具體的實踐是我們完成任務的關鍵??偨Y(jié)可以幫助我們找到自身的優(yōu)勢和不足,更好地發(fā)展個人能力。這些總結(jié)范文涵蓋了各種不同的主題和內(nèi)容,相信能夠滿足你的需求。
張齊華因數(shù)和倍數(shù)教學設計篇一
教學過程:。
一,創(chuàng)設情境,明確相互依存的關系。
師:同學們,我們?nèi)伺c人之間存在著各種關系,比如說(指某位同學)他同他的爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。
師:“老師是師生關系”可以這樣說嗎?為什么?
生:師生關系是指老師和學生之間的相互關系,不能單獨說。
師:是呀,人與人之間的關系是相互的,在數(shù)學王國里,也有一些存在著相互依存關系的數(shù),這節(jié)課我們就來學習。
二、動手操作,感受并認識因數(shù)和倍數(shù)。
(一)、新課引入:。
1、師:同學們的桌上都放著12個同樣大的正方形,請你用這12個正方形拼成一個長方形,注意每排擺幾個?擺了幾排?用乘法算式表示你的擺法.
2、進行交流:。
師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
師:還有其它擺法嗎?
還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
學生交流幾種不同的擺法。隨著學生交流屏幕上一一演示。
師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示,千萬別小看這些算式,這節(jié)課我們就從這些算式中學習兩個重要的數(shù)學概念”因數(shù)和倍數(shù)”。(板書課題)。
師:我們以一道乘法算式為例。(屏幕出示)。
4×3=12,。
師:在這個算式中,4、3、12有什么關系呢?
我們一起來讀一讀:。
因為:4×3=12,。
所以:4是12的因數(shù),3也是12的因數(shù)。
12是4的倍數(shù),12也是3的倍數(shù)。
師:讀讀看,能讀懂嗎?說一說讀后你想到了什么?
生:乘法算式中,兩個數(shù)存在因數(shù)和倍數(shù)的關系。
師:他的說法正確嗎?我們來繼續(xù)讀。
出示:因為:6×2=12,所以——。
因為:1×12=12,所以——。
師:請把書打到12頁,齊讀最后自然段的注意。
生:注意,為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是的整數(shù)(一般不包括0)。
師:現(xiàn)在你們能把存在因數(shù)和倍數(shù)關系的條件說得更準確些嗎?
生:在非0的整數(shù)乘法算式中,兩個數(shù)之間存在因數(shù)和倍數(shù)關系。
師:誰也來出個乘法算式說一說。(略)。
課件出示:32÷4=8,你能從這個算式中找到因數(shù)和倍數(shù)嗎?
師:我們不僅可以根據(jù)乘法算式找因數(shù)和倍數(shù),也可以根據(jù)除法算式找因數(shù)和倍數(shù)。二、創(chuàng)設情境,自主探究找因數(shù)和倍數(shù)的方法.
1、師:我們剛才初步認識了因數(shù)和倍數(shù),明白了因數(shù)和倍數(shù)都表示幾個數(shù)之間的關系?(兩個)。所以,不能單說哪個數(shù)是倍數(shù),哪個數(shù)是因數(shù)。下面我們進一步來研究因數(shù)和倍數(shù)。
屏幕顯示:。
試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰的倍數(shù)?
2、3、5、9、18、20。
生:2、3、9、18都是18的因數(shù)。
師:18的因數(shù)只有這4個嗎?
師:看來要找出18的一個因數(shù)并不難,難就難在你能不能把18的所有因數(shù)既不重復又不遺漏地全部找出來。請你選擇你喜歡的方式,可以同桌合作,小組合作,也可以獨立完成,找出18的所有因數(shù)。如果能把怎么找到的方法寫在紙上就更好了。
生:寫后小組內(nèi)交流。
學生填寫時師巡視搜集作業(yè)。
2、交流作業(yè)。(略)。
投影儀出示學生的不同作業(yè)。交流找因數(shù)的方法。
師:出示18的因數(shù)有:1、18;2、9;3、6;。
你知道這個同學是怎樣找出18的因數(shù)的嗎?看著這個答案你能猜出一點嗎?
生:他是有規(guī)律,一對一對找的,哪兩個整數(shù)相乘得18,就寫上。
師:他是用乘法找的,其他同學還有補充嗎?找到什么時候為止?
生:可以用除法找。用18除以1得18,18和1就是18的因數(shù)。再用18除以2……。
師:用乘法和除法找都可以,你們認為用什么方法更容易呢?
生:乘法。
板書:18的因數(shù)有:1、2、3、6、9、18。
師:18的因數(shù)也可以這樣表示。(課件出示集合圈圖)。
組織交流:。
通過剛才的交流,找一個數(shù)的因數(shù)有辦法了嗎?有沒有方法不重復也不遺漏?
突出要點:有序(從小往大寫),一對對找(哪兩個整數(shù)相乘得這個數(shù)),再按從小到大的順序?qū)懗鰜怼?/p>
用我們找到的方法,試一個。
課件出示:。
填空:。
24=1×24=2×()=()×()=()×()。
24的因數(shù)有:_______________。
再試一個:16的因數(shù)有。
師:一個數(shù)的因數(shù),我們都是一對一對地找的,為什么16的因數(shù)只有5個呢?
生:因為4×4=16,只寫一個4就可以了。
師:觀察18、16的所有因數(shù),你有什么發(fā)現(xiàn)嗎?可以從因數(shù)的個數(shù),最小的因數(shù)和最大的因數(shù)三個方面觀察。
生:18的因數(shù)有6個,最小的是1,最大的是18.
16的因數(shù)有5個,最小的是1,最大的是16.
師:誰能把同學們的發(fā)現(xiàn),用數(shù)學語言概括起來。先說給小組同學聽。
邊交流邊板書:。
個數(shù)最小最大。
倍數(shù)。
張齊華因數(shù)和倍數(shù)教學設計篇二
教學目標:
1、從操作活動中理解因數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)。
2、培養(yǎng)學生抽象、概括與觀察思考的能力,滲透事物之間相互聯(lián)系,相互依存的辨證唯物主義觀點。
3、培養(yǎng)學生的合作意識、探索意識以及熱愛數(shù)學學習的情感。
教學重點:理解因數(shù)的意義。
教學難點:能熟練地找一個數(shù)的因數(shù)。
教具準備:多媒體課件。
教學過程:
一、引入新課:
1、課件出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?你還能找出12的其他因數(shù)嗎?
(指名生說一說)。
4、你能不能寫一個算式來考考同桌?學生寫算式。
5、師:今天我們就來學習因數(shù)和倍數(shù)。(板書課題:因數(shù)和倍數(shù))。
齊讀教材第12的注意。
二、自學預設:
2、怎樣找因數(shù)?例如18,36的因數(shù)是什么?
3、因數(shù)有什么特點?一個數(shù)的最小因數(shù)是多少?有幾個因數(shù)?(舉例說明)。
嘗試練習。
試著完成p13的做一做練習。
三、認識因數(shù)與倍數(shù),展示交流。
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成匯報:(18的因數(shù)有:1,2,3,6,9,18)。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在練本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示。課件出示。
5、小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二).我的質(zhì)疑。
1.誰能舉一個算式例子,并說說誰是誰的因數(shù)?
