比和比例數(shù)學(xué)教案(優(yōu)質(zhì)20篇)

格式:DOC 上傳日期:2023-11-23 05:41:13
比和比例數(shù)學(xué)教案(優(yōu)質(zhì)20篇)
時間:2023-11-23 05:41:13     小編:琉璃

教案是教師為了指導(dǎo)教學(xué)活動而制定的一份詳細(xì)計劃。教案的編寫要考慮到學(xué)生的學(xué)習(xí)特點和水平,采用差異化教學(xué),提供個性化的學(xué)習(xí)支持。高質(zhì)量的教案可以提高教學(xué)效果,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)主動性。

比和比例數(shù)學(xué)教案篇一

知識目標(biāo)使學(xué)會解比例的方法,進(jìn)一步理解和掌握比例的基本性質(zhì)。

能力目標(biāo)聯(lián)系的生活實際創(chuàng)設(shè)情境,體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。

情感目標(biāo)利用所學(xué)知識解決生活中的問題,進(jìn)一步培養(yǎng)綜合運用知識的能力及情度、價值觀的發(fā)展。

重點使學(xué)會解比例的方法,進(jìn)一步理解和掌握比例的基本性質(zhì)。

難點體現(xiàn)解比例在生產(chǎn)生活中的廣泛應(yīng)用。

教學(xué)過程。

一、舊知鋪墊。

1、什么叫做比例?

3、比例有幾種表示形式?

二、探索新知。

1、出示埃菲爾鐵掛圖。

2、出示例題。

(1)、讀題。

(2)、從這道題里,你們獲得了哪些信息?

(3)、在這信息里,關(guān)鍵理解哪里?(埃菲爾鐵模型與埃菲爾鐵塔的高度比是1:10)。

(4)、這句話什么意思?(就是埃菲爾鐵塔模型的高度:埃菲爾鐵塔的高度=1:10)(板書)。

(5)、還有一個條件是什么?(埃菲爾鐵塔的高是320米)。

(6)、我們把這個條件換到我們的這個關(guān)系中,就是(板書:埃菲爾鐵塔的高度:320=1:10)。

(7)、這道題怎么列比例式解答呢?請同學(xué)們想想,想出來的同學(xué)請舉手。

(8)、根據(jù)學(xué)生的反饋板書:“解:設(shè)埃菲爾鐵塔模型的高度設(shè)為x米”,把這個x代入這個數(shù)學(xué)模式中就組成了一個比例式(板書x:320=1:10)。

(9)、這樣在組成比例的四個項中,我們知道其中的幾個項?還有幾個項不知道?

(10)、不知道的這個項,我們來給它起個名字,好不好?叫做什么?(板書:未知項)。

(11)、指著x:320=1:10,問:“這個未知項是多少呢?那怎么辦?”誰上來做做?(指名板演)。

(12)、為什么可以寫成這樣的等式呢?10x=320×1(根據(jù)比例的基本性質(zhì))。

(13)、對了,把上面的比例式改寫成下面這樣一個等式,就是應(yīng)用了比例的基本性質(zhì)。應(yīng)用比例的基本性質(zhì),把比例式改寫成了一個等式,這個等式還是一個什么樣的等式呀?(含有未知數(shù)的等式)。

(14)、這樣含有未知數(shù)的等式,叫做方程。那么求出方程中的未知數(shù)就叫做什么?(解方程)那么在這個比例式中,我們知道了任意三項,要求出其中一項的過程又叫做什么?(解比例)出示比例的意義。

(15)、我們解出的答案對不對呢?怎么知道?可以怎樣檢驗?(把結(jié)果代入題目中看看對應(yīng)的比的比值是不是能成比例.)。

(16)這道題還有其他的解法嗎?(引導(dǎo)學(xué)生從比例的意義上來解。

2、教學(xué)例3。

過渡:我們知道比例還有另一種表示形式,當(dāng)是=這樣形式的時候,又該怎么解呢?

(1)、出示例3,問:這題與剛剛那個比例有哪些不同?

(2)、解這種比例時,要注意些什么呢?(找出比例的外項、內(nèi)項)。

(3)、在這個比例里,哪些是外項?哪些是內(nèi)項?

(4)、解答(提問:你們是怎么解答的?)、檢驗。

(5)、=。

總結(jié)這節(jié)課主要學(xué)習(xí)了什么內(nèi)容?

作業(yè)布置教材43頁5題。

板書設(shè)計解比例。

例3、解比例=。

解:2.4=1.5×6。

=×。

比和比例數(shù)學(xué)教案篇二

反比例。(教材第47頁例2)。

1.使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。

2.讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。

引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點,進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個量是否成反比例。

投影儀。

復(fù)習(xí)導(dǎo)入

1.讓學(xué)生說說什么是正比例,然后用投影出示下面的題。

下面各題中哪兩種量成正比例?為什么?

(1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋時,粉刷的面積和所需涂料的數(shù)量。

教師:如果加工零件總數(shù)一定,每小時加工數(shù)和加工時間會成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。

1.教學(xué)例2。

創(chuàng)設(shè)情境。

教師:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?

出示教材第47頁例2的情境圖和表格。

請學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:

(1)水的高度和底面積變化有關(guān)系嗎?

(2)水的高度是怎樣隨著底面積變化的?

(3)水的高度和底面積的變化有什么規(guī)律?

學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。

教師板書配合說明這一規(guī)律:

30×10=20×15=15×20=……=300

教師根據(jù)學(xué)生的匯報說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的量。

2.歸納反比例的意義。

組織學(xué)生小組內(nèi)討論:反比例的意義是什么?

