教案是教學中非常重要的教學設計文檔,它能夠指導教師的教學行為。教案的編寫應注重知識的系統(tǒng)性和連貫性。精選教學設計的教案范例,幫助教師更好地組織和開展教學活動。
圓錐的體積數(shù)學教案篇一
教學目的:
1、使學生掌握圓錐體積的計算公式,會用公式計算圓錐的體積,解決日常生活中有關簡單的實際問題。
2、讓學生經(jīng)歷猜想——驗證,合作——探究的教學過程,理解圓錐體積公式的推導過程,體驗轉(zhuǎn)化的思想。
3、培養(yǎng)學生動手操作、觀察、分析、推理能力,發(fā)展空間觀念,滲透事物是普遍聯(lián)系的唯物辯證思想。
[點評:知識與技能目標的設計全面、具體、有針對性。不但使學生掌握圓錐體積的計算公式,而且培養(yǎng)了學生運用圓錐體積公式解決生活中的實際問題的能力,使學生體會到數(shù)學與生活的密切聯(lián)系注。并注重對學生“猜想------驗證”、“合作------探究”等學習方式的培養(yǎng)及“轉(zhuǎn)化”數(shù)學思想方法的滲透;同時關注學生空間觀念的培養(yǎng)及唯物辯證思想的滲透。
教學重點:掌握圓錐體積的計算公式,并能靈活利用公式求圓錐的體積。
教學難點:理解圓錐體積公式的推導過程及解決生活中的實際問題。
教學過程:
一、創(chuàng)設情境導入新課。
2、引導學生自己想辦法用多種方法來求這個圓錐體容器的體積,有困難的同學可以同桌交流,共同研究。(組織學生先獨立思考,然后同桌討論交流,最后匯報自己的想法。)。
3、教師出示一個圓錐體的木塊引導學生明確前面所想的方法太麻繁、不實用。并鼓勵學生研究出一種簡便快捷的方法來求圓錐的體積。
二、經(jīng)歷體驗,探究新知。
(一)滲透轉(zhuǎn)化,幫助猜想。
1、先組織學生自由暢談圓錐的體積可能會與誰有關(圓柱)。先給學生獨立思考的時間,然后匯報。匯報時要闡述自己的理由。教師引導學生回憶圓柱體積公式的推導過程。
2、組織學生拿出準備好的圓柱體鉛筆和轉(zhuǎn)筆刀來削鉛筆,同時教師也隨著學生一起來做。教師做好后要及時巡視,直到學生將鉛筆削得尖尖的為止。然后引導學生認真觀察削好后的鉛筆是什么形體的?(此時的鉛筆是由圓柱和圓錐兩部分組成的)并組織學生通過觀察比較、討論交流得出兩種形體的底與高及體積之間的關系。(削好后的圓柱與圓錐等底不等高,體積無關。)此時,教師要參與到小組討論中,及時引導學生發(fā)現(xiàn)削好后的圓錐的體積與未削之前的這部分圓柱等底等高,并且體積也有關。組織學生自己的話來總結(jié)。最后,將自己的發(fā)現(xiàn)進行匯報。
(二)小組合作,實驗驗證。
1、教師發(fā)給每組學生一個準備好的等底等高的圓柱和圓錐、沙了,組織學生拿出等底等高的圓柱和圓錐進行實驗。實驗前小組成員進行組內(nèi)分工,有的進行操作,有的記錄……實驗中教師要及時巡視指導并參與到小組實驗中去及時了解學生實驗的進展情況。并指導幫助學生順利完成實驗。
2、實驗后組內(nèi)成員進行交流。交流的過程中,要引導學生注重傾聽別人的想法,并說出自己不同的見解。
3、首先各小組派代表進行匯報,其它小組可以補充。然后全班進行交流實驗結(jié)果:得出等底等高的圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐體積的3倍。由圓柱體的體積公式推導出圓錐的體積公式。預設板書如下:
概括板書:
等底到高。
v圓柱=shv圓錐=1/3sh。
4、深化公式。組織學生討論給出不同的條件求圓錐的體積,如:半徑、直徑、周長。預設板書如下:
v=1/3πr2hv=1/3(c/2π)2hv=1/3(d/2)2h。
5、教師組織學生獨立完成書中例題后集體訂正。
(三)看書質(zhì)疑:你還有哪些不懂的問題或不同的見解可以提出來我們共同研究。
圓錐的體積數(shù)學教案篇二
教學重點。
圓錐體體積計算公式的推導過程.。
教學難點。
正確理解圓錐體積計算公式.。
