教案是教師根據(jù)教學(xué)目標(biāo)和學(xué)生需求而編寫的一份詳細(xì)教學(xué)計(jì)劃。編寫教案時(shí),我們應(yīng)注重培養(yǎng)學(xué)生的團(tuán)隊(duì)合作意識(shí)和創(chuàng)新思維能力。參考一下這些教案范文,可以讓你對(duì)如何編寫教案有更清晰的思路和認(rèn)識(shí)。
勾股定理教案篇一
在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
通過對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
1、創(chuàng)設(shè)情境。
師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。
設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說起,設(shè)置懸念,引入課題。
觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界。
追問:由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?
師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論。
問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。
勾股定理教案篇二
一、學(xué)情分析:
知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。
能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。
二、教學(xué)目標(biāo):
知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則。
2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算。
能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。
2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題。
情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。
2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):分式乘除法的法則及應(yīng)用。
難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算。
三、教學(xué)過程:
第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)。
復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,
活動(dòng)目的:
復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。
第二環(huán)節(jié)引入新課。
活動(dòng)內(nèi)容。
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:。
兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動(dòng)目的:
讓學(xué)生觀察運(yùn)算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識(shí)運(yùn)用。
活動(dòng)內(nèi)容。
例題1:。
(1)(2)例題2。
(1)(2)活動(dòng)目的:
通過例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒有注意到結(jié)果要化簡(jiǎn)。
第四環(huán)節(jié)走進(jìn)中考。
(2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)。
活動(dòng)內(nèi)容:
1.分式的乘除法的法則。
2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.
3.學(xué)會(huì)類比的數(shù)學(xué)方法。
第六環(huán)節(jié)當(dāng)堂檢測(cè)。
勾股定理教案篇三
本節(jié)課在教材處理上,先讓學(xué)生帶著三個(gè)問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個(gè)兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動(dòng)做了充分的準(zhǔn)備。為突破本課重、難點(diǎn)起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計(jì)兩課時(shí),本節(jié)課是第一課時(shí)。教學(xué)重點(diǎn)定位為勾股定理的探索過程及簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn)是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時(shí)進(jìn)行專題訓(xùn)練。
自主探索、合作交流、引導(dǎo)點(diǎn)撥。
勾股定理教案篇四
學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過程與方法。
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價(jià)值觀。
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。
教學(xué)準(zhǔn)備:
多媒體。
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
情景:
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
教材23頁。
李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。
2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
作業(yè):1.課本習(xí)題1.5第1,2,3題.。
要求:a組(學(xué)優(yōu)生):1、2、3。
b組(中等生):1、2。
c組(后三分之一生):1。
勾股定理教案篇五
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國(guó)熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片。
教學(xué)過程:
(一)情境導(dǎo)入。
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
勾股定理教案篇六
從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)。
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
勾股定理教案篇七
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
勾股定理教案篇八
隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國(guó)教育的重要題材!
本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
勾股定理教案篇九
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)。《新版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過程中,進(jìn)一步發(fā)展空間觀念;
2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗(yàn)解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問題。
本節(jié)課的教學(xué)目標(biāo)是:
1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題。
教學(xué)重點(diǎn)和難點(diǎn):
應(yīng)用勾股定理及其逆定理解決實(shí)際問題是重點(diǎn)。
把實(shí)際問題化歸成數(shù)學(xué)模型是難點(diǎn)。
根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問題情境,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡栴},建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問題。在教學(xué)過程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入。
情景1:復(fù)習(xí)提問:勾股定理的語言表述以及幾何語言表達(dá)?
設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語言及數(shù)學(xué)表達(dá),體現(xiàn)。
設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)。
情景3:課本引例(螞蟻怎樣走最近)。
第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問題)。
設(shè)計(jì)意圖:將問題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問題變?yōu)檎襟w長(zhǎng)方體問題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議。
內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
(1)你能替他想辦法完成任務(wù)嗎?