學(xué)生小組內(nèi)交流,指名匯報。

教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。

3.用字母表示。

學(xué)生探討后得出結(jié)果。

x×y=k(一定)

4.師:生活中還有哪些成反比例的量?

在教師的引導(dǎo)下,學(xué)生舉例說明。如:

(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。

(2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。

(3)長方形的面積一定,長和寬成反比例。

5.組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:

正比例與反比例的相同點和不同點有哪些?

學(xué)生交流、匯報后,引導(dǎo)學(xué)生歸納:

相同點:都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。

不同點:正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。

6.你還有什么疑問

?如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁“你知道嗎?”中的圖像。

反比例關(guān)系也可以用圖像來表示,表示兩個量的點不在同一條直線上,點所連接起來的圖像是一條曲線,圖像特征不要求掌握。

課堂作業(yè)

1.教材第48頁的“做一做”。

2.教材第51頁第9、10題。

答案:1.(1)每天運的噸數(shù)和所需的天數(shù)兩種量,它們是相關(guān)聯(lián)的量。

(2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。

(3)成反比例,因為每天運的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。

2.第9題:成反比例,因為每瓶的容量與瓶數(shù)的乘積一定。

第10題:5010012

說一說成反比例關(guān)系的量的變化特征。

課后作業(yè)

1.完成練習(xí)冊中本課時的練習(xí)。

2.教材51~52頁第8、14題。

答案:

2.第8題:成反比例,因為教室的面積一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。

第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時間成正比例。

(2)分析:可以通過圖像直接估計,先在橫軸上找到18分的位置,然后在兩個圖像中找到相應(yīng)的點,再分別在豎軸上找到與這個點對應(yīng)的數(shù)值;也可以通過計算找到。

解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

(3)斑馬跑得快。

第3課時反比例

兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。

用x和y表示兩種相關(guān)聯(lián)的量,x和y成反比例關(guān)系用字母表示為×y=k(一定)

正比例與反比例的相同點和不同點:

相同點:都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。

不同點:正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。

比和比例數(shù)學(xué)教案篇三

教學(xué)內(nèi)容:練習(xí)八的第5―9題。

教學(xué)目的:通過練習(xí),使學(xué)生理解和掌握用正比例,反比例的知識解答應(yīng)用題的。

方法。

教學(xué)過程:

一、復(fù)習(xí)。

1.什么叫成正比例的量?它的關(guān)系式是什么?

2.什么叫成反比例的量?它的關(guān)系式是什么?

3.做練習(xí)八的第5題:判斷下面每題中的兩種量成什么比例關(guān)系。

二、課堂練習(xí)。

教師:上節(jié)課我們學(xué)習(xí)了用正比例、反比例的意義和判斷來解應(yīng)用題,今天我們要通過練習(xí),進(jìn)一步理解和掌握用正比例、反比例意義和判斷來解答應(yīng)用題的方法。

1.做練習(xí)八的第6題。

讓學(xué)生口頭列出比例式,教師板書出來。

教師小結(jié):像這道題,問題雖然變了,但題中基本數(shù)量關(guān)系沒有變。曬出的鹽和海水的噸數(shù)成正比例關(guān)系,解答這樣的.應(yīng)用題的關(guān)鍵:一是要正確判斷相關(guān)聯(lián)的兩種量是成什么比例,二是要找準(zhǔn)相關(guān)聯(lián)的量中相對應(yīng)的數(shù):

2.做練習(xí)八的第7、8題。

集體訂正后,指名講一講是怎樣想的。

3.做練習(xí)八的第9題。

做題前,提示學(xué)生選用哪三個數(shù)據(jù)都可以,但所敘述的事情要符合實際情況。訂正時,如果學(xué)生在編題中的語言不規(guī)范,要注意糾正。

比和比例數(shù)學(xué)教案篇四

請同學(xué)們看一看我們教室有多大,它的長和寬大約是多少米。(長大約8米,寬大約6米。)如果我們要繪制教室的平面圖,若是按實際尺寸來繪制,需要多大的圖紙?可能嗎?如果要畫中國地圖呢?于是,人們就想出了一個聰明的辦法:在繪制地圖和其他平面圖的時候,把實際距離按一定的比例縮小,再畫在圖紙上,有時也把一些尺寸比例小的物體(如機器零件等)的實際距離擴大一定的倍數(shù),再畫在圖紙上。不管是哪種情況,都需要確定圖上距離和實際距離的比。這就是比例的知識在實際生活中的`一種應(yīng)用。今天我們就來學(xué)習(xí)這方面的知識。

1.什么是比例尺(自學(xué)書上內(nèi)容,學(xué)生交流匯報)。

出示圖例1。

在繪制地圖和其它平面圖的時候,需要把實際距離按一定的比縮小(或擴大),再畫在圖紙上。這時,就要確定圖上距離和相對應(yīng)的實際距離的比。一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。

讓學(xué)生看圖。

我們經(jīng)常在地圖上看到的比例尺有這兩種:1:100000000是數(shù)值比例尺,有時也可以寫成:1/,表示圖上距離1厘米相當(dāng)于實際距離100000000厘米。