教學步驟。
一、鋪墊孕伏。
1、提問:
(1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側(cè)面和高.。
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)。
二、探究新知。
(一)指導探究圓錐體積的計算公式.。
1、教師談話:
2、學生分組實驗。
3、學生匯報實驗結(jié)果(課件演示:圓錐體的體積1、2、3、4、5)12345。
4、引導學生發(fā)現(xiàn):
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習。
圓錐的底面積是5,高是3,體積是。
圓錐的底面積是10,高是9,體積是()。
(二)教學例1。
學生獨立計算,集體訂正.。
板書:
答:這個零件的體積是76立方厘米.。
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)。
(1)已知圓錐的底面半徑和高,求體積.。
(2)已知圓錐的底面直徑和高,求體積.。
(3)已知圓錐的底面周長和高,求體積.。
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學例2。
1、例2在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應怎么辦?
這道題應先求什么?再求什么?最后求什么?
2、學生獨立解答,集體訂正.。
圓錐的體積數(shù)學教案篇三
我將班上同學分成了9個小組,在課堂開始前告訴同學們在今天的小組學習中會選出一個優(yōu)秀小組,并且從合作,紀律,發(fā)現(xiàn)三個方面進行評價,組長安排組員活動體現(xiàn)小組合作性,鞏固了小組合作探究的實效性,活動時間結(jié)束時從紀律方面進行評價,有效的組織了教學,使學生的興奮點得到有效控制,盡快投入到公式的推到過程中,在推到過程中鼓勵同學們表達自己的觀點,從發(fā)現(xiàn)方面對學生進行評價提高學生的積極性。
2、層次清楚,步步深入,重點突出。
在教學“圓錐的體積”時,我首先復習了圓柱的體積的計算過程,再用生活中的問題引入學習圓錐體積的必要性,調(diào)動了學生的積極性。然后要學生用自己的學具動手做實驗,從實驗的過程中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。然后,利用公式解決生活中的實際問題,加深學生印象。
3、激發(fā)學生的求知欲。
新課一開始,我就讓學生比較兩堆沙的大小,激發(fā)學生的學習興趣,使學生明白學習目標。在應用公式的教學中,又把問題轉(zhuǎn)向到課初學生猜測且還沒有解決的問題,引導學生計算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學生獲得了成功的喜悅。
4、全體學生的積極參與,突出學生的主體作用。
由于我平時非常重視讓學生參與教學的全過程,重視培養(yǎng)學生的思維想象力,因此,學生在這節(jié)課上,表現(xiàn)也相當?shù)某錾?。我在教學中注意調(diào)動學生的學習積極性,采用分組觀察、操作、討論,動手做實驗等方法,突出了學生的主體作用。
5、課堂教學后的改進。
關于兩堆沙的多少的比較課讓學生有更多的發(fā)展空間,例如從價錢,重量等方面考慮,在這些都不知道的情況下才通過求體積的方法,事實上從價錢上來看更簡單一些,要讓學生有選擇合適的方法解決問題的能力。