設(shè)計(jì)意圖:
第五環(huán)節(jié):方程與勾股定理。
在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少尺?《意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問題。
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實(shí)際問題的方法是建立數(shù)學(xué)模型求解、
2、在尋求最短路徑時(shí),往往把空間問題平面化,利用勾股定理及其逆定理解決實(shí)際問題、
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
第七環(huán)作業(yè)設(shè)計(jì):
第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
勾股定理教案篇十
理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過程與方法】。
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
【情感、態(tài)度與價(jià)值觀】。
體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
【重點(diǎn)】勾股定理的逆定理及其證明。
【難點(diǎn)】勾股定理的逆定理的證明。
(一)導(dǎo)入新課。
復(fù)習(xí)勾股定理,分清其題設(shè)和結(jié)論。
提問學(xué)生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的方法,以其中蘊(yùn)含何道理為切入點(diǎn)引出課題。
(二)講解新知。
請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
勾股定理教案篇十一
教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。
勾股定理教案篇十二
教學(xué)目標(biāo):
1、使學(xué)生結(jié)合具體情景初步體會(huì)家、減法的含義,并能用加、減法解決簡(jiǎn)單的問題;能正確計(jì)算得數(shù)是10以內(nèi)的加法和相應(yīng)的減法;能按運(yùn)算順序計(jì)算連加、連減和加減混合的式題。
2、培養(yǎng)學(xué)生的觀察、理解能力,滲透簡(jiǎn)單的函數(shù)思想。
3、使學(xué)生初步體會(huì)生活里有很多計(jì)算的問題,感受數(shù)學(xué)與生活的聯(lián)系,逐步增加學(xué)習(xí)數(shù)學(xué)的興趣和數(shù)學(xué)意識(shí)。
教學(xué)準(zhǔn)備:
教學(xué)掛圖、小棒、卡片、小黑板、投影、加減法表等。
教學(xué)課時(shí):共18課時(shí)。
教學(xué)過程:第一課時(shí)。
一、創(chuàng)設(shè)情境。
開學(xué)了,校園里開了很多的花,一群小朋友為了能使這些花開的更鮮艷,拿著水壺前來澆花。我們一起去看一看來了哪些小朋友?(出示掛圖)。
二、知識(shí)探索。
1、看圖,先讓學(xué)生表述題意:3個(gè)同學(xué)在澆水,又走來2人,一共有5人。把學(xué)生的注意力集中到“3人和2人合起來是5人”上。
2、告訴學(xué)生,把3人和2人合起來可以用加法計(jì)算。
3、教學(xué)加號(hào)、加法算式的寫法和讀法。
4、教學(xué)例2,讓學(xué)生感知加法的含義,體驗(yàn)計(jì)算方法,例題是兩幅內(nèi)容連續(xù)的圖,要讓學(xué)生明白圖意,體會(huì)1位小朋友和2位小朋友走到一起是3位小朋友,要用1+2計(jì)算。
三、知識(shí)鞏固。
“想想做做”要讓學(xué)生自己看圖,討論、交流,或者通過學(xué)具操作,學(xué)習(xí)其余的一些加法算式,使學(xué)生在活動(dòng)中進(jìn)一步體會(huì)加法的含義和計(jì)算方法。對(duì)于實(shí)際問題,要重視讓學(xué)生說一說圖意,相互交流,并列出算式,培養(yǎng)學(xué)生的觀察和理解能力。
1、第1題可以指導(dǎo)學(xué)生說說圖意,列出算式,并在小組里交流。
2、第2題可以讓學(xué)生相互合作,擺一擺小棒并算出得數(shù)。擺小棒能幫助學(xué)生加深對(duì)加法含義的理解。
3、第4題是小兔子采蘑菇的情境是連續(xù)的,可以激發(fā)學(xué)生興趣。通過說一說再寫算式,可以加深理解加法的含義,感受解決簡(jiǎn)單的實(shí)際問題的過程。
4、第5題是開放題。要引導(dǎo)學(xué)生根據(jù)圖意,列出不同的算式。只要符合圖意,都要鼓勵(lì),使學(xué)生體會(huì)發(fā)現(xiàn)和提出問題的過程。要鼓勵(lì)學(xué)生多列一些算式,培養(yǎng)他們仔細(xì)觀察,收集信息的能力。在交流時(shí),可以讓學(xué)生說說算式求的是什么。如2個(gè)小朋友甩繩,3個(gè)小朋友跳神;2只鳥在樹上,又飛來1只鳥;路左邊有2朵花,右邊有2朵花等。
四、課堂總結(jié)。
五、能力檢測(cè)。
