在教案中,教師會詳細(xì)安排教學(xué)內(nèi)容、教學(xué)步驟和教學(xué)方法。教案的編寫還應(yīng)注意培養(yǎng)學(xué)生的創(chuàng)造性思維和實(shí)踐能力。教案是教師根據(jù)教學(xué)目標(biāo)和學(xué)生特點(diǎn)編寫的一種教學(xué)計(jì)劃,它可以幫助教師準(zhǔn)確掌握教學(xué)內(nèi)容,合理安排教學(xué)步驟,讓我們能夠有計(jì)劃、有重點(diǎn)地進(jìn)行教學(xué)。編寫完美的教案需要教師全面了解教學(xué)內(nèi)容和教學(xué)要求,要合理安排教學(xué)步驟。那么我們該如何寫一份較為完美的教案呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來看看吧。
中職高一數(shù)學(xué)教案篇一
三維目標(biāo)的具體內(nèi)容和層次劃分
請闡述數(shù)學(xué)課堂教學(xué)三維目標(biāo)的具體內(nèi)容和層次劃分
所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價(jià)、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會。
三維目標(biāo)不是三個目標(biāo),也不是三種目標(biāo),是一個問題的三個方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
中職高一數(shù)學(xué)教案篇二
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
一、知識歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問題的常見題型有:
測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
中職高一數(shù)學(xué)教案篇三
重難點(diǎn)分析
本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
中職高一數(shù)學(xué)教案篇四
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個數(shù)問題的討論說明
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數(shù)分為:有限集和無窮集兩類
中職高一數(shù)學(xué)教案篇五
《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。-----《實(shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂趣。
該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教a版)第44頁。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過程中受到更多的數(shù)學(xué)文化的熏陶。
《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。
2.體驗(yàn)合作學(xué)習(xí)的方式,通過合作學(xué)習(xí)品嘗分享獲得知識的快樂;
3.在合作形式的小組學(xué)習(xí)活動中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識、社會實(shí)踐技能和民主價(jià)值觀。
重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;
難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。
【課堂準(zhǔn)備】。
1.分組:4~6人為一個實(shí)習(xí)小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。
2.選題:根據(jù)個人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務(wù):根據(jù)個人情況和優(yōu)勢,經(jīng)小組共同商議,由組長確定每人的具體任務(wù)。
4.搜集資料:針對所選題目,通過各種方式(相關(guān)書籍----《函數(shù)在你身邊》、《世界函數(shù)通史》、《世界著名科學(xué)家傳記》等;搜集素材,包括文字、圖片、數(shù)據(jù)以及音像資料等,并記錄相關(guān)資料,寫出實(shí)習(xí)報(bào)告。
6.把各組的實(shí)習(xí)報(bào)告,貼在班級的學(xué)習(xí)欄內(nèi),讓學(xué)生學(xué)習(xí)交流。
【教學(xué)過程】。
1.出示課題:交流、分享實(shí)習(xí)報(bào)告。
2.交流、分享:(由數(shù)學(xué)科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
(1)學(xué)生1:函數(shù)小史。
數(shù)學(xué)史表明,重要的數(shù)學(xué)概念的產(chǎn)生和發(fā)展,對數(shù)學(xué)發(fā)展起著不可估量的作用。有些重要的數(shù)學(xué)概念對數(shù)學(xué)分支的產(chǎn)生起著奠定性的作用。我們剛學(xué)過的函數(shù)就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數(shù)等概念日益滲透到科學(xué)技術(shù)的各個領(lǐng)域。最早提出函數(shù)(function)概念的,是17世紀(jì)德國數(shù)學(xué)家萊布尼茨。最初萊布尼茨用“函數(shù)”一詞表示冪。1755年,瑞士數(shù)學(xué)家歐拉把給出了不同的函數(shù)定義。中文數(shù)學(xué)書上使用的“函數(shù)”一詞是轉(zhuǎn)譯詞。是我國清代數(shù)學(xué)家李善蘭在翻譯《代數(shù)學(xué)》(1895年)一書時(shí),把“function”譯成“函數(shù)”的。我們可以預(yù)計(jì)到,關(guān)于函數(shù)的爭論、研究、發(fā)展、拓廣將不會完結(jié),也正是這些影響著數(shù)學(xué)及其相鄰學(xué)科的發(fā)展。
(2)教師帶頭鼓掌并簡單評價(jià)。
(3)學(xué)生2:函數(shù)概念的縱向發(fā)展:
變革,形成了函數(shù)的現(xiàn)代定義形式。
(4)教師帶頭鼓掌并簡單評價(jià)。
(5)學(xué)生3:我國數(shù)學(xué)家李國平與函數(shù)。
學(xué)生3描述了數(shù)學(xué)家中國科學(xué)院數(shù)學(xué)物理學(xué)部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學(xué)數(shù)學(xué)天文系。后歷任中國科學(xué)院數(shù)學(xué)計(jì)算技術(shù)研究所所長,中國科學(xué)院武漢數(shù)學(xué)物理研究所所長,中國數(shù)學(xué)會理事,中國科學(xué)院學(xué)部委員等職務(wù)。學(xué)生還通俗地講述了李國平先生在微分方程復(fù)變函數(shù)論領(lǐng)域的卓越貢獻(xiàn)。
(6)教師帶頭鼓掌并簡單評價(jià)。
(7)學(xué)生4:函數(shù)概念對數(shù)學(xué)發(fā)展的影響。
(8)教師帶頭鼓掌并簡單評價(jià)。
(9)學(xué)生5:函數(shù)概念的歷史演變過程。
上述函數(shù)概念的歷史演變過程,就是一系列弱抽象的過程.學(xué)生展示了下表:早期函數(shù)概念。
代數(shù)函數(shù)。
函數(shù)是這樣一個量,它是通過其它一些量的代數(shù)運(yùn)算得到的。
近代函數(shù)概念。
映射函數(shù)。
18世紀(jì)函數(shù)概念。
解析函數(shù)。
函數(shù)是指由一個變量與一些常量通過任何方式形成的解析表達(dá)式。