在操作活動過程中,指向性過于直接,在第二次教學中我做了一些新的嘗試。簡單的導入,我出示了一組圓柱和圓錐,先讓學生猜一猜學生它們體積的關系,因為學生都有預習,“圓錐體積是圓柱體積的三分之一”很快從學生口中脫出?!澳俏覀兙蛠碜鰝€試驗驗證一下!”我給六個小組分別準備了等底等高、等底不等高、等高不等底、既不等底也不等高的圓柱和圓錐,當然,實驗還沒結(jié)束,學生中的問題就出來了,“我們做的正好是三分之一”、“怎么回事?我們的是二分之一?”,“我們的是四分之一”……“是不是書上寫錯了?”學生思維出現(xiàn)激烈的碰撞,這時我沒有評判結(jié)果,適時讓學生觀察、對比、通過合作、討論,“等底等高”這一前提,這樣讓學生在看似混亂無序的實踐中,增加對實驗條件的辨別,既圓滿地推導出了圓錐的體積公式,又促進了學生實踐能力和批判意識的發(fā)展,而不必苦口婆心地強調(diào)“等底等高”,對“三分之一”的認識也深入學生之心,圓錐體積計算漏乘“三分之一”的錯誤將得到很好的糾正。而這些目標的達成完全是靈活機智地利用“錯誤”這一資源,所產(chǎn)生的效果,這節(jié)教學雖沒以前那么順利,但我覺得今天的學生才真正掌握了知識。因為學生更需要經(jīng)歷知識形成的全過程。真正關注學生學習的過程,就要有效利用“錯誤”這一資源,教師要勇于樂于向?qū)W生提供充分研究的機會,幫助他們真正理解和掌握數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗,這樣,我們的課堂才是學生成長和體驗成功的樂園!
圓錐的體積教學反思。
“實踐出真知”,我覺得這句話講得非常的好。對于學生的學習,我覺得也是這樣。讓學生真正成為活動的主動者,才能讓學生真正的感受自己是學習的主人。特別是在圖形的教學中,根據(jù)學習內(nèi)容的特點,注重操作,注重實踐,可以讓教學達到最高效。在教學圓錐的體積時,我感悟特深刻。
以前教學圓錐的體積后,學生在實際運用公式時容易出錯誤的地方還是和往屆一樣,圓錐的體積=等底等高圓柱體積的三分之一,這個三分之一,在計算的時候經(jīng)常出現(xiàn)遺漏。
怎樣讓學生自己探究出圓錐的體積公式,并且時時記住那個容易被人遺忘的三分之一呢?我這次把學習的主動權(quán)交給了學生,讓每個學生都經(jīng)歷“提出猜測--設計實驗--動手操作--得出公式”的自主探究學習的過程,我讓學生拿出自己的學具——等底等高的圓柱和圓錐,走出課堂,深入實踐,到操場上去裝沙子,到水池邊去裝水,看幾個圓錐的體積才能把圓柱裝滿。在我適當?shù)囊龑?,讓學生根據(jù)自己的設想自由探究等底等高的圓錐體和圓柱體體積之間的關系,圓錐體體積的計算方法。讓每個學生都經(jīng)歷一次探究學習的過程。教學中我感到學生真正地成為了學習的主人,我沒有牽著學生走,只是為他們創(chuàng)設了一個猜想圓錐體積方法的情境,讓學生在猜測中找到驗證的方法,并且通過動手操作驗證自己的猜測。最后得出圓錐體積的計算方法,激發(fā)了他們主動探究的欲望。
推導公式時,我沒有代替學生的操作,始終只以組織者、引導者與合作者的身份參與其中,使學生與學生之間,教師與學生之間互動起來,在這種形式下,學生運用獨立思考、合作討論、動手操作等多種方式進行了探索。另外,為了突出“等底、等高”這個條件的重要性,我巧置陷阱,我還特意安排了一組等底不等高,一組不等底也不等高的圓柱和圓錐,結(jié)果學生的實驗結(jié)論和其他組的不一致,這時候就出現(xiàn)了爭論,這時,我時機引導學生與上次演示比較,1比3的關系是在什么基礎上建立的?學生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。相信今天通過同學們自己的動手體驗,對圓錐的體積計算方法印象深刻,只有自己經(jīng)歷了才會牢牢記住!
圓錐的體積數(shù)學教案篇四
1、通過練習學生進一步理解、掌握圓錐的特征及體積計算公式。
2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。
3、培養(yǎng)學生認真審題,仔細計算的習慣。
進一步掌握圓錐的體積計算及應用。
:圓錐體積公式的靈活運用。
一、知識回顧。
1、前幾節(jié)課我們認識了哪兩個圖形?你能說說有關它們的知識嗎?
