編寫教案可以幫助教師發(fā)現(xiàn)教學(xué)過程中存在的問題,及時調(diào)整和改進(jìn)。在編寫教案之前,應(yīng)該對教材進(jìn)行充分的閱讀和理解。以下是小編為大家收集的優(yōu)秀教案范文,僅供參考,希望對大家有所幫助。
初一數(shù)學(xué)一次函數(shù)教案篇一
正比例函數(shù)的概念.
2.內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗.
對正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對函數(shù)概念的理解,即實(shí)際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對正比例函數(shù)基本特征的認(rèn)識,即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對對應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對具體函數(shù)進(jìn)行辨析,對實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.
二、目標(biāo)和目標(biāo)解析。
1.目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;。
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會函數(shù)建模思想.
2.目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對實(shí)際問題的分析,知道自變量和對應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會函數(shù)建模思想.
三、教學(xué)問題診斷分析。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對函數(shù)基本概念理解未必深刻,在對實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對函數(shù)概念的理解:即實(shí)際問題的兩個變量中,當(dāng)一個變量變化時,另一個變量隨著它的變化而變化,而且對于這個變量的每一個確定的值,另一個變量都有唯一確定的值與之對應(yīng);對正比例函數(shù)概念的理解關(guān)鍵是對正比例函數(shù)基本特征的認(rèn)識,要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對對應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.
因此本節(jié)課的教學(xué)難點(diǎn)是:對正比例函數(shù)基本特征的認(rèn)識和正比例函數(shù)概念的抽象歸納過程.
四、教學(xué)過程設(shè)計。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識,知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題12011年開始運(yùn)營的京滬高速鐵路全長1318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動:教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
設(shè)計意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問題抽象為函數(shù)模型的能力,初步體會函數(shù)建模思想.
設(shè)計意圖:由于自變量t是列車運(yùn)行時間,作為實(shí)際問題,自變量的取值是受限制的,應(yīng)對其取值范圍作出說明.
對問題(2)的分析解答過程讓學(xué)生回答下列問題:
追問1這個問題中兩個變量之間的對應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
設(shè)計意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問題中,激發(fā)學(xué)生探究興趣.對理由的說明學(xué)生可能有障礙,此時教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,用函數(shù)的概念來回答:問題中的兩個變量,當(dāng)其中的變量t變化時,另一個變量y隨著t的變化而變化,并且對于變量t的每一個?定的值,另一個變量y都有唯一確定的值與之對應(yīng).
追問2請你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3對于自變量t和函數(shù)y的每一對對應(yīng)值,y與t的比值,
初一數(shù)學(xué)一次函數(shù)教案篇二
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時間的關(guān)系,小華八點(diǎn)離開家,十四點(diǎn)回到家,根據(jù)這個曲線圖,請回答下列問題:
(1)到達(dá)離家最遠(yuǎn)的地方是幾點(diǎn)?離家多遠(yuǎn)?
(2)何時開始第一次休息?休息多長時間?
(3)小華在往返全程中,在什么時間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時離家21千米?(寫出計算過程)。
初一數(shù)學(xué)一次函數(shù)教案篇三
一次函數(shù)的圖像與性質(zhì)的口訣:
一次函數(shù)是直線,圖像經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;。
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負(fù)來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠(yuǎn)。
初一數(shù)學(xué)一次函數(shù)教案篇四
2、能正確且較為熟練地運(yùn)用去括號的符號法則去化簡代數(shù)式過程與方法目標(biāo)學(xué)習(xí)目標(biāo)。
1、通過觀察、合作交流、討論總結(jié)等活動得出去括號的符號法則,培養(yǎng)學(xué)生觀察、分析、總結(jié)的能力。
2、通過例題講解,和鞏固練習(xí),培養(yǎng)學(xué)生的計算能力班級:初一四班nn。
1、數(shù)學(xué)知識:
2、數(shù)學(xué)思想方法:布置作業(yè):板書設(shè)計nn教學(xué)反思nn。
初一數(shù)學(xué)一次函數(shù)教案篇五
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
初一數(shù)學(xué)一次函數(shù)教案篇六
課件出示教材第75頁圖4-1及相關(guān)問題,并由學(xué)生討論完成題目.