還有一種是線段比例尺(看北京地圖),表示地圖上1厘米的距離相當(dāng)于地面上50km的實際距離。

出示圖例2。

在生產(chǎn)中,有時由于機器零件比較小,需要把實際距離擴大一定的倍數(shù)以后,再畫在圖紙上。下面就是一個彈簧零件的制作圖紙。

比和比例數(shù)學(xué)教案篇五

[設(shè)計意圖]通過多種形式的練習(xí),加強了學(xué)生對用數(shù)據(jù)說明成反比例的量和反比例關(guān)系的學(xué)習(xí)。使不同層次的學(xué)生從中體會到成功的快樂。

同學(xué)們,通過上節(jié)課的學(xué)習(xí),我們已經(jīng)學(xué)會了兩個成反比例的量和它們的關(guān)系,今天我們一起來回顧復(fù)習(xí)一下成正比例的量和成反比例的量。

1、判斷。

(1)一個因數(shù)不變,積與另一個因數(shù)成正比例。()。

(2)長方形的長一定,寬和面積成正比例。()。

(3)大米的總量一定,吃掉的和剩下的成反比例。()。

(4)圓的半徑和周長成正比例。()。

(5)分?jǐn)?shù)的分子一定,分?jǐn)?shù)值和分母成反比例。()。

(6)鋪地面積一定,方磚的邊長和所需塊數(shù)成反比例。()。

(7)鋪地面積一定,方磚面積和所需塊數(shù)成反比例。()。

(8)除數(shù)一定,被除數(shù)和商成正比例。()。

2、選擇。

(1)把一堆化肥裝入麻袋,麻袋的數(shù)量和每袋化肥的重量()。

a、成正比例b、成反比例c、不成比例。

(2)和一定,加數(shù)和另一個加數(shù)()。

a、成正比例b、成反比例c、不成比例。

(3)在汽車每次運貨噸數(shù),運貨次數(shù)和運貨的總噸數(shù)這三種量中,成正比例關(guān)系是(),成反比例關(guān)系是()。

a、汽車每次運貨噸數(shù)一定,運貨次數(shù)和運貨總噸數(shù)。

b、汽車運貨次數(shù)一定,每次運貨的噸數(shù)和運貨總噸數(shù)。

c、汽車運貨總噸數(shù)一定,每次運貨的噸數(shù)和運貨的次數(shù)。

3、判斷題:自主練習(xí)第3題。

學(xué)生判斷各題中的兩個量是不是成反比例。并說說理由。

重點引導(dǎo)學(xué)生運用反比例的意義進(jìn)行判斷。

4、印刷廠用6000張紙裝訂練習(xí)本。

每本的頁數(shù)。

(1)先填寫上表。

(2)思考每本的頁數(shù)與裝訂的本數(shù)有什么關(guān)系?

6、自主練習(xí)第2題。

這是一道用抽象形式鞏固反比例意義的題目。學(xué)生先思考,根據(jù)x和成反比例,確定x和的乘積一定,再根據(jù)第一組數(shù)據(jù)找到x和的乘積,然后利用這個乘積和每組中的已知數(shù)據(jù),求出另一數(shù)據(jù)。

介紹反比例圖像,學(xué)生了解反比例關(guān)系也能用圖像表示。由于理解難度較大,只作了解,不做學(xué)習(xí)要求。

教學(xué)反思:

本節(jié)課課堂練習(xí)。課上要重視學(xué)生掌握的情況,正確判斷的同時,還要說理清楚。學(xué)生對一些不是很熟悉的關(guān)系如:車輪的直徑一定,所行使的路程和車輪的轉(zhuǎn)數(shù)成何比例?出粉率一定,面粉重量和小麥的總重量成何比例?判斷時會較為困難,說理也不是很清楚。所以教師在補充這些練習(xí)時,應(yīng)該有前瞻性,引導(dǎo)學(xué)生對以前所學(xué)的知識進(jìn)行相關(guān)的復(fù)習(xí),然后再進(jìn)行相關(guān)形式的練習(xí),我想對學(xué)生的后繼學(xué)習(xí)必然有所幫助。

這節(jié)課我們研究了什么問題?你有什么收獲?

(引導(dǎo)學(xué)生進(jìn)行總結(jié),能用自己的話說出學(xué)習(xí)主要內(nèi)容。)。

教學(xué)反思:

本節(jié)課首先通過復(fù)習(xí),鞏固了正比例的意義。通過舊知識引出新知識“反比例的意義”,過渡自然,知識做到了連貫性。然后啟發(fā)學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。通過知識的對比,加強了知識的內(nèi)在聯(lián)系,并通過區(qū)別不同的概念,鞏固了知識。學(xué)生的全面參與,有效地培養(yǎng)了總結(jié)、區(qū)別、溝通的能力。再加以練習(xí)的及時,使學(xué)生加深概念的理解。

比和比例數(shù)學(xué)教案篇六

由對現(xiàn)實問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。

1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā),討論兩個變量之間的相依關(guān)系,加深對函數(shù)概念的理解。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,表述反比例函數(shù)的概念。

1.經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點。

2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識。

1.認(rèn)識到數(shù)學(xué)知識是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;

2.通過分組討論,培養(yǎng)合作交流意識和探索精神。

理解和領(lǐng)會反比例函數(shù)的概念。

領(lǐng)悟反比例函數(shù)的概念。

啟發(fā)引導(dǎo)、分組討論

1課時

課件

復(fù)習(xí)引入

2.在上一學(xué)段,我們研究了現(xiàn)實生活中成反比例的兩個量

比和比例數(shù)學(xué)教案篇七

反思整節(jié)課,體現(xiàn)了學(xué)生自主探究,從生活情境出發(fā),真正解放了學(xué)生,既關(guān)注了學(xué)生的學(xué)習(xí)過程,又使學(xué)生在交流評價過程中情感、態(tài)度、價值觀等方面獲得豐富的體驗,較好的體現(xiàn)了事先的教學(xué)設(shè)想,感觸較深。

