最新平均速度高中數(shù)學(xué)教案(6篇)

格式:DOC 上傳日期:2023-01-18 18:45:46
最新平均速度高中數(shù)學(xué)教案(6篇)
時(shí)間:2023-01-18 18:45:46     小編:zdfb

作為一位兢兢業(yè)業(yè)的人民教師,常常要寫一份優(yōu)秀的教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。怎樣寫教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

平均速度高中數(shù)學(xué)教案篇一

(1)會(huì)用坐標(biāo)法及距離公式證明cα+β;

(2)會(huì)用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由cα+β推導(dǎo)cα—β、sα±β、tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

(3)掌握公式cα±β、sα±β、tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

兩角和與差的正弦、余弦、正切公式

余弦和角公式的推導(dǎo)

1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

4、關(guān)于公式的正用、逆用及變用

平均速度高中數(shù)學(xué)教案篇二

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。

數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。

二、課程教學(xué)目標(biāo)

1、在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。

2、培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

3、引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1、基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。

2、職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3、拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。

四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))

第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2、職業(yè)模塊

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

平均速度高中數(shù)學(xué)教案篇三

一.課題(說明本課名稱)

二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))

三.課型(說明屬新授課,還是復(fù)習(xí)課)

四.課時(shí)(說明屬第幾課時(shí))

五.教學(xué)重點(diǎn)(說明本課所必須解決的關(guān)鍵性問題)

六.教學(xué)難點(diǎn)(說明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識(shí)傳授與能力培養(yǎng)點(diǎn))

七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)

九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

十.板書設(shè)計(jì)(說明上課時(shí)準(zhǔn)備寫在黑板上的內(nèi)容)

十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)

十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

平均速度高中數(shù)學(xué)教案篇四

一、課程性質(zhì)與任務(wù)

數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。

數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識(shí),具備必需的相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識(shí)、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。

二、課程教學(xué)目標(biāo)

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。

2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。

3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識(shí)、創(chuàng)新意識(shí)和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。

三、教學(xué)內(nèi)容結(jié)構(gòu)

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。

2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。

四、教學(xué)內(nèi)容與要求

(一)本大綱教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其它相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))

第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

平均速度高中數(shù)學(xué)教案篇五

【知識(shí)與技能】

掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【過程與方法】

經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。

【情感態(tài)度價(jià)值觀】

在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

【教學(xué)重點(diǎn)】

三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

【教學(xué)難點(diǎn)】

探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

(一)引入新課

提出問題:如何研究三角函數(shù)的單調(diào)性

(四)小結(jié)作業(yè)

提問:今天學(xué)習(xí)了什么?

引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

課后作業(yè):

思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

平均速度高中數(shù)學(xué)教案篇六

【考綱要求】

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單性質(zhì)。

【自學(xué)質(zhì)疑】

1、雙曲線 的 軸在 軸上, 軸在 軸上,實(shí)軸長等于 ,虛軸長等于 ,焦距等于 ,頂點(diǎn)坐標(biāo)是 ,焦點(diǎn)坐標(biāo)是 ,

漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。

2、又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3、經(jīng)過兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。

4、雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5、與雙曲線 有公共的漸近線,且經(jīng)過點(diǎn) 的雙曲線的方程為

【例題精講】

1、雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無關(guān)的定值,試對雙曲線 寫出具有類似特性的性質(zhì),并加以證明。

3、設(shè)雙曲線 的半焦距為 ,直線 過 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1、雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。

2、與雙曲線 有共同的漸近線,且經(jīng)過點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。

3、若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是

4、過雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。

【遷移應(yīng)用】

1、 已知雙曲線 的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率

2、 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。

3、 雙曲線 的焦距為

4、 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則

5、 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過點(diǎn) 的雙曲線的離心率為 。

6、 已知圓 。以圓 與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線的標(biāo)準(zhǔn)方程為

【本文地址:http://aiweibaby.com/zuowen/1136900.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