19世紀(jì)函數(shù)概念。
變量函數(shù)。
對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應(yīng),則稱y是x的函數(shù).。
(10)教師帶頭鼓掌并簡單評價(jià)。
3.課堂小結(jié):
4.實(shí)習(xí)作業(yè)的評定:
中職高一數(shù)學(xué)教案篇六
:
設(shè)計(jì).突出重點(diǎn).培養(yǎng)能力.
三、課堂練習(xí)
教材第13頁練習(xí)1、2、3、4.
【助練習(xí)】第13頁練習(xí)4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結(jié)
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
五、作業(yè)
習(xí)題1至8.
筆練結(jié)合板書.
傾聽.修改練習(xí).掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內(nèi)容.
落實(shí)
介紹解題技能技巧.
內(nèi)容條理化.
課堂教學(xué)設(shè)計(jì)說明
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.
中職高一數(shù)學(xué)教案篇七
1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)
2、掌握標(biāo)準(zhǔn)方程中的幾何意義
3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點(diǎn)到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
中職高一數(shù)學(xué)教案篇八
“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。
二、學(xué)情分析
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。
三、教學(xué)目標(biāo)
1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過程
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)
[設(shè)計(jì)說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類比歸納,嚴(yán)格證明
中職高一數(shù)學(xué)教案篇九
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過多的時(shí)間才做出來的題目。對于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。
三、碰到難題時(shí)。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點(diǎn)和解題技巧。
4、對于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
中職高一數(shù)學(xué)教案篇十
教學(xué)目標(biāo):
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價(jià)值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣。
教學(xué)重難點(diǎn):
(1)重點(diǎn):了解集合的含義與表示、集合中元素的特性。
(2)難點(diǎn):區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
教學(xué)過程:
[設(shè)計(jì)意圖]引出“集合”一詞。
【問題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計(jì)意圖]探討并形成集合的含義。
【問題3】請同學(xué)們舉出認(rèn)為是集合的例子。
[設(shè)計(jì)意圖]點(diǎn)評學(xué)生舉出的例子,剖析并強(qiáng)調(diào)集合中元素的三大特性:確定性、互異性、無序性。
[設(shè)計(jì)意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
[設(shè)計(jì)意圖]引出并介紹列舉法。
【問題6】例1的講解。同學(xué)們能用列舉法表示不等式x—73的解集嗎?
【問題7】例2的講解。請同學(xué)們思考課本第6頁的思考題。
[設(shè)計(jì)意圖]幫助學(xué)生在表示具體的集合時(shí),如何從列舉法與描述法中做出選擇。
【問題8】請同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會?
[設(shè)計(jì)意圖]學(xué)習(xí)小結(jié)。對本節(jié)課所學(xué)知識進(jìn)行回顧。
布置作業(yè)。
中職高一數(shù)學(xué)教案篇十一
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運(yùn)用公式一;。
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進(jìn)一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個確定的實(shí)數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
中職高一數(shù)學(xué)教案篇十二
1、使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng)。
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)確定的。
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個通項(xiàng)公式。
(3)已知一個數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的`前幾項(xiàng)。
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣。
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計(jì)算等。
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系。在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列。函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法。由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法。
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助。
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等。如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系。
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況。
(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的。
中職高一數(shù)學(xué)教案篇十三
1、掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì)。
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
【本文地址:http://www.aiweibaby.com/zuowen/8730367.html】