2.討論:0×30×100÷30÷10。
提問:通過剛才的計算,你有什么發(fā)現(xiàn)?
3.注意:(1)為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)一般指的是整數(shù),但不包括0。(2)這節(jié)課我們研究因數(shù)與倍數(shù)的關系中所說的因數(shù)不是以前乘法算式名稱的“因數(shù)”,兩者不能搞混淆。
四、反饋檢測。
1.下面每一組數(shù)中,誰是誰得因數(shù)?
16和24和2472和820和5。
2.下面得說法對嗎?說出理由。
(1)48是6的倍數(shù)。
(2)在13÷4=3……1中,13是4的倍數(shù)。
(3)因為3×6=18,所以18是倍數(shù),3和6是因數(shù)。
3、完成p15第2題。
學生自己獨立完成,講評時讓學生說一說,是怎么想的?
五、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點研究了一個什么問題?你有什么收獲呢?
18的因數(shù)有:1,2,3,6,9,18。
一個數(shù)的因數(shù)::最小的是1,最大的是它本身。
張齊華因數(shù)和倍數(shù)教學設計篇三
教學內(nèi)容:青島版教材小學數(shù)學五年級上冊88—91頁。
教學目標:
1、使學生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
2、使學生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內(nèi)在聯(lián)系,提高數(shù)學思考的水平,對數(shù)學產(chǎn)生好奇心,培養(yǎng)學習興趣。
教學重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教學難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
教具準備:多媒體課件、學生練習題。
教學過程:
一、談話導入。
師:同學們看這是什么?
生:小正方形。
師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
生:想。
師:多少個?
生:12個。
師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
生:能。
張齊華因數(shù)和倍數(shù)教學設計篇四
教學過程:
生:1×12。
師:猜猜看,他每排擺了幾個,擺了幾排?
生:12個,擺了一排。
生:三四十二。
生齊:2×6。
師:張老師來猜測一下同學們腦子里怎么想的,有同學可能想每排擺6個,擺2排。也有同學可能想每排擺2個,擺6排。(屏幕顯示擺法)同樣第二種擺法也可以省。
師:還有不同的想法嗎?每排能擺5個嗎?12個同樣大小的正方形能擺3種不同的乘法算式,千萬別小看這些乘法算式,今天我們研究的內(nèi)容就在這里。咱們就以第一道乘法算式為例,3×4=12,數(shù)學上把3是12的因數(shù),以往我們把他叫約數(shù),現(xiàn)在叫因數(shù),3是12的因數(shù),那4(也是12的因數(shù),)倒過來12是3的倍數(shù),12(也是4的倍數(shù))。同學們很有遷移的能力,這就是我們今天所要研究的因數(shù)和倍數(shù)。
師:這兒還有兩道乘法算式,先自己說一說誰是誰的因數(shù)?誰是誰的倍數(shù)?行不行?
師:誰先來?
生說略。
師:剛才在聽的時候發(fā)現(xiàn)1×12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句???
生:12是12的因數(shù),12是12的倍數(shù)。
生:自然數(shù)。
師:而且誰得除外。
生:0。
師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
3、5、18、20、36。
生說略。
二、探索找因數(shù)倍數(shù)的方法。
生1:3、18。
師:還有誰?
生2:36。
師:3、18、36都是36的因數(shù),只有這3個嗎?
生1:1。
生2:4。
生3:6。
師:其實要找出36的一個因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?張老師作一下詳細說明,因為這個問題有點難度,你可以獨立完成也可以同桌完成,下面你選擇你喜歡的方式,可以合作,也可以單干,想一想怎么不遺漏,注意了,當你找出了36的所有因數(shù),別忘了填在作業(yè)紙上,如果能把怎么找到的方法寫在下面更好。
學生填寫時師巡視搜集作業(yè)。
師:張老師找到了3份不同的作業(yè),大家仔細觀察這三份作業(yè),可有意思了。我把他命名為a、b、c師板書。
a:2、4、13、12、18、36。
b:1、2、4、3、6、9、12、18、36。
c:1、36、2、18、3、12、4、9、6。
師:關于a這種方法你有什么話要說?(學生紛紛舉手)能不能從正面的角度說一說,這個同學找出的因數(shù)有沒有值得肯定的地方?(學生沉默)一點都沒有我們值得肯定的地方嗎?你先來。
生1:都對的。
師:有沒有道理?看來要找一個人的優(yōu)點挺困難的。
生2:寫全了。
生大聲說:沒有!
生:沒有寫全,少了3、6、9。
生:36÷4,只寫了4,沒寫9。
師:他的意思是說用除法來做的話,找一個數(shù)的因數(shù),一個個找,還是兩個兩個找?
生齊:兩個兩個找。
生2:先把1寫在頭,36寫在尾,然后再把2寫中間,這樣依次寫下去,這樣比較美觀。
師:張老師提煉出兩個字:“順序”,好象還不僅僅是因為粗心的問題,沒有按照一定的順序。
師:第二個同學有沒有找全,有沒有更好的建議送給他。
生:他應該把4、3調(diào)換一下。
師:你想提出抗議嗎?你們覺得有順序嗎?(有)你自己來說?
生:他們那樣還要頭對尾頭對尾的,像這樣直接就可以寫了。
師:有沒有聽明白,也是同樣一對一對出現(xiàn)的。
生:大小沒有排,b大小排完后從小到大很舒服。
師:你看你那個舒服嗎?
生:舒服。
師:正是因為你的質(zhì)疑,他把方法說了出來。他用了什么?
生:乘法口訣。
師:非常感謝同學們給出的發(fā)言,正是你們的發(fā)言讓我們感受到了如何尋找一個數(shù)的因數(shù),有沒有問題。
生1:找到開始重復就不找了。
生2:我認為應該找到比較接近如5、6,7、8找到比較接近就可以了。
師:體會體會1、學生:36、2、學生:18、3、12、4、9、6這兩個因數(shù)在不斷接近,接近到相差無幾。
生:
生:直接找更大數(shù)的所有的因數(shù),這個同學很厲害,已經(jīng)在用分解質(zhì)因數(shù)的方法在找一個因數(shù)的個數(shù)了。
師:通過剛才的交流,有辦法了嗎?有沒有方法不遺漏。試一個。20。
生齊:1、2、4、5、10、20。
再試一個:15,寫在練習紙上。學生匯報。
師:尋找一個數(shù)掌握的不錯,這節(jié)課還要研究倍數(shù)呢。會找一書的倍數(shù)嗎?找一個小一點的,3的倍數(shù),誰來找一個。
生:21、300。
師:你能把3的倍數(shù)全部寫下來嗎?
生:不能。太多太多了。
師:那怎么辦?寫不完可以用省略號表示。試試看。
學生練習紙上完成,匯報。
師:同學們雖然找的答案差不多,但腦子里的方法各不相同。我想聽聽你是怎樣找的?