2、學生說,教師板書:
圓錐圓柱。
特征1個底面2個。
扇形側(cè)面展開長方形。
體積v=1/3shv=sh。
二、提出本節(jié)課練習的內(nèi)容和目標。
三、課堂練習。
(一)、基本訓練。
1、填空課本1----2(獨立完成后校對)。
已知:底面積、直徑、周長與高求體積(小黑板出示)。
(二)、綜合訓練:
1、判斷。
(1)圓錐的體積等于圓柱的1/3。
(2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
(3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
2、應用:練習四第45題任選一題。
3、發(fā)展題:獨立思考后校對。
四課堂小結(jié):說說本節(jié)課的收獲。
圓錐的體積數(shù)學教案篇五
答案:
答案:
底面半徑:6.28÷(2×3.14)。
=6.28÷6.28。
=1(米);
這堆大豆的重量:
13×3.14×12×0.6×580。
=3.14×0.2×580。
=0.628×580。
=364.24。
≈364(千克);
答:這堆大豆約重364千克。
答案:
(1)這個沙堆占地面積:
3.14×(8÷2)2,
=314×42,
=3.14×16,
=50.24(平方米);
(2)沙堆的體積:
三之一×50.24×3=50.24(立方米),
50.24×15=7536(千克);沙堆的重量:
答:這個沙堆占地50.24平方米,這堆沙子重7536千克.。
圓錐的體積數(shù)學教案篇六
教學內(nèi)容:
冀教版小學數(shù)學六年級下冊第40~42頁。
教學目標:
1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。
3、情感態(tài)度與價值觀:積極參加數(shù)學活動,了解圓錐和圓柱之間的聯(lián)系獲得探索數(shù)學公式的活動經(jīng)驗。
教學重點:
了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。
教學難點:
理解圓錐的高和圓錐體積公式中sh表示的實際意義。
教具學具:
1、等底等高的圓柱和圓錐型容器,一些沙子。
2、多媒體課件。
教學流程:
一、炫我兩分鐘。
主持學生指名叫學生回答下列問題。
1.圓柱有幾個面?各有什么特點?
2.怎樣計算圓柱的體積?
學生回答問題。
二、創(chuàng)設情境。
1.教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?
2.出示問題情境。
最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)。
三、探究新知。
嘗試小研究一(課前):了解圓錐的特點。
1.觀察圓錐形的物體或圖片,它們有哪些特點?
我的發(fā)現(xiàn)。
2.圓錐由1個()面和1個()面2個面組成,圓錐的底面是一個(),圓錐的側(cè)面是一個()。
3.從圓錐頂點到底面圓心的距離是圓錐的(),用字母()表示。
圓錐的體積數(shù)學教案篇七
1、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱體和圓錐體之間的關系,從而得出圓錐體的體積公式。
2、能運用公式解答有關的實際問題。
3、滲透轉(zhuǎn)化、實驗、猜測、驗證等數(shù)學思想方法,培養(yǎng)動手能力和探索意識。
通過實驗的方法,得到計算圓錐體積的公式。
一、創(chuàng)設情境,引發(fā)猜想。
在一個悶熱的中午,小白兔買了一個圓柱形的雪糕,狐貍買了一個圓錐形的雪糕,這兩個雪糕是等底等高的。這是狐貍要用它的雪糕和小白兔換。你覺得小白兔有沒有上當?如果狐貍用兩個雪糕和小白兔換你覺得公平嗎?假如你是小白兔,狐貍有幾個雪糕你才肯和它換呢?把你的想法與小組的同學交流一下,再向全班同學匯報。
小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
二、自主探索,操作實驗。
1、出示學習提綱。
(2)你們小組是怎樣進行實驗的?
(3)你能根據(jù)實驗結(jié)果說出圓錐體的體積公式嗎?
