提問:方程的解與解方程到底有什么不同呢?

學生匯報。

(3)即時鞏固。

完成教材第67頁“做一做”第2小題。

(1)出示例1題圖。

引導學生思考:根據(jù)在天平兩邊同時拿走相同的物品,天平仍然平衡的道理,即方程左右兩邊同時減去一個數(shù),仍然相等。

追問:為什么要從方程兩邊同時減去3,而不是其他數(shù)?

結(jié)合學生的回答,教師板書:

x+3=9。

x+3-3=9-3。

x=6。

提問:解方程的過程就是這樣的嗎?還應該注意些什么呢?

講解:求方程中未知數(shù)x的值時,要先寫“解”,表示下面的過程是求未知數(shù)x的值的過程,再在方程的兩邊都減去3,求出方程中未知數(shù)x的值。寫出這一過程時,要注意把等號對齊。(示范板書解方程的過程)。

解:x+3=9。

x+3-3=9-3。

x=6。

引導:x=6是不是正確的答案呢?我們可以通過檢驗來判斷:把x=6代入原方程,看看左右兩邊是不是相等。

提問:如果等式的左右兩邊相等,說明什么?(說明答案是正確的)如果不相等呢?(說明答案是錯誤的)請同學們用這樣的方法試著檢驗一下。(隨學生的回答扼要板書檢驗過程)。

(2)即時鞏固。

解下列方程,并檢驗。

x+4.5=9100+x=100。

師強調(diào):解方程時注意等號要對齊,檢驗時過程要寫清楚,養(yǎng)成檢驗的良好習慣。

1.完成課本第67頁“做一做”第1題。

2.解下列方程,并檢驗。

提問:這節(jié)課你學習了什么?還有什么收獲。

小結(jié):通過剛才解方程的過程,我們知道了方程兩邊同時加上或減去一個相同的數(shù),左右兩邊仍然相等。需要注意的是,在書寫過程中寫的都是等式,不是遞等式。

完成課本練習十五的第1、2題。

高中數(shù)學教學設計篇九

首先,可以聯(lián)系實際生活。數(shù)學知識在生活中有著廣泛的應用,與實際生活有著廣泛的聯(lián)系,在進行課堂導入設計時,教師可以聯(lián)系學生的實際生活,激發(fā)學生的好奇心。例如在學習拋物線的知識時,可以這樣導入:讓學生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學生仔細觀察籃球(乒乓球)落地時的軌跡,在學生積極參討論時,引入拋物線的知識。在導入中聯(lián)系實際生活,不僅能夠激發(fā)學生的興趣,并且能夠拉近學生與數(shù)學之間的距離。

其次,教師可以利用數(shù)學史進行導入。數(shù)學教材中很多知識都與數(shù)學史相關,學生對這部分知識充滿興趣,因此在教學過程中,教師設計課堂導入時可以從這一點入手,先通過提問或者介紹的方式,讓學生了解數(shù)學史上的重大事件和重要人物等,引起學生的敬佩和仰慕之情,然后引入相關的數(shù)學知識。興趣是最好的老師,在學生的期待下展開數(shù)學教學,無疑會提高課堂教學效率。課堂導入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導入方式的多樣性,才能更好地激發(fā)學生的興趣,在高中數(shù)學教學中教師要根據(jù)實際情況進行合理選擇使用。

做好課堂提問設計。

首先,教師要精心設計問題。提問的目的是為了激發(fā)學生的興趣和思維,因此,教師提問的問題不能是單調(diào)、重復的,而應該是具有啟發(fā)性和針對性,能夠激發(fā)學生的思考,引導學生進行步步深入。最重要的是,教師提出的問題要符合學生的知識水平和認知能力,教師不僅應該了解教材,并且要全面了解學生,這樣才能使提出的問題符合學生的需要。學生的數(shù)學水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學生設計不同難度的問題,促進每個學生獲得進步和發(fā)展。