生1:3×1、3×2。
張齊華因數(shù)和倍數(shù)教學設計篇五
在學習本單元之前,學生已經(jīng)較為系統(tǒng)地掌握了十進制計數(shù)法,同時也基本完成了整數(shù)四則運算的學習。這節(jié)課將引領學生從一個新的角度(即倍數(shù)和因數(shù)的角度)來研究非零自然數(shù)的特征及其相互關系,為學生進一步學習數(shù)的分類、公倍數(shù)和公因數(shù)以及分數(shù)的約分、通分等奠定基礎。
1.讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
1、從學生熟悉的生活入手。首先和學生交流生活中人與人的關系,自然過渡到自然數(shù)中數(shù)與數(shù)之間的關系。并由猜老師的年齡,引入倍數(shù)的概念以及找一個數(shù)倍數(shù)的方法。
2、從學生的操作入手。由淺入深,由無序到有序,通過讓學生用不同個數(shù)的正方形拼成長方形,引入因數(shù)的概念,引導學生將數(shù)和形有機結(jié)合起來,從而有序地找出一個數(shù)的所有因數(shù)。
一、課前談話。
1、話家常,拉“關系”
是的,在我們生活中人與人之間總會存在著這樣那樣的關系,而在數(shù)字的世界里,數(shù)和數(shù)之間也會存在各種各樣的關系。今天這節(jié)課,我們就和大家一起研究兩個非零自然數(shù)之間的關系。
二、學習倍數(shù)的意義。
你們?yōu)槭裁串惪谕暤卣f我36歲呢?難道只有36是9的倍數(shù)嗎?
2、按順序,找倍數(shù)。
9的倍數(shù)除了36還有什么數(shù)嗎?能寫完嗎?為什么?
指出:1倍、2倍往下寫,通常只要寫出5個,然后用“??”表示。你能直接寫出2的倍數(shù)和5的倍數(shù)嗎?學生獨立書寫。
指名回答,板書:2的倍數(shù)有2、4、6、8、10、12??。
5的倍數(shù)有5、10、15、20、25、30??提問:觀察上面的三個例子,你有什么發(fā)現(xiàn)?在小組內(nèi)討論。
指名匯報,相機出示以下結(jié)論:一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù)。一個數(shù)的倍數(shù)的個數(shù)是無限的。
三、學習因數(shù)的意義。
1、初擺圖形,感知“因數(shù)”屏幕出示12個同樣大小的正方形。
根據(jù)3х4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
同學們一起來讀一讀,感受一下。
請你從1х12=12;2х6=12這兩道算式中任選一題,用上面的話說一說。
2、再擺圖形,感受“順序”
學生獨立練習后,組織匯報。
根據(jù)學生的回答,投影出示相應的拼法,并相機板書:16÷1=16。
16÷2=816÷4=4。
你能結(jié)合這道算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
你能連起來說說16的因數(shù)有哪些嗎?相機板書:16的因數(shù)有:1、16、2、8、43是不是16的因數(shù),為什么?5呢?明確因倍關系的依據(jù)。
3、數(shù)形結(jié)合,掌握方法。
將你找出的36的因數(shù)寫在練習紙上。
展示學生的作品。36的因數(shù)有:1、36、2、18、3、12、4、9、6.將方法優(yōu)化:根據(jù)數(shù)形結(jié)合的思想,運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且能夠做到不重復、不遺漏。
4、觀察思考,發(fā)現(xiàn)規(guī)律。
引導學生觀察12的因數(shù)、16的因數(shù)和36的因數(shù)。
提問:觀察上面的三個例子,你又有什么發(fā)現(xiàn)?在小組內(nèi)討論。
明確:1是所有非零自然數(shù)的因數(shù)。
既然1是所有非零自然數(shù)的因數(shù),那么換句話說,也就是所有非零自然數(shù)都是1的?(讓學生接上說倍數(shù))。
四、綜合練習,加深理解。
2、你猜、我猜、大家猜。
1)、茶杯每只4元,我去超市買了一些茶杯,猜猜我可能用了多少元?讓學生盡可能說出不同答案,師適時追問:可能嗎?如有錯誤,要求學生說出錯在哪里,明確用去的錢數(shù)是4的倍數(shù)。
2)、出示邊長3厘米的正方形。
a、長24cm、寬8cm。
b、長36cm、寬4cm。
根據(jù)12的因數(shù)的個數(shù)比16的因數(shù)的個數(shù)多,引導學生得出并不是數(shù)字越大,因數(shù)的個數(shù)就越多。然后然學學生找出60的所有因數(shù)。
五、總結(jié)延伸。
張齊華因數(shù)和倍數(shù)教學設計篇六
(一)知識與技能。
理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù),及因數(shù)和倍數(shù)個數(shù)方面的特征。
(二)過程與方法。
通過整數(shù)的乘除運算認識因數(shù)和倍數(shù)的意義,自主探索和總結(jié)出求一個數(shù)的因數(shù)和倍數(shù)的方法。
(三)情感態(tài)度和價值觀。
在探索的過程中體會數(shù)學知識之間的內(nèi)在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
二、教學重難點。
教學難點:自主探索有序地找一個數(shù)的因數(shù)和倍數(shù)的方法。
三、教學準備。
教學課件。
教學例1:
1.觀察算式的特點,進行分類。
(1)仔細觀察算式的特點,你能把這些算式分類嗎?
(2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結(jié)果分成兩類)。
第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
(1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
(2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
(3)強調(diào)一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
【設計意圖】引導學生從“整數(shù)的除法算式”中認識因數(shù)和倍數(shù)的意義,簡潔明了,同時為學習因數(shù)和倍數(shù)的依存關系進行有效鋪墊。
(1)獨立完成教材第5頁“做一做”。
(2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?
【設計意圖】引導學生在理解的基礎上進行正確表述:因數(shù)和倍數(shù)是相互依存的,不是單獨存在的。我們不能說4是因數(shù),24是倍數(shù),而應該說4是24的因數(shù),24是4的倍數(shù)。
4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
課件出示:
乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
(2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?
“倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。
(3)交流匯報。
【設計意圖】“一個數(shù)的因數(shù)和倍數(shù)”與學生已學過的乘法算式中的“因數(shù)”以及“倍”的概念既有聯(lián)系又有區(qū)別,學生比較容易混淆,這也是學習一個數(shù)的“因數(shù)”和“倍數(shù)”意義的難點。通過觀察、對比、交流,引導學生發(fā)現(xiàn)一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
(二)找一個數(shù)的因數(shù)。
教學例2:
1.探究找18的因數(shù)的方法。
(1)18的因數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
因為18÷1=18,所以1和18是18的因數(shù)。
因為18÷2=9,所以2和9是18的因數(shù)。
因為18÷3=6,所以3和6是18的因數(shù)。
方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
因為1×18=18,所以1和18是18的因數(shù)。
因為2×9=18,所以2和9是18的因數(shù)。
因為3×6=18,所以3和6是18的`因數(shù)。
2.明確18的因數(shù)的表示方法。
(1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
(2)交流方法。
預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。
圖示法(如下圖所示)。
3.練習找一個數(shù)的因數(shù)。
(1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
(2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?