師:在現(xiàn)實(shí)生活中一個量隨另一個量的變化而變化的現(xiàn)象大量存在.函數(shù)就是研究一些量之間確定性依賴關(guān)系的數(shù)學(xué)模型.(板書課題)。
二、探究新知。
函數(shù)的相關(guān)概念.
(1)課件出示教材第76頁“做一做”第1題.
師:層數(shù)n和物體總數(shù)y之間是什么關(guān)系?
引導(dǎo)學(xué)生得出:只要給定層數(shù),就能求出物體總數(shù).
(2)課件出示教材第76頁“做一做”第2題.
師:在關(guān)系式t=t+273中,兩個變量中若知道其中一個,是否可以確定另外一個?
一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù),其中x是自變量.
表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法.
對于自變量在可取值范圍內(nèi)的一個確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值稱為當(dāng)自變量等于a時的函數(shù)值.
理解函數(shù)概念時應(yīng)注意:
(1)在某一變化過程中有兩個變量x與y.
(2)這兩個變量互相聯(lián)系,當(dāng)變量x取一個確定的值時,變量y的值就隨之確定.
(3)對于變量x的每一個值,變量y都有唯一的一個值與它對應(yīng),如在關(guān)系式y(tǒng)2=x(x0)中,當(dāng)x=9時,y對應(yīng)的值為3或-3,不唯一,則y不是x的函數(shù).
師:上述問題中,自變量能取哪些值?
指出要根據(jù)實(shí)際問題確定自變量的取值范圍.
初一數(shù)學(xué)一次函數(shù)教案篇七
1、依題意,設(shè)出含有待定系數(shù)的函數(shù)解析式;
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);
3、解方程(組),求出待定系數(shù);
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(diǎn)(2,--1)和點(diǎn)(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo)
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨(dú)立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點(diǎn)坐標(biāo)時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點(diǎn)坐標(biāo).
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當(dāng)y=0時x=3,當(dāng)x=0時y=-3??傻弥本€與x軸交點(diǎn)(3,0)、與y軸交點(diǎn)(0,-3)
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點(diǎn)均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
初一數(shù)學(xué)一次函數(shù)教案篇八
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標(biāo)。
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;。
2.應(yīng)用平行四邊形的判定解決實(shí)際問題;。
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;。
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;。
2.通過探索式證明法開拓思路,發(fā)展思維能力;。
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點(diǎn)。
重點(diǎn):1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點(diǎn):1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法。
小組討論、合作探究。
課時安排。
3課時。
教學(xué)媒體。
課件、
教學(xué)過程。
第一課時。
(一)引入。
初一數(shù)學(xué)一次函數(shù)教案篇九
知識與技能目標(biāo)
1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標(biāo)
1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
2.鼓勵學(xué)生用多種方法進(jìn)行說理。
情感與態(tài)度目標(biāo)
1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評價意識。
教材分析
教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。
教學(xué)重點(diǎn):平行四邊形的判別方法。
教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說理。
學(xué)情分析
初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
教學(xué)流程
一、創(chuàng)設(shè)情境,引入新課
師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學(xué)生活動:學(xué)生按小組進(jìn)行探索。
初一數(shù)學(xué)一次函數(shù)教案篇十
1、知識與技能
能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實(shí)生活中的問題,會建構(gòu)函數(shù)“模型”、
2、過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維、
3、情感、態(tài)度與價值觀
培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點(diǎn),體會一次函數(shù)的應(yīng)用價值、
1、重點(diǎn):一次函數(shù)的應(yīng)用、
2、難點(diǎn):一次函數(shù)的應(yīng)用、
3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維、
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的。應(yīng)用、
y=
拓展:若a城有肥料300噸,b城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?