這部分內(nèi)容是在教學(xué)過比和比例的知識的基礎(chǔ)上進(jìn)行教學(xué)的,著重使學(xué)生理解正比例的意義。比例是建立在比的關(guān)系的基礎(chǔ)上的,所以必須讓學(xué)生回顧明確什么是是比和比值。兩個數(shù)相除叫做這兩個數(shù)的比。所得的商叫做比值。比有兩種寫法,一種是比號寫法,另一種是用分?jǐn)?shù)寫法。只有比值一樣的兩個比才能組成比例。從內(nèi)容上看,“成正比例的量”這一內(nèi)容,在整個小學(xué)階段是一個較抽象的概念,他不僅要讓學(xué)生理解其意義,還要學(xué)會判斷兩種是否是成正比例的量,同時還要理解用字母公式來表示正比例關(guān)系,要滲透給學(xué)生一些函數(shù)的思想,為以后初中學(xué)習(xí)打下基礎(chǔ)。根據(jù)教材和內(nèi)容的特點,我選擇了師生互動,以教師的“引”為主導(dǎo),學(xué)生為主體,讓學(xué)生在互動交流中去理解成正比例的量這一概念。首先,讓學(xué)生弄清什么叫“兩種相關(guān)聯(lián)”的量,我引導(dǎo)學(xué)生去從表格中去發(fā)現(xiàn)時間和路程兩種量的變化情況,在變化中發(fā)現(xiàn):路程隨著時間的變化而變化的,同時引導(dǎo)學(xué)生初步感知成正比例的兩種量的變化方向性。其次,我進(jìn)一步引導(dǎo)學(xué)生考慮:路程隨著時間的變化而變化,在這一變化過程中,有什么規(guī)律呢?學(xué)生看了春游路程和時間表中之后,發(fā)現(xiàn)路程和時間比的比值是一樣的,都是500米。讓學(xué)生理解相對應(yīng)的路程和時間的比的比值都是500米,從而突破了正比例關(guān)系的第二個難點。兩種量中相對應(yīng)的兩個數(shù)的比會一定。把學(xué)生對成正比例量的意義的理解成一系統(tǒng)。由于學(xué)生還是第一次接觸這一概念,之后,例2的學(xué)習(xí)還是讓學(xué)生對比例1來自己理解數(shù)量和總價的正比例關(guān)系。最后,在兩個例題學(xué)習(xí)的基礎(chǔ)上總結(jié)出成正比例量的意義,把這意義從局部的路程和時間、數(shù)量和總價推廣到其他數(shù)量之間的關(guān)系。然后,老師例子說明,并且請學(xué)生互動找例子。

不足之處是在練習(xí)方面,學(xué)生找不到哪些數(shù)量成正比例時應(yīng)讓學(xué)生討論,每個正比例關(guān)系都應(yīng)讓學(xué)生互相說一說,這樣或許會懂得更多。

比和比例數(shù)學(xué)教案篇八

2、滲透數(shù)形結(jié)合思想,提高學(xué)生用函數(shù)觀點解決問題的能力。

利用反比例函數(shù)的知識分析、解決實際問題。

分析實際問題中的數(shù)量關(guān)系,正確寫出函數(shù)解析式。

教材第57頁的例1,數(shù)量關(guān)系比較簡單,學(xué)生根據(jù)基本公式很容易寫出函數(shù)關(guān)系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學(xué)生學(xué)會分析問題的方法。

教材第58頁的例2是一道利用反比例函數(shù)的定義和性質(zhì)來解決的實際問題,此題的實際背景較例1稍復(fù)雜些,目的是為了提高學(xué)生將實際問題抽象成數(shù)學(xué)問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。

例1、見教材第57頁。

例2、見教材第58頁。

例1、(補充)某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓p(千帕)是氣體體積v(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強單位)。

(1)寫出這個函數(shù)的解析式;。

(2)當(dāng)氣球的體積是0.8立方米時,氣球內(nèi)的氣壓是多少千帕?

答案:=,當(dāng)v=2時,=7.15。

比和比例數(shù)學(xué)教案篇九

1、口答正比例的意義。

2、怎樣判斷兩種量成正比例?

3、寫出下面各題的數(shù)量關(guān)系,并判斷在什么條件下,其中哪兩種量成正比例?

(1)已知每小時加工零件數(shù)和加工時間,求加工零件總數(shù)。

(2)已知每本書的價錢和購買的本數(shù),求應(yīng)付的錢。

(3)已知每公畝產(chǎn)量和公畝數(shù),求總產(chǎn)量。

比和比例數(shù)學(xué)教案篇十

師:同學(xué)們,你們見過這個成語嗎?(板書:以――當(dāng)――)。

生:以一當(dāng)十。(指名回答)。

師:那這樣的話以三當(dāng)幾?以七當(dāng)幾?你是怎么算的?

生:以三當(dāng)三十,當(dāng)七當(dāng)七十。三乘十等于三十,七乘十等于七十。(指名回答)。

師:那反過來,以幾當(dāng)五十?以幾當(dāng)一百二十?你又是怎么算的呢?