【設計意圖】讓學生通過自主探索、交流,獲得找一個數(shù)的因數(shù)的不同方法,在練習中體會“一對一對”有序地找一個數(shù)的因數(shù),避免遺漏或重復。初步感受一個數(shù)的因數(shù)的個數(shù)是有限的,以及“最大因數(shù)、最小因數(shù)”的特征。
(三)找一個數(shù)的倍數(shù)。
教學例3:
1.探究找2的倍數(shù)的方法。
(1)2的倍數(shù)有哪些?你是怎么找的?
(2)交流方法。
預設:方法一:利用除法算式找2的倍數(shù)。
因為2÷2=1,所以2是2的倍數(shù)。
因為4÷2=2,所以4是2的倍數(shù)。
因為6÷2=3,所以6是2的倍數(shù)?!?/p>
方法二:利用乘法算式找2的倍數(shù)。
因為2×1=2,所以2是2的倍數(shù)。
因為2×2=4,所以4是2的倍數(shù)。
因為2×3=6,所以6是2的倍數(shù)。……。
(3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
(4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、圖示法)。
2.練習找一個數(shù)的倍數(shù)。
你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
【設計意圖】在理解“倍數(shù)”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數(shù)的倍數(shù)的個數(shù)是無限的,以及“最小倍數(shù)”的特征。
(四)一個數(shù)的因數(shù)與倍數(shù)的特征。
1.從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
2.討論交流。
3.歸納總結(jié)。
預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
(五)鞏固練習。
1.課件出示教材第7頁練習二第1題。
(1)想一想,怎樣找不會遺漏、不會重復?
(2)哪些數(shù)既是36的因數(shù),也是60的因數(shù)?
【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數(shù)的因數(shù)”“一個數(shù)最大的因數(shù)是它本身”和“一個數(shù)的因數(shù)的個數(shù)是有限的”。同時,滲透兩個數(shù)的“公因數(shù)”的意義。
2.課件出示教材第7頁練習二第3題。
(1)學生獨立完成,交流答案。
(2)思考:5的倍數(shù)有什么特征?
【設計意圖】滲透5的倍數(shù)的特征。
3.課件出示教材第7頁練習二第5題。
(1)學生獨立完成,交流答案。
(2)你能改正錯誤的說法嗎?
(六)全課總結(jié),交流收獲。
這節(jié)課我們學了哪些知識?你有什么收獲?
張齊華因數(shù)和倍數(shù)教學設計篇七
新人教版小學數(shù)學五年級下冊第13~16頁。
1、學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)學生的觀察能力。
理解因數(shù)和倍數(shù)的含義;自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法。
自主探索并總結(jié)找一個數(shù)的因數(shù)和倍數(shù)的方法;歸納一個數(shù)的因數(shù)的特點。
學號牌數(shù)字卡片(也可讓學生按要求自己準備)。
談話法、比較法、歸納法。
快樂學習、大膽言問、不怕出錯!
課前安排學號:1~40號。
課前故事:說明道理:學習最重要的是快樂,要掌握學習的方法。
問:“我們在因數(shù)與倍數(shù)的學習中,研究的數(shù)都是什么數(shù)?”(整數(shù))。
誰能說說10的因數(shù),你是怎么想的?
今天,我和大家一道來繼續(xù)共同探討“因數(shù)與倍數(shù)”
b、探究找一個數(shù)的因數(shù)的方法(談話法、比較法、歸納法)。
1、誰來說說18的因數(shù)有哪些?
學生預設:有的學生可能會說還有6*3,9*2,18*1等,出現(xiàn)這種情況時可以冷一下,讓學生想一想這樣寫的話會出現(xiàn)什么情況,最后讓學生明白一個數(shù)的因數(shù)是不能重復的。
d、介紹寫一個數(shù)因數(shù)的方法。
可以用一串數(shù)字表示;也可以用集合圈的方法表示。
說一說:
18的因數(shù)共有幾個?
它最小的因數(shù)是幾?
最大的因數(shù)是幾?
2、做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)。
a、30的因數(shù)有哪些,你是怎么想的?
b、36的因數(shù)有幾個?你是怎么想的?為什么6*6=36,這里只寫一個因數(shù)?
d、讓學生討論:你從中發(fā)現(xiàn)了“一個數(shù)的因數(shù)”有什么相同的地方嗎?
學生總結(jié):
板書:
一個數(shù)最小的因數(shù)是1;
最大的因數(shù)是它本身;
輕松一下:
我們來了解一點小知識:完全數(shù),什么叫完全數(shù)呢?就是一個數(shù)所有的因數(shù)中,把除了本身以外的因數(shù)加起來,所得的和恰好是這個數(shù)本身,那這樣的數(shù)我們就叫它完全數(shù),也叫完美數(shù),比如6~~(學生讀課本14頁完全數(shù)的相關知識)。
b、探究找一個數(shù)的倍數(shù)的方法(談話法、比較法、歸納法)。
因為有了前面探究找一個數(shù)因數(shù)的方法,在這一環(huán)節(jié)更可大膽讓學生自己去想,去說,去發(fā)現(xiàn),去歸納。教師只要適當做點組織和引導工作就行。
過渡:大家都很棒!這么快就找出了一個數(shù)的因數(shù)并總結(jié)好了它的規(guī)律,現(xiàn)在楊老師想放開手來讓大家自己來學習下面的知識:找一個數(shù)的倍數(shù)。
a、2的倍數(shù)有哪些?你是怎么想的?從1開始做手勢:1*2=2,2*2=4,2*3=6,一倍一倍地往上遞加。
b、那5的倍數(shù)有哪些?按從小到大的順序至少寫出5個來,看誰寫得又快又好。
c、對比“一個數(shù)的因數(shù)”的規(guī)律,學生自由討論:一個數(shù)的倍數(shù)有什么規(guī)律呢?
(到這一環(huán)節(jié)就無需再提問了,要相信學生能夠在類比中找到學習的方法)。
學生總結(jié):
張齊華因數(shù)和倍數(shù)教學設計篇八
三、與本單元相關知識的學習情況分析。
這屆學生,我是從五年級開始任教的。要是說對他們十分了解,自然是不太可能的,畢竟我們相處的時間是相對較短的。雖然如此,我對他們還是有一個學期的教學了解,多少能說出點關于對他們的學習情況,不論準確與否。
根據(jù)我在上學期的教學零散了解,學生在整數(shù)四則運算方面沒有多大的問題,主要是一些計算的準確率還沒有達到一定目標,有些看似簡單的計算如18×2=32,不知是出于什么原因,學生就是算錯。當然,計算錯,不一定就說明學生不會計算,有可能又是一個“一不小心!”。盡管分析是如此,事實存在的一些非本質(zhì)性計算問題,多少會影響現(xiàn)在的這個單元的學習的。
為了使學生能順利學完并努力做到學好這個單元的知識,一方面加強要加強克服前階段關于學習上存在的一些不足;另一方面要扎扎實實地學好這個單元的知識,為今后學習與之相關內(nèi)容打下不敢說是牢固、但可說是踏實的基礎。
2.經(jīng)過自主探索,掌握2、3、5的倍數(shù)的特征,能用特征進行相關語句的判斷。
3.通過本單元學習,進一步培養(yǎng)學生的數(shù)學抽象能力。
教學難點:學生對因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等一些抽象概念的理解。
六、本單元評價要點。
1.能否理解因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)這些概念、是否會用他們進行一些簡單的判斷。
2.有沒有掌握2、3、5倍數(shù)的特征,是否能根據(jù)三個數(shù)的特征解決一些實際問題。
3.觀察學習數(shù)學熱情是否得到增強!