課本p119練習(xí)、
由學(xué)生自我本節(jié)課的表現(xiàn)、
課本p120習(xí)題14、2第9,10,11題、
14.2.2一次函數(shù)(4)
1、一次函數(shù)的應(yīng)用例:
練習(xí):
初一數(shù)學(xué)一次函數(shù)教案篇十一
二元一次方程組是新人教版七年級數(shù)學(xué)(下)第八章第一節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了一元一次方程,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容主要學(xué)習(xí)和二元一次方程組有關(guān)的四個概念。本節(jié)內(nèi)容既是前面知識的深化和應(yīng)用,又是今后用二元一次方程組解決生活中的實(shí)際問題的預(yù)備知識,占據(jù)重要的地位,是學(xué)生新的方程建模的基礎(chǔ)課,為今后學(xué)習(xí)一次函數(shù)以及其他學(xué)科(如:物理)的學(xué)習(xí)奠定基礎(chǔ),同時建模的思想方法對學(xué)生今后的發(fā)展有引導(dǎo)作用,因此本節(jié)課具有承上啟下的作用。
2.教學(xué)目標(biāo)。
[知識技能]。
掌握二元一次方程、二元一次方程組及它們的解的概念,通過實(shí)例認(rèn)識二元一次方程和二元一次方程組也是反映數(shù)量關(guān)系的重要數(shù)學(xué)模型。
[數(shù)學(xué)思考]。
體會實(shí)際問題中二元一次方程組是反映現(xiàn)實(shí)世界多個量之間相等關(guān)系的一種有效的數(shù)學(xué)模型,能感受二元一次方程(組)的重要作用。
[解決問題]。
通過對本節(jié)知識點(diǎn)的學(xué)習(xí),提高分析問題、解決問題和邏輯思維能力。
[情感態(tài)度]。
引導(dǎo)學(xué)生對情境問題的觀察、思考,激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
3.教學(xué)重點(diǎn)與難點(diǎn)。
按照《課程標(biāo)準(zhǔn)》的要求,根據(jù)上述地位與作用的分析及教學(xué)目標(biāo),本節(jié)課中相關(guān)概念的掌握是教學(xué)重點(diǎn)。
七年級學(xué)生思維活躍,好奇心強(qiáng),希望平等交流研討,厭煩空洞的說教。因此,在教學(xué)過程中,積極采用形象生動、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動參與的學(xué)習(xí)方式,激發(fā)他們的興趣。一方面通過學(xué)案與課件,使他們的注意力始終集中在課堂上;另一方面創(chuàng)造條件和機(jī)會,讓學(xué)生自主練習(xí),合作交流,培養(yǎng)學(xué)生學(xué)習(xí)的主動性、與人合作的精神,激發(fā)學(xué)生的興趣和求知欲,感受成功的樂趣。
1.教法。
數(shù)學(xué)課程標(biāo)準(zhǔn)明確指出:有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。所以我在教學(xué)中不只傳授知識,更要激發(fā)學(xué)生的創(chuàng)造思維,引導(dǎo)學(xué)生探究,發(fā)現(xiàn)結(jié)論的方法。正所謂“教是為了不教”。所以我采用引導(dǎo)發(fā)現(xiàn)法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學(xué)等完成本節(jié)的教學(xué),真正做到教師的主導(dǎo)地位。
2.學(xué)法。
學(xué)生是學(xué)習(xí)的主體,所以本節(jié)教學(xué)中,引導(dǎo)學(xué)生自主探究、歸納總結(jié),運(yùn)用自主探索與合作交流開拓自己的創(chuàng)造思維。這樣調(diào)動學(xué)生的積極性,激發(fā)學(xué)生興趣,使學(xué)生由被動學(xué)習(xí)變?yōu)榉e極主動的探究,這也符合數(shù)學(xué)的直觀性和形象性。
為了達(dá)到本節(jié)課的教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我把教學(xué)過程設(shè)計為五個環(huán)節(jié):
1、創(chuàng)設(shè)情境,引入概念。
nba籃球聯(lián)賽情景再現(xiàn),利用世界男籃亞裔球星林書豪激勵學(xué)生相信自已能夠創(chuàng)造奇跡的勵志教育,感受數(shù)學(xué)來源于生活,調(diào)動學(xué)生順利引入新課。
2、觀察歸納,形成概念。