其次,課堂提問的方式要多樣化。如同教學方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學生興趣,達到教學目的,否則,無論教師設計的問題多么巧妙,學生也會感到厭煩。根據(jù)問題的內(nèi)容和學生實際情況,提問可以是直接問答;可以是導思式;可以教師提問、學生回答;也可以是學生提問、教師回答。在教學過程中教師要注意培養(yǎng)學生的問題意識,鼓勵學生自己提出問題,問題是思考的開端,對于學生來說提出問題比解決問題更重要,因此,教師要為學生創(chuàng)造機會,讓學生在認真閱讀教材的基礎上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進行點撥,讓學生思考,也可以組織學生進行討論,培養(yǎng)學生分析問題和解決問題的能力。

高中數(shù)學教學設計篇十

張星,薛永紅

教學設計的優(yōu)劣對于提高教學質(zhì)量,培養(yǎng)學生思維,調(diào)動學生的積極性有著十分重要的意義。在實施高中數(shù)學新課改的今天,怎樣完成一個優(yōu)秀的教學設計呢?我們認為應該從以下幾個方面著手:

一、教學設計應有利于讓學生學會學習,發(fā)揮學生的主體作用

傳統(tǒng)的課堂設計,常常是“教師問,學生答,教師寫,學生記,教師考,學生背?!痹谶@樣教學下,學生機械被動地學習,不能主動對話、溝通、交流。久而久之,他們學習數(shù)學的興趣會逐漸褪去。新課程標準要求教師必需轉(zhuǎn)變角色,尊重學生的主體性,以新的理念指導設計教學。在教學過程中,要根據(jù)不同學習內(nèi)容,使學習成為在教師指導下自動的、建構(gòu)過程。教師是教學過程的組織者和引導者,教師在設計教學目標,組織教學活動等方面,應面向全體學生,突出學生的主體性,充分發(fā)揮學生的主觀能動性,讓學生自主參與探究問題。

二、教學設計應注重初高中知識的銜接問題

初高中數(shù)學存在巨大差異,高中無論是知識的深度、難度和廣度,還是能力的要求,都有一次大飛躍。由于大部分學生不適應這樣的變化,又沒有為此做好充分的準備,仍然按照初中的思維模式和學習方法來學習高中數(shù)學知識,不能適應高中的數(shù)學教學,于是在學習能力有差異的情況下而出現(xiàn)了成績分化,學習情緒急降。作為教師應特別關注此時的銜接,要充分了解學生在初中階段學了哪些內(nèi)容?要求到什么程度?哪些內(nèi)容在高中階段還要繼續(xù)學習等等,注意初高中數(shù)學學習方式的銜接,重視培養(yǎng)學生正確對待困難和挫折的良好心理素質(zhì),適應性能力,重視知識形成過程的教學,激發(fā)學生主動的學習動機,加強學法指導,引導學生閱讀、歸納、

總結(jié)

,提高學生的自學能力,善于思考、勇于鉆研的意識。

三、

教學設計應考慮到學生當前的知識水平

我校學生,大部分是居于中等及以下的學生,基礎知識、基本技能、基本數(shù)學思想方法差,思維能力、運算能力較低,空間想象能力以及實踐和創(chuàng)新意識能力更無須談說。因此數(shù)學學習還處在比較被動的狀態(tài),存在問題較多,主要表現(xiàn)在:

1、學習懶散,不肯動腦;

2、不訂計劃,慣性運轉(zhuǎn);

5、死記硬背,機械模仿,教師講的聽得懂,例題看得懂,就是書上的作業(yè)做不起;

6、不懂不問,一知半解;

8、不重總結(jié),輕視復習。因此教師需多花時間了解學生具體情況、學習狀態(tài),對學生數(shù)學學習方法進行指導,力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學法與教法結(jié)合,統(tǒng)一指導與個別指導結(jié)合,促進學生掌握正確的學習方法。只有憑借著良好的學習方法,才能達到“事半功倍”的學習效果。