七、各小節(jié)教學目標及課時安排。
本單元計劃課時數(shù):11節(jié)。
教學內(nèi)容教學目標計劃課時授課日期
2.掌握如何求一個數(shù)的因數(shù)和倍數(shù)方法并能做到熟練、完整,掌握有序的表達形式和常見的幾種方式。如:一一列舉、集合圈、線段圖等。
3節(jié)課。
2、3、5的倍數(shù)的特征1.通過自我探究,掌握2、3、5的倍數(shù)特征。
2.能用三個數(shù)的特征解決實際問題3節(jié)課。
2節(jié)課。
單元測試及分析留待教學測試后填寫。
3節(jié)課。
合計15節(jié)課。
(課標人教實驗教科書12---16頁的學習內(nèi)容)。
1.理解因數(shù)和倍數(shù)的意義,分清現(xiàn)在所學因數(shù)與以往乘法學習中因數(shù)的區(qū)別;
2.通過不完全列舉一個數(shù)的因數(shù)和倍數(shù),讓學生初步感受因數(shù)是可數(shù)的,自然得出因數(shù)的個數(shù)是有限的;而倍數(shù)是無法寫完全,也就是說倍數(shù)的個數(shù)是無限的。是否存在最大和最小的問題。
3.初步學會求一個數(shù)的因數(shù)和倍數(shù)方法。
4.經(jīng)歷學習后,使學生初步感受原來學習的看似簡單的整數(shù)乘法居然有如此大的深藏奧秘,激發(fā)學生進一步想學習它的熱情!
二、教學重點、難點。
1.教學重點:對因數(shù)和倍數(shù)意義的理解和運用性判斷。
2.教學難點:完整地表達數(shù)之間的因數(shù)和倍數(shù)關系。
三、預計教學時間:1節(jié)。
四、教學活動。
(一)基礎訓練。
【口算】2×6=1×18=2×15=()×()=24()×()=30。
3×4=2×9=1×30=()×()=24()×()=30。
1×12=3×6=5×6=()×()=24()×()=30。
3×10=()×()=24()×()=30。
【解答題】請你用一句話小結(jié)上面四組口算題(根據(jù)自己的學生說的)。
(二)新知學習。
【典型例題】。
1.請你說說下面兩組計算,有什么相同和什么不同?(引入因數(shù)和倍數(shù)的前提學習條件)。
張齊華因數(shù)和倍數(shù)教學設計篇九
教學內(nèi)容:
教學目標:
1讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。
2讓學生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關系,培養(yǎng)學生觀察、分析與抽象概括的能力,體會數(shù)學學習的奇妙,對數(shù)學產(chǎn)生好奇心。
教學重點:理解倍數(shù)和因數(shù)的意義。
教學難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。
教學過程:
一、直接導入。
師:自然數(shù)是我們在數(shù)的王國中認識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關系。(板書課題:倍數(shù)和因數(shù))。
二、教學倍數(shù)和因數(shù)的意義。
(屏幕出示12個完全相同的正方形)。
生:我可以拼出一個3×4的長方形。
師:你們猜猜看,這會是一個什么樣的長方形?
生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)。
生:我還可以拼出一個2×6的長方形。
生:我還可以拼出一個1×12的長方形。(師問法同上,略)。
師:同學們可別小看這三道算式,今天我們學習的內(nèi)容,就將從研究這三道乘法算式拉開帷幕。
師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
師:同學們一起來讀一讀,感受一下。
師:你讀懂了些什么?(引導學生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))。
師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?
生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導學生明白根據(jù)乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))。
屏幕出示:4是因數(shù),24是倍數(shù)。
師:這句話對嗎?(讓學生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))。
師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導學生說一說)。
屏幕出示一組數(shù):36、4、9、0、5、2。
師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))。
設疑:
(1)為什么不選0呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)。
(2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)。
(3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當然,36也是36的因數(shù),36也是36的倍數(shù))。
三、探討找一個數(shù)的因數(shù)的方法。
生:容易漏掉或重復。
師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學生討論交流)。
展示學生的作品,學生可能出現(xiàn)的答案有:
(2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。
在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序?qū)懀?、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)。
2探討一個數(shù)的因數(shù)的特征。
課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)。
課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學生討論、交流后再反饋。
師(小結(jié)):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。
四、探討找一個數(shù)的倍數(shù)的方法。
1師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學生試著找出3的倍數(shù),教師巡視,對有困難的學生給予幫助)。
2師:你是怎樣有序地、完整地找出3的倍數(shù)的?
生:用3分別乘1、2、3……得出3的倍數(shù)。
生:用3依次地加3得到3的倍數(shù)。
師:你認為哪種方法能更迅速地找出3的倍數(shù)?(學生討論交流)。
師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)。
3寫出30以內(nèi)5的倍數(shù)。(做在練習紙上)。
4課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。
師(小結(jié)):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。
五、組織游戲,深化認識。
游戲——請到我家來做客。
(每位學生的手中,都有一張寫有該名學生的學號卡片)。
課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
(1)屏幕上出現(xiàn)了可愛的小狗向同學們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學生站起來)。
(2)屏幕上出現(xiàn)了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!
(3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!
(每位學生卡片上的數(shù)都符合要求,所以全班學生都站了起來)。
師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)。
師:是不是所有的自然數(shù)都可以呢?
生:除了0。
屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。
(4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)。
屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。
六、挑戰(zhàn)自我,拓展升華。
師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)。
挑戰(zhàn)——你猜、我猜、大家猜i(屏幕演示動畫標題)。
(1)20、5、4、3。
答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。
(2)4、12、18、3。
答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。
七、全課總結(jié)。
師:通過今天這節(jié)課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數(shù)學就是這么簡單而有趣,讓我們每天都樂在其中!