概念的教學(xué),不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學(xué)生對一元一次方程概念已經(jīng)很了解,我主要采用了類比的方法,弱化概念的教學(xué),強(qiáng)化對概念的正確理解,通過學(xué)案與課件相結(jié)合的方式,以題組形式分層漸進(jìn)式訓(xùn)練,讓學(xué)生明晰概念,鞏固概念,強(qiáng)化概念,提升能力。
3、拓展延伸,深入概念。
知識的掌握,能力的提升是一個不斷循序上升的過程,而教學(xué)過程更是一個生動活沷,主動和富有個性的過程,讓學(xué)生認(rèn)真聽講、積極思考,動腦動口,自主探索,合作交流。
4、當(dāng)堂檢測,強(qiáng)化概念。
通過課堂隨機(jī)選題的形式答題,通過合作小組交流,全班展示交流,使學(xué)生互相學(xué)習(xí)、互相促進(jìn)、互相競爭,將小組的認(rèn)知成果轉(zhuǎn)化為全班同學(xué)的共同認(rèn)知成果,從而營造寬松、民主、競爭、快樂的學(xué)習(xí)氛圍,讓學(xué)生體驗到學(xué)習(xí)的快樂,成功的喜悅,從而充分體現(xiàn)數(shù)學(xué)教學(xué)主要是學(xué)生數(shù)學(xué)活動教學(xué)的基本理念。
5、反思小結(jié),回歸概念。
知識性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,培養(yǎng)學(xué)生形成完整的知識體系,養(yǎng)成及時反思的習(xí)慣。
美國國家研究委員會在《人人關(guān)心數(shù)學(xué)教育的未來》的報告中指出“沒有一個人能教好數(shù)學(xué),好的教師不是在教數(shù)學(xué),而是在激發(fā)學(xué)生自已去學(xué)數(shù)學(xué)”。只有學(xué)生通過自已的思考建立對數(shù)學(xué)的理解力,才能真正的學(xué)好數(shù)學(xué)。本節(jié)課,我致力于讓學(xué)生自已去發(fā)現(xiàn)數(shù)學(xué),研究數(shù)學(xué),加強(qiáng)數(shù)學(xué)思想、方法及科學(xué)研究方法的指導(dǎo),引導(dǎo)學(xué)生不斷從“學(xué)會數(shù)學(xué)”到“會學(xué)數(shù)學(xué)”,但教無止境,課堂仍然留有遺憾,在今后的教學(xué)中,我將從這樣的三個方面加強(qiáng)對課堂的研究:一是加強(qiáng)對學(xué)法研究、學(xué)情研究,讓教學(xué)方式與內(nèi)容更符合學(xué)生認(rèn)知規(guī)律,更貼近學(xué)生實(shí)際;二是重視學(xué)生課堂的學(xué)習(xí)感受,營造民主、開放、合作、競爭的學(xué)習(xí)氛圍;;三是提高教學(xué)機(jī)智、不斷創(chuàng)新優(yōu)化教學(xué)方法,科學(xué)、合理、靈活地處理課堂上生成的問題。
初一數(shù)學(xué)一次函數(shù)教案篇十二
【知識目標(biāo)】了解二元一次方程、二元一次方程組及其解等有關(guān)概念,并會判斷一組數(shù)是不是某個二元一次方程組的解。
【能力目標(biāo)】通過討論和練習(xí),進(jìn)一步培養(yǎng)學(xué)生的觀察、比較、分析的能力。
【情感目標(biāo)】通過對實(shí)際問題的分析,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
【難點(diǎn)】判斷一組數(shù)是不是某個二元一次方程組的解,培養(yǎng)學(xué)生良好的。數(shù)學(xué)應(yīng)用意識。
【教學(xué)過程】。
一、引入、實(shí)物投影。
2、請每個學(xué)習(xí)小組討論(討論2分鐘,然后發(fā)言)。
[1]?[2]?[3]。
初一數(shù)學(xué)一次函數(shù)教案篇十三
1.知識與能力目標(biāo)。
(3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識和能力。
2.情感態(tài)度價值觀目標(biāo)。
通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強(qiáng)新舊知識的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗數(shù)學(xué)活動充滿探索與創(chuàng)造。
教材分析。
前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
教學(xué)方法。
學(xué)生操作------自主探索的方法。
學(xué)生通過自己操作和思考,結(jié)合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。
教學(xué)過程。
一、故事引入。
迪卡兒的故事------蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
二、嘗試探疑。
1、y=x+1。
你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?