(4)要求圓錐體積需要知道哪兩個條件?
2、小組合作學習。
3、回報交流。
結(jié)論:圓錐的體積是等底等高的圓柱體積的1/3。
公式:v=1/3sh。
4、問題解決。
小白兔和狐貍怎樣交換才能公平合理呢?它需要什么前提條件?
5、運用公式解決問題。
教學例題1和例題2。
三、鞏固練習。
1、圓錐的底面積是5,高是3,體積是()。
2、圓錐的底面積是10,高是9,體積是()。
3、求下面各圓錐的體積.。
(1)底面面積是7.8平方米,高是1.8米.。
(2)底面半徑是4厘米,高是21厘米.。
(3)底面直徑是6分米,高是6分米.。
4、判斷對錯,并說明理由.。
(1)圓柱的體積相當于圓錐體積的3倍.()。
(2)一個圓柱體木料,把它加工成最大的圓錐體,削去的部分的體積和圓錐的體積比是2:1.()。
(3)一個圓柱和一個圓錐等底等高,體積相差21立方厘米,圓錐的體積是7立方厘米.()。
四、拓展延伸。
一個圓錐的底面周長是31?4厘米,高是9厘米,它的體積是多少立方厘米?
五、談談收獲。
六、作業(yè)。
圓錐的體積數(shù)學教案篇八
重點難點。
教學過程。
一、板書課題。
師:同學們,今天我們來學習“圓錐的體積”(板書課題)。
二、出示目標。
理解并掌握圓錐的體積計算公式,并能運用公式解決實際問題。
三、自學指導。
認真看課本第33頁到第34頁的例2和例3,邊看書,邊實驗,理解圓錐的體積計算方法,并將例3補充完整。想:
2、圓錐的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能正確地回答思考題并能做對檢測題!
檢測題。
完成課本第34頁“做一做”第1、2題。
小組合作,校正答案。
后教。
口答。
小組內(nèi)互相說。
當堂訓練。
1、必做題:
課本第35頁第5、6、7題。(做在作業(yè)本上)。
2、選做題:
有一個近似圓錐形的沙堆,底面周長是12.56米,高1.2米。把這些沙鋪在一個長4米、寬3米的長方形沙坑里,可以鋪多厚?(得數(shù)保留兩位小數(shù))。
圓錐的體積數(shù)學教案篇九
1.說出圓柱的體積計算公式。
2.我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)。
圓錐的體積數(shù)學教案篇十
1、情感目標培養(yǎng)學生探索合作精神。
2、知識目標理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式,以及運用公式計算圓錐體積。
3、能力目標培養(yǎng)學生的空間想象力,合作交往能力、創(chuàng)新思維以及動手操作能力。
理解圓錐體積公式的推導過程,掌握圓錐體積的計算公式。
公式推導過程中:圓柱體和圓錐體必須是等底等高,則它們之間才存在必然的關系。
活動目的:激發(fā)求知欲望。
課件播放:春天到了,萬物復蘇,春筍也從睡夢中醒來,三只可愛的小熊貓來到竹林中踩竹筍,它們都踩到了一只竹筍。熊貓都都說:今天我踩的竹筍是最大的。熊貓瞇瞇聽了不服氣的說:誰說的,第一大的應該是我的竹筍。熊貓花花也不甘示弱的說:不對,不對,我的竹筍應該是第一大!
師:竹林里的爭論還在繼續(xù)著,同學們,到底三只熊貓的竹筍誰的最大呢?讓我們來猜一猜吧!
師:我們光是猜,說服力并不強,那么能找到什么真正能解決問題的辦法嗎?