四、教學設計中教師應以科學的眼光審視教材

高中數(shù)學新課程是具有厚實的數(shù)學專業(yè)和教育教學理論與實踐水平的專家群體,經(jīng)過深思熟慮、系統(tǒng)地分析教學的情況和學生的實際來編寫的。很多內(nèi)容編排很好,我們應該尊重教材,但我們不應迷信教材,認請教材的思路與意圖,理解教材中所蘊藏的知識、技能、情感與價值等層面上的內(nèi)涵,同時也應該用批判的眼光去審視它,不迷信教材,在此基礎上,要挖掘和超越教材,做到既忠實教材,又不拘泥于教材,結(jié)合本校、本班學生的實際情況,創(chuàng)新出最適合自己所教學生的題目,啟發(fā)、誘導學生進行深入的體驗和感悟,真正做到“走進教材,又走出教材?!?/p>

五、教學設計應注重新課的導入與新知識的形成過程

教師在授課過程中,應適時、適度地引出新課題,創(chuàng)設出最佳的教學氣氛,引起學生對本課題的興趣。

常用的課題導入的幾種類型有 1.創(chuàng)設生產(chǎn)生活化情境導入課題 2.講故事引入課題。

3.設置懸念,以疑激趣引入課題

六、教學設計應注重從學生的角度進行教學反思

教學行為的本質(zhì)在于使學生受益,教得好是為了促進學得好。在講習題時,當我們向?qū)W生介紹一些精巧奇妙的解法時,特別是一些奇思妙解時,學生表面上聽懂了,但當他自己解題時卻茫然失措。我們教師在備課時把要講的問題設計的十分精巧,連板書都設計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構(gòu)成我們學習上最大障礙的是已知的東西,而不是未知的東西” 大數(shù)學家希爾伯特的老師富士在講課時就常把自己置于困境中,并再現(xiàn)自己從中走出來的過程,讓學生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問問學生,對數(shù)學學習的感受,借助學生的眼睛看一看自己的教學行為,是促進教學的必要手段。

高中數(shù)學教學設計篇十一

解三角形及應用舉例。

解三角形及應用舉例。

一?;A知識精講。

掌握三角形有關的定理。

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數(shù)問題。

二。問題討論。

思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論。

思維點撥::三角形中的三角變換,應靈活運用正、余弦定理。在求值時,要利用三角函數(shù)的有關性質(zhì)。

例6:在某海濱城市附近海面有一臺風,據(jù)檢測,當前臺風中心位于城市o(如圖)的東偏南方向300km的海面p處,并以20km/h的速度向西偏北的方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為60km,并以10km/h的速度不斷增加,問幾小時后該城市開始受到臺風的侵襲。

一。小結(jié):

1、利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);

2、利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3、邊角互化是解三角形問題常用的手段。

三。作業(yè):p80闖關訓練。

高中數(shù)學教學設計篇十二

進一步掌握直線方程的各種形式,會根據(jù)條件求直線的方程。

【過程與方法】。

在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。

【情感、態(tài)度與價值觀】。

在學習活動中獲得成功的體驗,增強學習數(shù)學的興趣與信心。

二、教學重難點。

【重點】根據(jù)條件求直線的方程。

【難點】根據(jù)條件求直線的方程。

(一)課堂導入。

直接點明最近學習了直線方程的多種形式,這節(jié)課將練習求直線的方程。

(二)回顧舊知。

帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。

為了加深學生的運用和理解,繼續(xù)引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。

預設學生有多種解題方法,如ab、ac所在直線方程用兩點式求解,bc所在直線方程用點斜式求解。

學生板演后教師講解,點明不足,提示學生,計算結(jié)束后要記得將所求得方程整理為直線方程的一般式。

師生總結(jié)解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。

(四)小結(jié)作業(yè)。

小結(jié):學生暢談收獲。

作業(yè):完成課后相應練習題,根據(jù)已知條件求直線的方程。

【本文地址:http://www.aiweibaby.com/zuowen/7838248.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