練習(xí)與測(cè)試。
課堂練習(xí)。
第二課時(shí)。
一、創(chuàng)設(shè)情境。
昨天我們看到了一些小朋友在校園里澆花,今天他們又來了。你們看……(出示掛圖)。
二、知識(shí)探索。
1、看掛圖,弄清圖意。從連續(xù)的兩幅圖中了解原來有5個(gè)同學(xué)澆花,走掉2人后,還剩下3人。
2、教學(xué)減法的一些知識(shí)。對(duì)5–2=3的含義,要學(xué)生從具體情境里體會(huì)、感受。5–2的計(jì)算,讓學(xué)生自己說說算法,可以聯(lián)系具體問題想,也可以用分與合的方法去想。
3、試一試。多數(shù)學(xué)生會(huì)列出算式3–2=1,也有可能一些學(xué)生會(huì)列出算式3–1=2。只要解釋符合圖意,就應(yīng)該肯定。
三、知識(shí)應(yīng)用。
1、第1題、第2題要先說一說或擺一擺,再填寫算式,并應(yīng)該組織學(xué)生進(jìn)行小組交流,說說自己的想法。
2、第4題先要說一說圖意,弄清條件和問題,再寫出算式并計(jì)算,然后交流自己的想法,體驗(yàn)提出和解決問題的過程,進(jìn)一步體會(huì)減法算式的含義。
3、第5題要讓同學(xué)之間合作練習(xí)。還要根據(jù)班級(jí)實(shí)際,創(chuàng)設(shè)一些學(xué)生喜歡的練習(xí)形式,促進(jìn)學(xué)生主動(dòng)參與數(shù)學(xué)活動(dòng),鞏固2--5的加減法。
四、知識(shí)總結(jié)。
五、能力檢測(cè):練習(xí)與檢測(cè)。
勾股定理教案篇十三
1、知識(shí)目標(biāo):
(2)會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;
(3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、能力目標(biāo):
(1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;
(2)通過勾股定理及以前的知識(shí)聯(lián)合起來綜合運(yùn)用,提高綜合運(yùn)用知識(shí)的能力.
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.。
教學(xué)用具:直尺,微機(jī)。
教學(xué)方法:以學(xué)生為主體的討論探索法。
勾股定理教案篇十四
思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)。
勾股定理教案篇十五
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;。
二數(shù)學(xué)思考。
1.通過勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過程;。
2.通過三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.
三解決問題。
通過勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題.
四情感態(tài)度。
2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流合作的意識(shí)和探究精神.
勾股定理教案篇十六
學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
2、過程與方法。
(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想。
3、情感態(tài)度與價(jià)值觀。
(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣。
(2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
教學(xué)重點(diǎn):
探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題。
教學(xué)難點(diǎn):
利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題。
教學(xué)準(zhǔn)備:
多媒體。
教學(xué)過程:
第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)。
情景:
第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)。
學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)。
教材23頁。
李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
(1)你能替他想辦法完成任務(wù)嗎?
第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)。
2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問答)。
內(nèi)容:如何利用勾股定理及逆定理解決最短路程問題?