生:以五當(dāng)五十,以十二當(dāng)一百二十。五十除以十等于五,一百二十除以十等于十二。

師:大家真聰明!今天我們就用數(shù)學(xué)的眼光來看一下在數(shù)學(xué)中如何以一當(dāng)十,以一當(dāng)百,以一當(dāng)千,甚至以一當(dāng)更多。

比和比例數(shù)學(xué)教案篇十一

使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。

體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點。

理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

掌握反比例的特征,能夠正確判斷反比例關(guān)系。

1、成正比例的量有什么特征?什么叫正比例關(guān)系?

2、在生活中兩個相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識,學(xué)生大膽猜測,對反比例的意義展開合理的猜想。由此導(dǎo)入新課。

達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。

1、明確這節(jié)課的學(xué)習(xí)目標(biāo):

(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。

(2)經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。

2、情境導(dǎo)入,學(xué)習(xí)探究。

(1)我們先來看一個實驗。

高度(厘米)302015105。

底面積(平方厘米)1015203060。

體積(立方厘米)。

提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?

(2)學(xué)生討論交流。

(3)引導(dǎo)學(xué)生回答:表中的兩個量是高度和底面積。

高度擴大,底面積反而縮??;高度縮小,底面積反而擴大。

每兩個相對應(yīng)的數(shù)的乘積都是300.

(4)計算后你又發(fā)現(xiàn)了什么?

每兩個相對應(yīng)的數(shù)的乘積都是300,乘積一定。

教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。

教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。

(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?板書:x×y=k(一定)。

小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?

(6)歸納總結(jié)反比例的意義。

(7)比較歸納正反比例的異同點。

達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識,進(jìn)行深化拓展,歸納總結(jié)。

1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。

2、課后做一做每天運的噸數(shù)和運貨的天數(shù)成反比例關(guān)系嗎?為什么?

3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。

達(dá)成目標(biāo):學(xué)生利用對反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會分析并進(jìn)行判斷。

判斷下面每題中的兩個量是不是成反比例,并說明理由。

(1)路程一定,速度和時間。

(2)小明從家到學(xué)校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

達(dá)成目標(biāo):使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。

比和比例數(shù)學(xué)教案篇十二

學(xué)生思考回答(挖掘?qū)W生生活經(jīng)驗)。

同學(xué)們知道的真多,說明同學(xué)們平時認(rèn)真觀察,是個有心人。

二、引導(dǎo)探究,自主建構(gòu)。

活動一:探究比例的意義。

1.你了解到哪些關(guān)于國旗大小的知識?

學(xué)生交流,給學(xué)生充分的交流機會。

(1)猜測。

預(yù)設(shè):生1、長和寬的比值相等;生2、寬和長的比值相等,

(2)小組驗證。

每個小組任選兩種規(guī)格國旗,驗證一下每種國旗長和寬之間存在的規(guī)律。

(3)展示交流小組驗證結(jié)果,學(xué)生到黑板前板書得出結(jié)論。

預(yù)設(shè):每種國旗的長和寬的比都是3:2,他們的比值相等。

每種國旗的寬和長的比是2:3,他們的比值相等。

怎么判斷兩個比是不是成比例?

試一試,判斷下面哪組中的兩個比可以組成比例。

2:3和6:94:2和28:405:2和10:420:5和1:4。

活動二:探究比例的基本性質(zhì)。

2.小組內(nèi)驗證猜測結(jié)果。

3.展示驗證猜測情況。得出結(jié)論,

預(yù)設(shè):

“在比例里,兩個外項相乘的積就等于兩個內(nèi)項相乘的得數(shù)”。

“在比例里,把兩個外項乘起來,再把兩個內(nèi)項乘起來,它們的得數(shù)是一樣的”。

教師歸納總結(jié)。

同學(xué)們說得對,在比例里,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。

板書:比例的基本性質(zhì)。

誰能用分?jǐn)?shù)形式表示以上比例?怎樣求兩個內(nèi)項和兩個外項的積呢?(分子和分母交叉相乘)。

三、強化訓(xùn)練、應(yīng)用拓展。

同學(xué)們學(xué)習(xí)了比例的意義與性質(zhì),那么能利用它們解決實際問題嗎?

1.判斷下面哪組中的兩個比可以組成比例?

(1)6:9和9:12。

(2)1/2:1/5和5/8:1/4。

(3)1.4:2和7:10。

(4)0.5:0.2和10:4。

2.判斷。

(1)表示兩個比相等的式子叫做比例()。

(2)0.6:1.6與3:4能組成比例()。

(3)如果4a=5b,那么a:b=4:5()。

3.填空。

5:2=80:()。

2:7=():5。

1.2:2.5=():4。

在一個比例里,兩個外項互為倒數(shù),其中一個內(nèi)項是6,另一個內(nèi)項是()。

在一個比例里,兩個內(nèi)項的積是12,其中一個外項是2.4,另一個外項是()。

4.寫出比值是5的兩個比,并組成比例。

5.根據(jù)3a=5b把能組成的比例寫出來。

四、自主反思、深入體驗。

通過這節(jié)課的學(xué)習(xí)你有什么收獲?