活動目的:通過師生、生生的'互動討論、交流、探究,從而發(fā)現(xiàn)圓錐的體積和圓柱的體積有關。
1、出示課題。
2、找圓錐體和學過的什么體有相似之處。
3、猜一猜,圓柱的體積和圓錐的體積的關系。
圓錐的體積數(shù)學教案篇十一
2、學生說,教師板書:
圓錐圓柱。
特征1個底面2個。
扇形側(cè)面展開長方形。
體積v=1/3shv=sh。
二、提出本節(jié)課練習的內(nèi)容和目標。
三、課堂練習。
(一)、基本訓練。
1、填空課本1----2(獨立完成后校對)。
已知:底面積、直徑、周長與高求體積(小黑板出示)。
(二)、綜合訓練:
1、判斷。
(2)長方體、正方體、圓柱和圓錐的體積公式都可用v=sh。
(3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升。
(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。
2、應用:練習四第45題任選一題。
3、發(fā)展題:獨立思考后校對。
四課堂小結(jié):說說本節(jié)課的收獲。
圓錐的體積數(shù)學教案篇十二
1、知識目標:使學生理解和掌握求圓錐體積的計算公式,并能正確求出圓錐的體積,《圓錐的體積》教案設計及反思。.
2、能力目標:培養(yǎng)學生初步的空間觀念,動手操作能力和邏輯思維能力。
3、情感目標:向?qū)W生滲透知識間可以相互轉(zhuǎn)化的辯證唯物主義思想,讓學生學習將新知識轉(zhuǎn)化為原有知識的學習方法.
教學重點:圓錐的體積計算
教學難點:圓錐的體積計算公式的推導.
教學準備:圓錐形蘿卜、繩子,每個小組一個計算器、等底等高的圓柱和圓錐容器模型、沙土水等。
一、復習導入。師:同學們,你們知道桌上那個白蘿卜,它是什么形體嗎?(圓柱體),現(xiàn)在,如是假設它的底面積是5平方厘米,高是4厘米,你怎樣求它的體積呢?求出體積后,問:現(xiàn)在老師想請你們幫個忙,把它削成一個最大的圓錐,你們有辦法嗎?說一說什么樣的圓錐體才算最大呢?(與原來的圓柱體蘿卜等底等高)
二、探究新知1、實踐猜想.師:好,現(xiàn)在請同學們動手削蘿卜,比比哪一組削得最漂亮?學生削完后,問:誰來猜猜,現(xiàn)在削成的圓錐體積與剛才圓柱有什么關系呢?你是怎么猜測的?生1:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是5立方厘米。
生2:我猜圓錐的體積可能等于原來那個蘿卜體積的,就是10立方厘米。我是根據(jù)我們以前學過的在長方形里剪一個最大的三角形,三角形的面積是長方形的,所以我認為圓錐的體積也是圓柱體積的。
生3: 我猜圓錐的體積可能等于原來那個蘿卜體積的,就是6立方厘米,是把削去的蘿卜拼起來和圓錐體蘿卜進行比較,發(fā)現(xiàn)削去的部分的體積大約是圓錐體積的2倍。
生5:我可以把削成的圓錐與削去的蘿卜都拿去稱,再比較它們的重量。.
生6:我把圓錐體蘿卜浸入盛有水的圓柱容器里,算出它的體積,再把削去部分的蘿卜也浸入盛有水的圓柱形容器里,根據(jù)水面上升的高度求出它的體積就知道了。.
生7:我可以把剛才那個圓柱體蘿卜和削成的圓錐休蘿卜分別挖成空心的然后把空圓錐蘿卜盛滿水倒入圓柱體蘿卜中,分別算出體積后進行比較。
生8:我可以用桌上的這些學具來驗證。.再讓學生比比哪種方法最合適?
4、解決問題,教案《《圓錐的體積》教案設計及反思》。課件出示例1,讓學生獨立完成。5、教師小結(jié)。
三、擴展應用。(一)、基本練習。1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?2、測量圓錐體學具,求出體積,并說說高是怎么量的?3、一個圓錐的底面積直徑是20厘米,高是8厘米,它們體積是多少?(二)擴展練習。!、一個圓錐的體積是8立方分米,底面積是2平方分米,高是()分米?2、圓錐形的容器高12厘米,容器中盛滿水,如果水全部倒入等底的圓柱容器中,水面高是( )
四、歸納小結(jié)。師:通過這節(jié)課的學習,你學會了什么?你是怎么學會的?