第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)。
作業(yè):1.課本習(xí)題1.5第1,2,3題.。
要求:a組(學(xué)優(yōu)生):1、2、3。
b組(中等生):1、2。
c組(后三分之一生):1。
勾股定理教案篇十七
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題。
教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用。
教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。
引
二.探。
閱讀教材p44至p45。
利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
證一證。
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)。
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)。
三.結(jié)。
兩組對(duì)邊分別相等的四邊形是平行四邊形。
對(duì)角線互相平分的四邊形是平行四邊形。
四.用。
勾股定理教案篇十八
即直角三角形兩直角的平方和等于斜邊的平方.。
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。
請(qǐng)讀者證明.。
請(qǐng)同學(xué)們自己證明圖(2)、(3).。
3.在數(shù)軸上表示無理數(shù)。
二、典例精析。
132-52=144,所以另一條直角邊的長(zhǎng)為12.。
所以這個(gè)直角三角形的面積是×12×5=30(cm2).。
例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到。
頂點(diǎn)b,則它走過的最短路程為。
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的。
各棱長(zhǎng)相等,因此只有一種展開圖.。
解:將正方體側(cè)面展開。
勾股定理教案篇十九
課標(biāo)內(nèi)容:1、初步了解半導(dǎo)體的一些特點(diǎn),了解半導(dǎo)體材料的發(fā)展對(duì)社會(huì)的影響。2、初步了解超導(dǎo)體的一些特點(diǎn),了解超導(dǎo)體對(duì)人類生活和社會(huì)發(fā)展可能帶來的影響。3、通過實(shí)驗(yàn)探究電流、電壓和電阻的關(guān)系,理解歐姆定律,并能進(jìn)行簡(jiǎn)單計(jì)算。
l經(jīng)歷改變電路中電流大小的各種嘗試,初步體會(huì)改變電流大小的兩類途徑。l初步形成電阻的概念,知道電阻是表示導(dǎo)體對(duì)電流阻礙作用的物理量。會(huì)讀寫電阻的單位。l經(jīng)歷探究影響電阻大小因素的活動(dòng),會(huì)用“轉(zhuǎn)化”的思想尋找比較電阻大小的.正確方法;會(huì)有意識(shí)地用“變量控制”的思想去尋找合適的導(dǎo)線、設(shè)計(jì)恰當(dāng)?shù)碾娐?、統(tǒng)籌規(guī)劃合理的實(shí)驗(yàn)步驟。l進(jìn)一步體會(huì)變量控制法并能認(rèn)同教材中有關(guān)變量控制的介紹。l知道影響金屬電阻大小的因素,了解長(zhǎng)度、橫截面積與電阻大小的定性關(guān)系,體會(huì)到電阻的大小由導(dǎo)體自身決定,直到電阻是導(dǎo)體的一種屬性。l初步了解半導(dǎo)體的一些特點(diǎn),了解半導(dǎo)體材料的發(fā)展對(duì)社會(huì)的影響。
文件大?。?5k文件格式:rar下載地址:擊本地免費(fèi)下載地址。
勾股定理教案篇二十
本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
(1)讓學(xué)生主動(dòng)提出問題。
(2)讓學(xué)生自己解決問題。
(3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).。
勾股定理教案篇二十一
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力。
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)。
教學(xué)方法:以學(xué)生為主體的討論探索法。
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)。
(1)三角形的三邊關(guān)系。
(2)問題:(投影顯示)。
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得。
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長(zhǎng)的直角邊、弦――斜邊。
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)。
3、定理的證明方法。
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明。
4、定理與逆定理的應(yīng)用。
5、課堂小結(jié):
已知直角三角形的兩邊求第三邊。
已知直角三角形的一邊,求另兩邊的關(guān)系。
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3。
b、上交作業(yè)p132#1、3。
勾股定理教案篇二十二
1、通過拼圖,用面積的方法說明勾股定理的正確性.
2、通過實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
一、學(xué)前準(zhǔn)備:
1、閱讀課本第46頁到第47頁,完成下列問題:。
2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請(qǐng)逐一說明)。
二、合作探究:
(一)自學(xué)、相信自己:
(二)思索、交流:
(三)應(yīng)用、探究:
(四)鞏固練習(xí):
1、如圖,64、400分別為所在正方形的面積,則圖中字。
母a所代表的正方形面積是_________。
三.學(xué)習(xí)體會(huì):
本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來解決。
2②圖。
四.自我測(cè)試:
五.自我提高:
【本文地址:http://aiweibaby.com/zuowen/15175016.html】