比和比例數(shù)學(xué)教案篇十三

1、使學(xué)生進(jìn)一步認(rèn)識正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質(zhì)。

2、進(jìn)一步加深學(xué)生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關(guān)系,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

進(jìn)一步認(rèn)識正、反比例的意義,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

實物投影。

一、復(fù)習(xí)。

要求學(xué)生說出成正反比例量的關(guān)鍵,根據(jù)學(xué)生回答板書關(guān)系式。

2、判斷下面各題中的兩種量是不是成比例,成什么比例。

(1)圓錐的體積和底面積。

(2)用銅制成的零件的體積和質(zhì)量。

(3)一個人的身高和體重。

(4)互為倒數(shù)的兩個數(shù)。

(5)三角形的底一定,它的`面積和高。

(6)圓的周長和直徑。

(7)被除數(shù)一定,商和除數(shù)。

二、練習(xí)。

完成練習(xí)十三9~13題。

1、第9題。

觀察每個表中的數(shù)據(jù),討論表下的問題。要注意啟發(fā)學(xué)生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應(yīng)的數(shù)量關(guān)系式,再進(jìn)行判斷。

2、第10題。

(1)看圖填寫表格。

(2)求出這幅圖的比例尺,再根據(jù)圖像特點判斷圖上距離和實際距離成什么比例,也可以根據(jù)相關(guān)的計算結(jié)果作出判斷。要讓學(xué)生認(rèn)識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。

(3)啟發(fā)學(xué)生運用有關(guān)比例尺的知識進(jìn)行解答。

3、第11題。

填寫表格,組織學(xué)生對兩個問題進(jìn)行比較,進(jìn)一步突出成反比例量的特點。

4、第12題。

引導(dǎo)學(xué)生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應(yīng)的數(shù)量關(guān)系式表示這種變化的規(guī)律。

5、第13題。

讓學(xué)生小組進(jìn)行討論,教師指導(dǎo)有困難的學(xué)生。

三、補充練習(xí)。

1、a與b成正比例,并且在a=1。。時,b的對應(yīng)值是0。15。

(1)a與b的關(guān)系式是a/b=()。

(2)當(dāng)a=2。5時,b的對應(yīng)值是()。

(3)當(dāng)b=9。2時,a的對應(yīng)值是()。

2、甲、乙兩人步行速度的比為5:6,從a地到b地,甲走12小時,乙要走幾小時?

比和比例數(shù)學(xué)教案篇十四

在上面的數(shù)量部系式中,如果加工零件總數(shù)一定,每小時加工零件和加工時間是什么關(guān)系?如果應(yīng)付的總錢數(shù)一定,每本書的價錢和本數(shù)是什么關(guān)系?如果總產(chǎn)量一定,每公畝產(chǎn)量和公畝數(shù)是什么關(guān)系?這就是今天我們學(xué)習(xí)的內(nèi)容:反比例的意義(板書)。

比和比例數(shù)學(xué)教案篇十五

1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

2、培養(yǎng)學(xué)生概括能力和分析判斷能力。

3、培養(yǎng)學(xué)生用發(fā)展變化的觀點來分析問題的能力。

成正比例的量的特征及其判斷方法。

理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的'量的變化規(guī)律.

啟發(fā)引導(dǎo)法。

自主探究法。

課件。

一、定向?qū)W(xué)(5分)。

1、已知路程和時間,求速度。

2、已知總價和數(shù)量,求單價。

3、已知工作總量和工作時間,求工作效率。

4、導(dǎo)入課題。

今天我們來學(xué)習(xí)成正比例的量。

5、出示學(xué)習(xí)目標(biāo)。

1、理解正比例的意義。

2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。

二、自主學(xué)習(xí)(8分)。

自學(xué)內(nèi)容:書上45頁例1。

自學(xué)時間:8分鐘。

自學(xué)方法:讀書法、自學(xué)法。

自學(xué)思考:

1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?

2、正比例關(guān)系式是什么?

(1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。例如底面積一定,體積和高成正比例。

y/x=k(一定)。

(4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。

2、歸類提升。

引導(dǎo)學(xué)生小結(jié)成正比例的量的意義和關(guān)系式。

三、合作交流(5分)。

第46頁正比例圖像。

1、正比例圖像是什么樣子的?

2、完成46頁做一做。

3、各組的b1同學(xué)上臺講解。

四、質(zhì)疑探究(5分)。

1、第49頁第1題。

2、第49頁第2題。

3、你還有什么問題?

五、小結(jié)檢測(8分)。

1、什么是正比例關(guān)系?如何判斷是不是正比例關(guān)系?

2、檢測。

1、49頁第3題。

六、堂清作業(yè)(9分)。

練習(xí)九頁第4、5題。

比和比例數(shù)學(xué)教案篇十六

p47~48,例7、正、反比例的比較。

進(jìn)一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。

一、復(fù)習(xí)。

判斷下面兩種理成不成比例,成什么比例,為什么?

(1)單價一定,數(shù)量和總價。

(2)路程一定,速度和時間。

(3)正方形的邊長和它的面積。

(4)工作時間一定,工作效率和工作總量。

二、新授。

1、揭示課題。

2、學(xué)習(xí)例7。

(1)認(rèn)識:“千米/時”的讀法意義。

(2)出示書中的問題要求學(xué)生逐一回答。

(3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關(guān)系式?

(4)填空:用下面的形式分別表示兩個表的內(nèi)容。

當(dāng)()一定時,()和()成()比例關(guān)系。

還有什么樣的依存關(guān)系?

(5)教師作評講并小結(jié)。

(6)用圖表示例7中的兩種量的關(guān)系。

指導(dǎo)學(xué)生描點、連線。

在這條直線上,當(dāng)時間的.值擴大時,路程的對應(yīng)值是怎樣變化的?時間的值縮小呢?

用同樣的方法觀察右表。

3、總結(jié)正、反比例的特點(異同點)。

由學(xué)生比、說。

三、鞏固練習(xí)。

1、練一練第1、2題。

2、p49第1題。

四、課堂小結(jié):

正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?