總評:
本節(jié)課的教學特色是嚴謹靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學習過程中,重視師生情感的交流,注重每個學生的發(fā)展,較好地體現(xiàn)了“教師有效引導下學生自主探索”這一教學策略。
1意義教學引導學生自主構建。
在多次的實踐教學中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。
1借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。
2通過除法算式找因倍關系。
3滲透倍數(shù)和因數(shù)的相互依存性。
2合理組織教材,將找一個數(shù)的因數(shù)及其特征教學提前。
尋找一個數(shù)的因數(shù)是本節(jié)課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
教學中,教師出示一組數(shù),如36、4、9、0、5、2,讓學生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。
最后設疑:
(1)為什么不選o呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))。
(2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))。
(3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))。
這樣的改變,既達到預定目的,又為學習找因數(shù)做了鋪墊,引發(fā)了學生尋找36的因數(shù)的濃厚興趣。在引導學生自主探索一個數(shù)的因數(shù)的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學生的學習難度。
3尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學生自己生成。
在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學生推向發(fā)現(xiàn)與探索的前臺。
尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。
4增強游戲中數(shù)學思維的含量。
知識在游戲中深化,在挑戰(zhàn)中升華。
本節(jié)課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領學生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養(yǎng)了學生用數(shù)學眼光看待游戲的意識,大大降低了學生對數(shù)學概念學習的枯燥體驗。
張齊華因數(shù)和倍數(shù)教學設計篇十
知識與技能:使學生結(jié)合具體情境初步理解因數(shù)和倍數(shù)的含義,初步理解因數(shù)和倍數(shù)相互依存的關系。
過程與方法:使學生依據(jù)因數(shù)和倍數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
情感與態(tài)度:使學生在認識因數(shù)和倍數(shù)以及找一個數(shù)的因數(shù)和倍數(shù)的過程中進一步感受數(shù)學知識的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
理解因數(shù)和倍數(shù)的含義。
探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
匯報:你是怎么擺?算式是什么?
指名說,師板書:1×12=12、2×6=12、3×4=12。
師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數(shù)學奧秘。今天我們就來研究數(shù)學的新奧秘。
師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(shù)(板書:因數(shù)),4是12的因數(shù);12是3的倍數(shù)(板書:倍數(shù));12是4的倍數(shù)。
小結(jié):是呀,我們不能直接說誰是因數(shù),誰是倍數(shù),而要清楚的表達出來誰是誰的因數(shù),誰是誰的倍數(shù)??磥恚驍?shù)和倍數(shù)是相互依存的(板書:和)。為了方便,在研究因數(shù)和倍數(shù)時,一般不討論0。
二、探索找一個數(shù)的因數(shù)的方法。
1、師:看黑板上的3個算式,你能找到12的所有的因數(shù)嗎?(學生齊說。)。
問:如果沒有算式,你能找出24所有的因數(shù)嗎?先想想怎樣找?然后寫在練習本上。
學生寫一寫,師巡視。
匯報展示:(2人)。
問:你是怎么找的?(學生說方法)。
評價:他找的怎么樣?(學生評一評)。
小結(jié):其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了??磥恚行虻乃伎紗栴}對我們的幫助確實很大。
2、練習。
師:用這種方法寫出18的因數(shù)。
匯報:你找的18的因數(shù)都有哪些?(指名說,師板書)。
3、發(fā)現(xiàn)規(guī)律。
問:仔細觀察這幾個數(shù)的因數(shù),你能發(fā)現(xiàn)什么規(guī)律?
小結(jié):一個數(shù)的因數(shù)最小的是1,最大的是它本身。
三、探索找一個數(shù)的倍數(shù)的方法。
1、方法。
學生找3的倍數(shù),寫在練習本上。
匯報:指名說,師寫在黑板上。(3的倍數(shù)有:3,6,9,12,15……)。
問:你能說的完嗎?寫不完怎么辦?(用省略號)。
你是怎么找的?
評一評:他的方法怎么樣?
問:還有別的方法嗎?
問:怎么找一個數(shù)的倍數(shù)?
指名說。
師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數(shù)。
2、練習。
找出5的倍數(shù),寫在練習本上。
指名說,師板書,問:你是用什么方法找的5的倍數(shù)?
3、發(fā)現(xiàn)規(guī)律。
問:觀察一下,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
師小結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的。
問:一個數(shù)的倍數(shù)個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)呢?(有限)。
(課件出示)。
四、鞏固練習。
1、寫一寫:6的因數(shù)、9的因數(shù)、50以內(nèi)7的倍數(shù)。
集體訂正。
2、選一選。
8的倍數(shù)有哪些?48的因數(shù)又有哪些?
3、數(shù)學小知識:完美數(shù)。
師:6的因數(shù)有(1,2,3,6),把前三個因數(shù)相加,你會發(fā)現(xiàn)什么?(1+2+3=6)。
張齊華因數(shù)和倍數(shù)教學設計篇十一
2.2、5、3的倍數(shù)的特征。
3.質(zhì)數(shù)和合數(shù)。
二、教學目標。
1.掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,知道有關概念之間的聯(lián)系和區(qū)別。
2.通過自主探索,掌握2、5、3的倍數(shù)的特征。
3.逐步培養(yǎng)學生的數(shù)學抽象能力。
三、編排特點。
1.精簡概念,減輕學生記憶負擔。
(1)不再出現(xiàn)“整除”概念,直接從乘法算式引出因數(shù)和倍數(shù)的概念。
(2)不再正式教學“分解質(zhì)因數(shù)”,只作為閱讀性材料進行介紹。
(3)公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)移至“分數(shù)的意義和性質(zhì)”單元,作為約分和通分的知識基礎,更突出其應用性。
2.注意體現(xiàn)數(shù)學的抽象性。
數(shù)學知識本身具有抽象性。學生到了高年級也應注意培養(yǎng)其抽象思維。
1.加強對概念間相互關系的梳理,引導學生從本質(zhì)上理解概念,避免死記硬背。
從因數(shù)和倍數(shù)的含義去理解其他的相關概念。
2.要注意培養(yǎng)學生的抽象思維能力。
教學目標:
1、學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)學生的觀察能力。
教學重點:掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學難點:能熟練地找一個數(shù)的因數(shù)和倍數(shù)。
教學過程:
一、引入新課。
1、出示主題圖,讓學生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)。
師:你有沒有明白因數(shù)和倍數(shù)的關系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個算式來考考同桌?學生寫算式。
師:誰來出一個算式考考全班同學?
5、師:今天我們就來學習因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))。
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個?