學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。
2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x-y=-1?
學(xué)生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點(diǎn)看它們的坐標(biāo)是否滿足方程x-y=-1。結(jié)果都滿足。然后學(xué)生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x-y=-1。結(jié)果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x-y=-1。
然后學(xué)生會用同樣的方法得出另一個結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關(guān)系呢?通過交流自動得出結(jié)論:以方程x-y=-1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。
3.在同一坐標(biāo)系下,化出y=x+1與y=4x-2的圖象,他們的交點(diǎn)坐標(biāo)是什么?
方程組y=x+1的解是什么?二者有何關(guān)系?
y=4x-2。
y=x+1的解。
y=4x-2。
教師作最后總結(jié):因為函數(shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
解方程組x-2y=-2。
2x-y=2。
學(xué)生會很快的用消元法解出來。
老師發(fā)問:誰還有其他的方法?如果有,鼓勵學(xué)生大膽提出。并給予口頭表揚(yáng)。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學(xué)生就會去探索新的思路、方法。
一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:
1.把兩個方程都化成函數(shù)表達(dá)式的形式。
2.畫出兩個函數(shù)的圖象。
3.畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。
問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2.1y=2.1。
y=1.9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!
教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用z+z智能教育平臺演示一下。
用作圖象的方法解方程組,這體現(xiàn)了兩個知識點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識,探索知識點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會這種學(xué)習(xí)新知識的技巧。
四、引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?
學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會嘗試運(yùn)用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點(diǎn)。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
因為有了上面的用作圖象法解方程組,在這里,學(xué)生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識和能力。
五、課后小結(jié)。
本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力。
六、作業(yè)。
1.用作圖象法解方程組2x+y=4。
2x-3y=12。
2.如圖,直線l、l相交于點(diǎn)a,試求出a點(diǎn)坐標(biāo)。
教學(xué)反思。
這節(jié)課由故事引入,激發(fā)了學(xué)生極大的學(xué)習(xí)興趣。然后提出了三個尖銳的問題,讓學(xué)生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應(yīng)用和引申過程中,盡量讓學(xué)生自主的發(fā)現(xiàn)問題,自主的解決問題。學(xué)生在緊張、愉快中完成了這節(jié)課的學(xué)習(xí)。
初一數(shù)學(xué)一次函數(shù)教案篇十四
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
【能力目標(biāo)】通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.
【情感目標(biāo)】通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強(qiáng)了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
【教學(xué)難點(diǎn)】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
初一數(shù)學(xué)一次函數(shù)教案篇十五
知識目標(biāo):經(jīng)歷解方程的基本思路是把“復(fù)雜”轉(zhuǎn)化為“簡單”,把“未知”轉(zhuǎn)化為“已知”的過程,進(jìn)一步理解并掌握如何去分母的解題方法。
能力目標(biāo):通過解方程的方法、步驟的靈活多樣,培養(yǎng)學(xué)生分析問題、解決問題的能力。
1.了解方程的解,解方程的概念;。
2.掌握運(yùn)用等式的基本性質(zhì)解簡單的一元一次方程;。
3.經(jīng)歷體會解方程中的轉(zhuǎn)化思想.
初一數(shù)學(xué)一次函數(shù)教案篇十六
知識與技能:
進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實(shí)際問題;。
過程與方法。
在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維;在解決實(shí)際問題過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
情感態(tài)度與價值觀:
在現(xiàn)實(shí)問題的解決中,使學(xué)生初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系,從而培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點(diǎn)。
教學(xué)難點(diǎn)。
從函數(shù)圖象中正確讀取信息。
教學(xué)過程:
一、情境引入。
一農(nóng)民帶上若干千克自產(chǎn)的土豆進(jìn)城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)與他手中持有的錢數(shù)(含備用零錢)的關(guān)系,如圖所示,結(jié)合圖象回答下列問題.
(1)農(nóng)民自帶的零錢是多少?
(2)試求降價前y與x之間的關(guān)系。
(3)由表達(dá)式你能求出降價前每千克的土豆價格是多少?