五、作業(yè)。
這節(jié)課,體現(xiàn)了以下幾個特點:
一、在“動”中獲新知?!皠印笔呛⒆拥奶煨?,每位孩子都充滿了“動”的欲望。由于幾何知識比較抽象,學生理解和掌握幾何圖形的概念、性質(zhì)、求積公式、形成空間觀念,都必須有大量具體的、形象的感性材料的積累。所以教材在編排這一知識塊的時候,就已安排了很多的實踐性練習。教學時,教者能充分利用這一特點,通過擺、剪、折、量、畫、分割、拼合等操作活動,使學生獲得鮮明、生動、形象的感性認識,在此基礎上,抽象概括出圓錐的體積計算方法,形成正確的空間觀念。
二、在“動”中求發(fā)展。在教學圓錐的體積時,教者先讓學生觀察并討論推導圓錐體積公式的實驗方法,當學生由于受圓柱體積公式推導方法的影響,思維受阻時,教者向?qū)W生提議:用桌上學具來驗證。同時推薦一些實驗用品:水或沙、尺等。讓學生在實驗中選擇并設置疑問:圓錐體積與圓柱體積的關系。通過實際操作,學生不僅得出圓錐體積的計算公式。獲得了知識的結(jié)果,而且經(jīng)歷了知識面發(fā)展、發(fā)生的過程,同時加強并鞏固口頭和書面表達能力,發(fā)展解決數(shù)學問題的能力,增進對數(shù)學的理解力。
三、在“動”中學會與他人合作。學習是學生主體的主動建構(gòu)過程,其本質(zhì)是讓學生認識客觀世界,把書本中的知識結(jié)構(gòu)轉(zhuǎn)化為自己的認知結(jié)構(gòu)。這個過程是學生主體活動的過程,必須由學生親身參與,學生在動手中運用感官參與學習,自覺主動地去操作、去學習,在濃厚的動手實踐中不僅經(jīng)歷了知識的形成過程,而且也學會了如何與他人合作才能取得成功。
圓錐的體積數(shù)學教案篇十三
教材第11~17頁圓錐的認識和體積計算、例1。
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
理解和掌握圓錐體積的計算公式。
一、鋪墊孕伏:
2.我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)。
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內(nèi)容)。
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的'圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導推導出計算公式并用字母表示。
用字母表示:v=13sh。
8.教學例l。
(1)出示例1。
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積數(shù)學教案篇十四
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內(nèi)容)。
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)。
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積=底面積高。
用字母表示:v=sh。
8.教學例l。
(1)出示例1。
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積數(shù)學教案篇十五
數(shù)學課程標準中指出:應放手讓學生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結(jié)論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
圓錐體積公式的理解,并能運用公式求圓錐的體積。
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結(jié)論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
試驗探究法小組合作學習法。
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)。
2課時。
第一課時。
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)。
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結(jié)果;
3、小組匯報試驗結(jié)論,集體評議:(注意匯報出試驗步驟和結(jié)論)。
4、教師介紹數(shù)學專用名詞:等底等高。
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系。
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)。
3、小組匯報試驗結(jié)論(提醒學生匯報出試驗步驟)。
教學預設:
(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結(jié)論,分析歸納總結(jié)試驗結(jié)論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)。
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結(jié)論的過程,充分調(diào)動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
3、學生通過觀看試驗匯報結(jié)論。
4、教師引導學生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。
5、結(jié)合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
2、口答題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---學生評議。
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
這節(jié)課你學到了什么呢?
1、做在書上作業(yè):練習四第4、7題。
2、坐在作業(yè)本上作業(yè):練習四第3題。
圓錐的體積數(shù)學教案篇十六
教學內(nèi)容:教材第20頁例2、練一練。
教學要求:使學生進-步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應用圓錐體積公式解決-些簡單的實際問題:
教學重點:進-步掌握圓錐的體積計算方法。
教學難點:根據(jù)不同的條件計算圓錐的體積。
【本文地址:http://www.aiweibaby.com/zuowen/14316558.html】