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
仔細看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是()。
3、你還想找哪個數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個在自己的練習本上寫一寫,然后匯報。
4、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如18的因數(shù)。
1、2、3、6、9、18。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學生完成做一做1、2小題:找3和5的倍數(shù)。
匯報3的倍數(shù)有:3,6,9,12。
師:這樣寫可以嗎?為什么?應該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:表示一個數(shù)的倍數(shù)情況,除了用這種文字敘述的方法外,還可以用集合來表示。
2的倍數(shù)3的倍數(shù)5的倍數(shù)。
2、4、6、8……3、6、9……5、10、15……。
將本文的word文檔下載到電腦,方便收藏和打印。
張齊華因數(shù)和倍數(shù)教學設計篇十二
教材分析:
這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生從本質(zhì)上理解概念,避免死記硬背,向?qū)W生滲透從具體到一般的抽象歸納的思想方法。
了解學生:
學生已經(jīng)學習了四年的數(shù)學,有了四年整數(shù)知識的基礎,本課利用實物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學生的抽象概括能力。
教學目標:
1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認識它們之間的聯(lián)系和區(qū)別。(2)學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗類推、列舉和歸納總結(jié)等學習方法。
3、情感態(tài)度:在學習活動中,感受數(shù)學知識之間的內(nèi)在聯(lián)系,體驗發(fā)現(xiàn)知識的樂趣。
教學重點:學會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學難點:理解和掌握因數(shù)和倍數(shù)的概念。
教學準備:課件、作業(yè)紙。
教學過程:
一、創(chuàng)設情境——找朋友。
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學生唱,師評價:老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)。
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)。
學生完整敘述:“××是李老師的朋友,李老師是××的朋友”。
3、引入新課:同學們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數(shù)學中的一對朋友“因數(shù)和倍數(shù)”(板書課題)。
二、探究新知。
1、提出問題:現(xiàn)在有12名同學參加訓練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學生可能得到:每排6人,排成2排,2×6=12;
每排4人,排成3排,4×3=12;
每排12人,排成1排,1×12=12。
課件出示相應的圖和算式。
2、揭示概念:以2×6=12為例。
邊說邊板書:()是12的因數(shù),()是12的因數(shù);
12是()的倍數(shù),12是()的倍數(shù)。
學生同桌互相說,指名兩名同學說。(評價:這么短的時間內(nèi),同學們就能準確、完整的表述它們之間的因倍關系,真了不起。)。
突出強調(diào):能不能說12是倍數(shù),2是因數(shù)?(學生回答,揭示并板書:相互依存)。
3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學生在作業(yè)紙上完成,同時課件出示:(指名兩名學生在白板上利用普通筆標注答案)。
張齊華因數(shù)和倍數(shù)教學設計篇十三
教學目標:
1、理解和掌握因數(shù)和倍數(shù)的概念,認識他們之間的聯(lián)系和區(qū)別。
2、學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練的求出一個數(shù)的因數(shù)或倍數(shù)。
3、知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
教學重點:
掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學難點:
教學準備:
課件。
教學過程:
一、創(chuàng)設情境,引入新課。
師:我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。是啊,人與人之間的關系是相互的。再比如:我們班的曹雪飛與賀正博之間是同桌關系,他們之間的關系是相互依存的,不能單獨存在,我們可以說曹雪飛是賀正博的同桌,或者說賀正博是曹雪飛的同桌,而不能說曹雪飛是同桌!在數(shù)學王國里,在整數(shù)乘法中也存在著這樣相互依存的關系,這節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關系。(板書課題:因數(shù)與倍數(shù))。
(設計意圖:先讓學生體會關系,再通過同桌關系讓學生體會相互依存,不能獨立存在,進而為因數(shù)與倍數(shù)的相互依存關系打下基礎。)。
二、探究新知。
(一)1、出示主題圖,仔細觀察,你得到了哪些數(shù)學信息?
學生說:圖上有兩行飛機,每行六架,一共有12架。(注意培養(yǎng)學生提取數(shù)學信息的能力和語言表達能力,即:數(shù)學語言要求簡練嚴謹)。
教師:你們能夠用乘法算式表示出來嗎?
學生說出算式,教師板書:2×6=12。
2.出示:因為2×6=12。
所以2是12的因數(shù),6也是12的因數(shù);。
12是2的倍數(shù),12也是6的倍數(shù)。
(注:由乘法算式理解因數(shù)和倍數(shù)相互依存,不能獨立存在。)。
3.教師出示圖2:師:根據(jù)圖上的內(nèi)容,可以寫出怎樣的算式?
3×4=12。
從這道算式中,你知道誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?(讓學生自己說一說,進而加深因數(shù)倍數(shù)關系的認識。)。
教師小結(jié):因數(shù)和倍數(shù)是相互依存的,為了方便,我們在研究因數(shù)與倍數(shù)時,我們所說的數(shù)是整數(shù),一般不包括0.
4、師:誰來說一道乘法算式考考大家。
(指名生說一說)。
5、讓其他學生來說一說誰是誰的因數(shù)誰是誰的倍數(shù)。
(注:可以讓幾位學生互相說一說。)。
6、看來都難不住你們,那老師來考考你們:18÷3=6在這道算式中,誰來說說誰是誰的因數(shù)誰是誰的倍數(shù)。
(設計意圖:18÷3=6是為了培養(yǎng)學生思維的逆向性)。
(二)找因數(shù):
出示例1:18的因數(shù)有哪幾個?
注意:請同學們四人以小組討論,在找18的因數(shù)中如何做到不重復,不遺漏。
學生嘗試完成:匯報。
(18的因數(shù)有:1,2,3,6,9,18)。
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)。
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報36的因數(shù)有:1,2,3,4,6,9,12,18,36。
師:你是怎么找的?
舉錯例(1,2,3,4,6,6,9,12,18,36)。
師:這樣寫可以嗎?為什么?(不可以,因為重復的因數(shù)只要寫一個就可以了,所以不需要寫兩個6)。
師:18和36的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。
請同學們觀察一個數(shù)的因數(shù)有什么特點。
在教師引導下,學生總結(jié)出:任何一個數(shù)的因數(shù),最小的一定是(),而最大的一定是(),因數(shù)的個數(shù)是有限的。
(設計意圖:培養(yǎng)學生探索、歸納、總結(jié)、概括的能力。)。
3、其實寫一個數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如18的因數(shù)。
1、2、3、6、9、18。
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。
(三)找倍數(shù):
1、我們學會找一個數(shù)的因數(shù)了,那如何找一個數(shù)的倍數(shù)呢?2的倍數(shù)你能找出來嗎?
匯報:2、4、6、8、10、16、……。
師:為什么找不完?
你是怎么找到這些倍數(shù)的?
(生:只要用2去乘1、乘2、乘3、乘4、…)。
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、再找3和5的倍數(shù)。
3的倍數(shù)有:3,6,9,12,……。
你是怎么找的?(用3分別乘以1,2,3,……倍)。
5的倍數(shù)有:5,10,15,20,……。
師:我們知道一個數(shù)的因數(shù)的個數(shù)是有限的,那么一個數(shù)的倍數(shù)個數(shù)是怎么樣的呢?讓學生觀察2、3、5的倍數(shù),說一說一個數(shù)的倍數(shù)有什么特點。
學生試著總結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
三、課堂小結(jié):
通過今天這節(jié)課的學習,你有什么收獲?