五、作業(yè)。

六、課后作業(yè)。

比和比例數(shù)學(xué)教案篇十七

小學(xué)六年級的學(xué)生在學(xué)習(xí)正比例和反比例這部分內(nèi)容時,尤其是在練習(xí)過程中容易混淆不清,經(jīng)常弄錯。下面,本文從不同的角度幫助他們正確區(qū)分這兩者的關(guān)系,希望對他們的學(xué)習(xí)會有所幫助。

一、正確認(rèn)識兩者的意義。

正比例和反比例的意義教材中是安排在從p39到p47來進(jìn)行敘述講解的,且都是通過對實驗中的數(shù)據(jù)進(jìn)行分析之后概括得出的結(jié)論,這樣學(xué)生相對易于接受。

1.正比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系?!?/p>

2.反比例的意義:教材中的表述是“兩種相關(guān)聯(lián)的量,一種量變化,另種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。”

如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系可以用下面的關(guān)系式來表示:

y/x=k(一定)或y=kx(k一定)。

(二)反比例關(guān)系的表達(dá)式。

如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系可以用下面的關(guān)系式來表示:

x×y=k(k一定)或y=kx(k一定)。

1.正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律。正比例關(guān)系中兩種相關(guān)聯(lián)的量的變化規(guī)律是:同時擴大,同時縮小,比值(或商)不變。

例如:汽車每小時行駛的速度一定,所行的路程和所用的時間是否成正比例?

完成該題練習(xí)時,可以先寫出路程、速度和時間三者之間的關(guān)系式:速度=路程/時間,已知條件中速度為一定(即常量),根據(jù)“速度=路程/時間”這一關(guān)系式,結(jié)合正比例的意義,即可知道所行的路程和所用的時間是成正比例關(guān)系的。也就是說,當(dāng)速度一定時,走的路程越多,所花費的時間也越多,反之,亦然。換句話說,路程和時間是成倍增長或縮小的。

2.反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律。

反比例關(guān)系的兩種相關(guān)聯(lián)的量的變化規(guī)律是:一種量擴大,另一種量縮小,一種量縮而另一種量則擴大,積不變。

例如:當(dāng)圖上距離一定時,實際距離和比例尺是否成反比例?因為實際距離×比例尺=圖上距離(一定),所以,實際距離和比例尺是成反比例的。

1.在事物關(guān)系中都包含有三個量,(本網(wǎng)網(wǎng))即有兩個變量和一個常量(即定值)。

2.在相關(guān)聯(lián)的兩個變量中,當(dāng)一個變量發(fā)生變化時(擴大或縮?。?,則另一個變量也隨之發(fā)生變化。

3.它們相對應(yīng)的兩個變量的積或商都是一定的(即常量)。

也就是說,在正比例和反比例的兩個相關(guān)聯(lián)的變量中,均是一個量變化,另一個量也隨之變化。并且變化方式均屬于擴大(乘以一個數(shù))或縮?。ǔ砸粋€數(shù))若干倍的變化。

1.正比例的定量(或定值)是兩個變量中相對應(yīng)的兩個數(shù)(即變量)的比值(或商)。反比例的定量是兩個變量中相對應(yīng)的兩個數(shù)的積。

2.當(dāng)用圖象來表示正比例或反比例中兩個變量之間的關(guān)系時,所畫出來的圖象是不一樣的。正比例的圖象是一條傾斜的直線(又叫斜線)。反比例的圖象是一條曲線,且兩端永遠(yuǎn)不會與兩條軸線(即橫軸和縱軸或函數(shù)中所稱的x軸和y軸)相交。

當(dāng)正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時,由正比例轉(zhuǎn)化為反比例;當(dāng)反比例中的x值(自變量的值)也轉(zhuǎn)化為它的倒數(shù)時,則由反比例轉(zhuǎn)化為正比例。

需要說明的是,教科書中在“正比例和反比例的意義”的講解中,并沒有指出正比例和反比例關(guān)系表達(dá)式中常量和變量的取值范圍。根據(jù)正比例的關(guān)系式y(tǒng)/x=k(一定)和反比例的關(guān)系x×y=k(k一定)可以知道,無論是正比例還是反比例,兩個變量x、y和常量k均不能為零。試想,在正比例y/x=k(一定)中,如果x為0,式子無意義;如果y為0,x不為0,則x的值是不確定的(這時候k的值為0),此時x和y就不存在正比例的說法了。同樣,在反比例x×y=k(k一定)中,如果x和y兩個變量中,只要其中一個為0或兩個都同時為0,則k的值都為0,x和y也無所謂反比例關(guān)系了。再說,如果x和y同時為0的話,那么x和y也不叫變量了,都不符合反比例的意義。所以,無論是正比例關(guān)系,還是反比例關(guān)系中,兩個變量x和y以及常量k都不能為0。

因此,當(dāng)正比例或反比例關(guān)系中其中一個變量用字母表示時,要求我們通過討論確定另一個變量的取值范圍的時候,我們就要注意正比例或反比例關(guān)系中兩個變量的取值絕對不能為零,否則,就失去意義了。

【參考文獻(xiàn)】。

1.盧江、楊剛主編,義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書小學(xué)六年級《數(shù)學(xué)》下冊[s],人民教育出版社出版。

