2017年高考數(shù)學(xué)知識點(diǎn):函數(shù)

2016/09/03 01:58:22文/網(wǎng)編2

學(xué)分網(wǎng)給各位考生整理了2017年高考數(shù)學(xué)知識點(diǎn):函數(shù)。更多的資訊請持續(xù)關(guān)注學(xué)分網(wǎng)。(http://www.aiweibaby.com/)

高中數(shù)學(xué)學(xué)習(xí)中掌握重點(diǎn)知識點(diǎn)是數(shù)學(xué)學(xué)習(xí)方法中最有效的一種,數(shù)學(xué)知識點(diǎn)掌握之后在學(xué)習(xí)起來會(huì)變的輕松很多,下面是學(xué)分網(wǎng)小編整理的高中數(shù)學(xué)知識點(diǎn)之函數(shù)的相關(guān)知識,希望對高中生的數(shù)學(xué)學(xué)習(xí)有幫助。

一、高考數(shù)學(xué)函數(shù)的有關(guān)概念

1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于函數(shù)A中的任意一個(gè)數(shù)x,在函數(shù)B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

注意:

函數(shù)定義域:能使函數(shù)式有意義的實(shí)數(shù)x的函數(shù)稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

u相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3.函數(shù)圖象知識歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

5.映射

一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”

對于映射f:A→B來說,則應(yīng)滿足:

(1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是唯一的;

(2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個(gè);

(3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

點(diǎn)擊查看:高中數(shù)學(xué)知識點(diǎn)大全

二.高考數(shù)學(xué)函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

如果對于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2)圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A)定義法:

a.任取x1,x2∈D,且x1

b.作差f(x1)-f(x2);

c.變形(通常是因式分解和配方);

d.定號(即判斷差f(x1)-f(x2)的正負(fù));

e.下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù)

一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2)奇函數(shù)

一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.

利用定義判斷函數(shù)奇偶性的步驟:

a.首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;

b.確定f(-x)與f(x)的關(guān)系;

c.作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).

注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1)湊配法

2)待定系數(shù)法

3)換元法

4)消參法

10.函數(shù)最大(小)值

a.利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

b.利用圖象求函數(shù)的最大(小)值

c.利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

三、高考函數(shù)常用公式

1、多項(xiàng)式函數(shù)

2、兩個(gè)函數(shù)圖像對稱性

若將函數(shù)y=f(x)的圖像右移a、上移b個(gè)單位,得到函數(shù)y=f(x-a)+b的圖象,若將曲線f(x,y)=0的圖像右移a、上移b個(gè)單位,得到曲線f(x-a,y-b)=0的圖像。

3、互為反函數(shù)的兩個(gè)函數(shù)關(guān)系

4、幾個(gè)常見的函數(shù)方程

5、幾個(gè)函數(shù)方程式的周期(約定a>0)

6、對數(shù)的四則運(yùn)算法則

7、對數(shù)換底不等式及其推論

以上內(nèi)容就是小編為大家整理的《2017年高考數(shù)學(xué)知識點(diǎn):函數(shù)》,對于高考數(shù)學(xué)知識點(diǎn)了解是否更加加深了一點(diǎn)呢更多學(xué)習(xí)相關(guān)材料,敬請關(guān)注學(xué)分網(wǎng),小編隨時(shí)為大家更新更多有效的復(fù)讀材料及方法!

推薦閱讀:

2017年高考數(shù)學(xué)復(fù)習(xí)方法:備考中存在的18個(gè)風(fēng)險(xiǎn)
2017年高考數(shù)學(xué)提高做題速度的方法
2017年高考數(shù)學(xué)一輪復(fù)習(xí)誤區(qū)

THE END

最新文章

相關(guān)文章

高考最后一周 高考數(shù)學(xué)各題型解題方法與技巧
高考數(shù)學(xué)答題技巧及套路 高考數(shù)學(xué)答題方法及注意事項(xiàng)
如何學(xué)好高中數(shù)學(xué)的方法和技巧 高中數(shù)學(xué)方法與技巧
高考最后階段備考建議 高考數(shù)學(xué)沖刺計(jì)劃
高中數(shù)學(xué)必背公式總結(jié) 高中數(shù)學(xué)必背公式整理