學生匯報這節(jié)課的學習所得。
四、拓展延伸。
2、教材第15頁練習二第1題。組織學生獨立完成,然后在小組中互相交流檢查。
張齊華因數(shù)和倍數(shù)教學設計篇十四
本單元是在學生學過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識的基礎上展開教學的。本單元的內(nèi)容主要包括因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù)等知識。通過這部分內(nèi)容的學習,既可以讓學生在前面所學的整數(shù)知識基礎上進一步探索整數(shù)的性質(zhì),又有助于發(fā)展他們的抽象思維。這些知識的學習是以后學生學習公倍數(shù)與公因數(shù)、約分、通分、分數(shù)四則運算等知識的重要基礎。
學生已經(jīng)學過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識,但本單元的知識屬于“數(shù)論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯(lián)系又很緊密,部分學生學習時可能會有一定的困難。教材明確規(guī)定在研究因數(shù)與倍數(shù)時,限制在不包括0的自然數(shù)范圍內(nèi)研究,避免由此帶來一些小學生尚不必研究的問題。教學時要注意以下兩點:
學情分析。
1.利用乘法引導學生認識因數(shù)和倍數(shù)。教材在揭示倍數(shù)和因數(shù)的概念時,沒有像原來的教材那樣,先揭示整除的概念,再利用整除認識倍數(shù)和因數(shù),而是讓學生通過分類,用除法算式認識倍數(shù)和因數(shù)。在找一個數(shù)的倍數(shù)時,也是讓學生運用乘除法的知識,探索找一個數(shù)的倍數(shù)的方法。
2.注重引導學生在數(shù)學活動中探索數(shù)的特征。教材非常強調(diào)學生的數(shù)學學習活動,倡導多樣化的學習方式,組織學生在活動中探索、發(fā)現(xiàn)數(shù)的特征。如在探索2、5和3的倍數(shù)的特征時,都是先讓學生在100以內(nèi)數(shù)的表格中圈出2、5的倍數(shù),再通過分析歸納或猜想驗證等方法發(fā)現(xiàn)它們的倍數(shù)的特征。
教學目標。
知識技能:
1.使學生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,知道相關概念之間的聯(lián)系和區(qū)別。
2.讓學生通過自主探索,掌握2、5、3的倍數(shù)的特征。
數(shù)學思考:逐步培養(yǎng)學生的數(shù)學抽象能力,以及滲透分類的思想。
問題解決:經(jīng)歷與他人合作交流解決問題的過程,嘗試解釋自己的思考過程。
情感態(tài)度:通過利用因數(shù)和倍數(shù)的相關知識來解決相應的實際問題,使學生進一步體會數(shù)學的應用價值。
課時劃分:8課時。
1.因數(shù)和倍數(shù)……………………2課時。
2.2、5、3的倍數(shù)的特征………2課時。
3.質(zhì)數(shù)和合數(shù)……………………3課時。
4.整理和復習……………………3課時。
張齊華因數(shù)和倍數(shù)教學設計篇十五
教學內(nèi)容:義務教育課標實驗教科書青島版數(shù)學三年級下冊p109――p110。
教學目標:
知識與技能:使學生結(jié)合具體情境初步理解因數(shù)和倍數(shù)的含義,初步理解因數(shù)和倍數(shù)相互依存的關系。
過程與方法:使學生依據(jù)因數(shù)和倍數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
情感與態(tài)度:使學生在認識因數(shù)和倍數(shù)以及找一個數(shù)的因數(shù)和倍數(shù)的過程中進一步感受數(shù)學知識的內(nèi)在聯(lián)系,提高數(shù)學思考的水平。
教學重點:理解因數(shù)和倍數(shù)的含義。
教學難點:探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
教學過程:
1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
匯報:你是怎么擺?算式是什么?
指名說,師板書:1×12=122×6=123×4=12。
師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數(shù)學奧秘。今天我們就來研究數(shù)學的新奧秘。
師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(shù)(板書:因數(shù)),4是12的因數(shù);12是3的倍數(shù)(板書:倍數(shù));12是4的倍數(shù)。
小結(jié):是呀,我們不能直接說誰是因數(shù),誰是倍數(shù),而要清楚的表達出來誰是誰的因數(shù),誰是誰的倍數(shù)。看來,因數(shù)和倍數(shù)是相互依存的(板書:和)。為了方便,在研究因數(shù)和倍數(shù)時,一般不討論0。
二、探索找一個數(shù)的因數(shù)的方法。
1、師:看黑板上的3個算式,你能找到12的所有的因數(shù)嗎?(學生齊說。)。
問:如果沒有算式,你能找出24所有的因數(shù)嗎?先想想怎樣找?然后寫在練習本上。
學生寫一寫,師巡視。
匯報展示:(2人)。
問:你是怎么找的?(學生說方法)。
評價:他找的怎么樣?(學生評一評)。
小結(jié):其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了。看來,有序的思考問題對我們的幫助確實很大。
2、練習。
師:用這種方法寫出18的因數(shù)。
匯報:你找的18的因數(shù)都有哪些?(指名說,師板書)。
3、發(fā)現(xiàn)規(guī)律。
問:仔細觀察這幾個數(shù)的因數(shù),你能發(fā)現(xiàn)什么規(guī)律?
小結(jié):一個數(shù)的因數(shù)最小的是1,最大的是它本身。
三、探索找一個數(shù)的倍數(shù)的方法。
1、方法。
學生找3的倍數(shù),寫在練習本上。
匯報:指名說,師寫在黑板上。(3的倍數(shù)有:3,6,9,12,15……)。
問:你能說的完嗎?寫不完怎么辦?(用省略號)。
你是怎么找的?
評一評:他的方法怎么樣?
問:還有別的方法嗎?
問:怎么找一個數(shù)的倍數(shù)?
指名說。
師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數(shù)。
2、練習。
找出5的倍數(shù),寫在練習本上。
指名說,師板書,問:你是用什么方法找的5的倍數(shù)?
3、發(fā)現(xiàn)規(guī)律。
問:觀察一下,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
師小結(jié):一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的。
問:一個數(shù)的倍數(shù)個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)呢?(有限)。
(課件出示)。
四、鞏固練習。
1、寫一寫:6的因數(shù)、9的因數(shù)、50以內(nèi)7的倍數(shù)。
集體訂正。
2、選一選。
8的倍數(shù)有哪些?48的因數(shù)又有哪些?
學生填一填,集體訂正。
3、數(shù)學小知識:完美數(shù)。
師:6的因數(shù)有(1,2,3,6),把前三個因數(shù)相加,你會發(fā)現(xiàn)什么?(1+2+3=6)。
張齊華因數(shù)和倍數(shù)教學設計篇十六
1.使學生認識倍數(shù)和因數(shù),能判斷兩個自然數(shù)間的因數(shù)和倍數(shù)關系;學會找一個數(shù)的因數(shù)和倍數(shù)的方法,能按順序找出100以內(nèi)自然數(shù)的所有因數(shù),10以內(nèi)自然數(shù)的所有倍數(shù);了解一個數(shù)的因數(shù)、倍數(shù)的特點。
2.使學生經(jīng)歷探索求一個數(shù)的因數(shù)或倍數(shù)的方法、一個數(shù)的因數(shù)和倍數(shù)特點的過程,體會數(shù)學知識、方法的內(nèi)在聯(lián)系,能有條理地展開思考,培養(yǎng)觀察、比較,以及分析、推理和抽象、概括等思維能力,發(fā)展數(shù)感。
3.使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數(shù)學的信心,養(yǎng)成樂于思考、勇于探究等良好品質(zhì)。
小黑板、準備12個同樣大的正方形學具。
一、操作引入,認識意義。
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結(jié)合學生交流,呈現(xiàn)不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發(fā):現(xiàn)在讓你看另外兩個算式,你能說一說哪個是哪個的因數(shù),哪個是哪個的倍數(shù)嗎?同桌互相說說看。
(3)小結(jié):從上面可以看出,在整數(shù)乘法算式里,兩個乘數(shù)都是積的因數(shù),積是兩個乘數(shù)的倍數(shù)。它們之間的關系是相互依存的。這就是我們今天學習的新內(nèi)容:因數(shù)和倍數(shù)。(板書課題)在研究因數(shù)和倍數(shù)時,所說的數(shù)一般指不是o的自然數(shù)。
【本文地址:http://aiweibaby.com/zuowen/11357881.html】