2.謝鼓平主編,小學(xué)六年級數(shù)學(xué)《教案與設(shè)計》[s],新疆青少年出版社出版。

3.《貴州教育》[j]第3-4期合訂本第65頁中《小學(xué)數(shù)學(xué)畢業(yè)復(fù)習(xí)建議》(王艷)。

比和比例數(shù)學(xué)教案篇十八

1.知識與技能:認(rèn)識比例,知道比例的的內(nèi)項和外項,理解和掌握比例的基本性質(zhì),會判斷兩個比能否組成比例。

2.過程與方法:通過自主探究、合作交流、觀察、比較,培養(yǎng)學(xué)生分析、比較、抽象和概括的能力,經(jīng)歷認(rèn)識比例和比例的基本性質(zhì)的過程。

3.情感態(tài)度與價值觀:體會國旗中隱含的數(shù)學(xué)規(guī)律,豐富關(guān)于國旗的知識,培養(yǎng)學(xué)生愛國旗、愛祖國的情感。

比和比例數(shù)學(xué)教案篇十九

知識與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。

情感與態(tài)度目標(biāo):體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點。

重點:理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。

難點:掌握反比例的特征,能夠正確判斷反比例關(guān)系。

(一)復(fù)習(xí)猜想導(dǎo)入,引出問題。

1、成正比例的量有什么特征?什么叫正比例關(guān)系?

2、在生活中兩個相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識,學(xué)生大膽猜測,對反比例的意義展開合理的猜想。由此導(dǎo)入新課。

達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。

(二)共同探索,總結(jié)方法。

1、明確這節(jié)課的學(xué)習(xí)目標(biāo):

(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。

(2)經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。

2、情境導(dǎo)入,學(xué)習(xí)探究。

(1)我們先來看一個實驗。

高度(厘米)302015105。

底面積(平方厘米)1015203060。

體積(立方厘米)。

提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?

(2)學(xué)生討論交流。

(3)引導(dǎo)學(xué)生回答:表中的兩個量是高度和底面積。

高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。

每兩個相對應(yīng)的數(shù)的乘積都是300.

(4)計算后你又發(fā)現(xiàn)了什么?

每兩個相對應(yīng)的數(shù)的乘積都是300,乘積一定。

教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。

教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。

(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?板書:x×y=k(一定)。

小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的`量是否成反比例,關(guān)鍵是什么?

(6)歸納總結(jié)反比例的意義。

(7)比較歸納正反比例的異同點。

達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識,進(jìn)行深化拓展,歸納總結(jié)。

(三)運用方法,解決問題。

1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。

2、課后做一做每天運的噸數(shù)和運貨的天數(shù)成反比例關(guān)系嗎?為什么?

3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。

達(dá)成目標(biāo):學(xué)生利用對反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會分析并進(jìn)行判斷。

(四)反饋鞏固,分層練習(xí)。

判斷下面每題中的兩個量是不是成反比例,并說明理由。

(1)路程一定,速度和時間。

(2)小明從家到學(xué)校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。

達(dá)成目標(biāo):使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。

(五)課堂總結(jié),提升認(rèn)識。

比和比例數(shù)學(xué)教案篇二十

教學(xué)目標(biāo):

1、理解反比例函數(shù),并能從實際問題中抽象出反比例關(guān)系的函數(shù)解析式;。

2、會畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);。

3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;。

4、體會數(shù)學(xué)從實踐中來又到實際中去的研究、應(yīng)用過程;。

5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力。

教學(xué)重點:

教學(xué)用具:直尺。

教學(xué)方法:小組合作、探究式。

教學(xué)過程:

我們在小學(xué)學(xué)過反比例關(guān)系。例如:當(dāng)路程s一定時,時間t與速度v成反比例。

即vt=;。

當(dāng)矩形面積s一定時,長a與寬b成反比例,即ab=。

從函數(shù)的觀點看,在運動變化的過程中,有兩個變量可以分別看成自變量與函數(shù),寫成:

(s是常數(shù))。

(s是常數(shù))。

一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù)。

如上例,當(dāng)路程s是常數(shù)時,時間t就是v的反比例函數(shù).當(dāng)矩形面積s是常數(shù)時,長a是寬b的反比例函數(shù)。

在現(xiàn)實生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論。

解:列表。

說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測出它的大致圖象.取點的時候最好多取幾個,正負(fù)可以對稱著取分別畫點描圖。

一般地反比例函數(shù)(k是常數(shù))的圖象由兩條曲線組成,叫做雙曲線。

3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)。

前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識的學(xué)習(xí)。

顯示這兩個函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證。

(1)的圖象在第一、三象限.可以擴展到k=0時的情形,即k=0時,雙曲線兩支各在第一和第三象限。從解析式中,也可以得出這個結(jié)論:xy=k,即x與y同號,因此,圖象在第一、三象限的討論與此類似。

抓住機會,說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程。

(2)函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小;。

從圖象中可以看出,當(dāng)x從左向右變化時,圖象呈下坡趨勢。從列表中也可以看出這樣的變化趨勢。有理數(shù)除法說明了同樣的道理,被除數(shù)一定時,若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小。由此可歸納出,當(dāng)k0時,函數(shù)的圖象,在每一個象限內(nèi),y隨x的增大而減小。

同樣可以推出的圖象的性質(zhì)。

(3)函數(shù)的圖象不經(jīng)過原點,且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時,y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時,y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子。同理,抽象出圖象的性質(zhì)。

函數(shù)的圖象性質(zhì)的討論與次類似。

4、小結(jié):

本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識.數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運用已有的數(shù)學(xué)知識,給以一定的解釋.即數(shù)學(xué)是世界的一個部分,同時又隱藏在世界中。

5、布置作業(yè)習(xí)題13.81-4。

【本文地址:http://aiweibaby.com/zuowen/14279019.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