二、問題解決。
l1反映了某公司產(chǎn)品的銷售收入與銷售量的關(guān)系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關(guān)系,根據(jù)圖意填空:
初一數(shù)學(xué)一次函數(shù)教案篇十七
1.知識與技能.
理解商品銷售中所涉及的進(jìn)價、原價、售價、利潤及利潤率等概念;能利用一元一次方程解決商品銷售中的一些實(shí)際問題.
2.過程與方法.
經(jīng)歷運(yùn)用方程解決銷售中的盈虧問題,進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型.
重、難點(diǎn)與關(guān)鍵。
2.難點(diǎn)都是如何把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,列方程解決實(shí)際問題.
3.關(guān)鍵:理解銷售中,相關(guān)詞語的含義,建立等量關(guān)系.
教具準(zhǔn)備。
投影儀.
教學(xué)過程。
一.引入新課.
前面我們結(jié)合實(shí)際問題,討論了如何分析數(shù)量關(guān)系,利用相等關(guān)系列方程以及如何解方程,可以看出方程是分析和解決問題的一種很有用的數(shù)學(xué)工具,本節(jié)我們將進(jìn)一步探究如何用一元一次方程解決實(shí)際問題.
二.新授.
初一數(shù)學(xué)一次函數(shù)教案篇十八
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.
1.教學(xué)目標(biāo)
知識與技能目標(biāo)
(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法目標(biāo)
(2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
(3) 情感與態(tài)度目標(biāo)
(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
2.教學(xué)重點(diǎn)
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
3.教學(xué)難點(diǎn)
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.
第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
3.在一次函數(shù)y= 的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y= 的圖像相同嗎?
由此得到本節(jié)課的第一個知識點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.
前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).
第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:1.解方程組
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的`圖像.
(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2) 求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ).
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.
第三環(huán)節(jié) 典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點(diǎn)坐標(biāo)是 .
意圖:設(shè)計例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實(shí)際問題作了很好的鋪墊.
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
第四環(huán)節(jié) 反饋練習(xí)
內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點(diǎn)為 ,則 .
2.已知一次函數(shù) 與 的圖像都經(jīng)過點(diǎn)a(2,0),且與 軸分別交于b,c兩點(diǎn),則 的面積為( ).
(a)4 (b)5 (c)6 (d)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點(diǎn)坐標(biāo)可以看作哪個方程組的解?
意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.
效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
第五環(huán)節(jié) 課堂小結(jié)
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1) 方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2) 兩條直線的交點(diǎn)坐標(biāo)是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
意圖:旨在使本節(jié)課的知識點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.
第六環(huán)節(jié) 作業(yè)布置
習(xí)題7.7
附: 板書設(shè)計
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.
初一數(shù)學(xué)一次函數(shù)教案篇十九
重點(diǎn):讓學(xué)生實(shí)踐與探索,運(yùn)用二元一次方程解決有關(guān)配套與設(shè)計的應(yīng)用題
難點(diǎn):尋找等量關(guān)系
教學(xué)過程:
看一看:課本114頁探究2
問題:1甲、乙兩種作物的單位面積產(chǎn)量比是1:1.5是什么意思?
2、甲、乙兩種作物的'總產(chǎn)量比為3:4是什么意思?
3、本題中有哪些等量關(guān)系?
提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?
甲種作物單位產(chǎn)量是a
解這個方程組得
答:這兩個長方形,是過長方形abcd土地的長邊上離a約106米處把這塊地分為兩個長方形,較大一塊種甲種作物,較小的一塊種乙種作物。
思考:這塊地還可以怎樣分?
練一練
一、某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動力人數(shù)及投入的設(shè)備獎金如下表:
農(nóng)作物品種 每公頃需勞動力 每公頃需投入獎金
水稻 4人 1萬元
棉花 8人 1萬元
蔬菜 5人 2萬元
問題:
題中有幾個已知量?
題中求什么?
分別安排多少公頃種水稻、棉花、和蔬菜?
解:設(shè)安排x公頃種水稻、y公頃種棉花、則(51-x-y)種公頃蔬菜
根據(jù)題意列方程得:
解這個方程得:
答:安排15公頃種水稻、20公頃種棉花、16種公頃蔬菜
【本文地址:http://aiweibaby.com/zuowen/9988207.html】