高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)大全(16篇)

格式:DOC 上傳日期:2023-11-27 07:43:21
高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)大全(16篇)
時(shí)間:2023-11-27 07:43:21     小編:雁落霞

教案能夠提高教師的課堂教學(xué)效果,有效提升學(xué)生的學(xué)習(xí)效果。教案的編寫要靈活應(yīng)變,根據(jù)實(shí)際教學(xué)情況進(jìn)行調(diào)整和優(yōu)化。范文中的教學(xué)資源使用合理,能夠充分支持教學(xué)活動(dòng)。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇一

一、內(nèi)容與解析(一)內(nèi)容:基本初等函數(shù)習(xí)題課(一)。

(二)解析:對(duì)數(shù)函數(shù)的性質(zhì)的掌握,要先根據(jù)其圖像來分析與記憶,這樣更形像更直觀,這是學(xué)習(xí)圖像與性質(zhì)的基本方法,在此基礎(chǔ)上,我們要對(duì)對(duì)數(shù)函數(shù)的兩種情況的性質(zhì)做一個(gè)比較,使之更好的'掌握.

二、目標(biāo)及其解析:

(一)教學(xué)目標(biāo)。

(1)掌握指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的概念,會(huì)作指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的圖象,并能根據(jù)圖象說出指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì),了解五個(gè)冪函數(shù)的圖象及性質(zhì)及其奇偶性.

(二)解析。

(1)基本初等函數(shù)的學(xué)習(xí)重要是學(xué)習(xí)其性質(zhì),要掌握好性質(zhì),從圖像上來理解與掌握是一個(gè)很有效的辦法.

(2)每類基本初類函數(shù)的性質(zhì)差別比較大,學(xué)習(xí)時(shí)要有一個(gè)有效的區(qū)分.

三、問題診斷分析。

在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易區(qū)分各函數(shù)的圖像與性質(zhì),不容易抓住其各自的特點(diǎn)。

四、教學(xué)支持條件分析。

在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用p5。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇二

【知識(shí)目標(biāo)】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會(huì)利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.

【能力目標(biāo)】通過對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.

【教學(xué)難點(diǎn)】歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.由于判斷或證明函數(shù)的單調(diào)性,常常要綜合運(yùn)用一些知識(shí)(如不等式、因式分解、配方及數(shù)形結(jié)合的思想方法等)所以判斷或證明函數(shù)的單調(diào)性是本節(jié)課的難點(diǎn).

【教材分析】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調(diào)性起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決函數(shù)的某些問題中得到了充分運(yùn)用,函數(shù)的單調(diào)性與前一節(jié)內(nèi)容函數(shù)的概念和圖像知識(shí)的延續(xù)有密切的聯(lián)系;函數(shù)的單調(diào)性一節(jié)中的知識(shí)是它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ)。

(2)函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,這節(jié)課通過對(duì)具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確定義,明確指出函數(shù)的增減性是相對(duì)于某個(gè)區(qū)間來說的。教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格證明方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系。同時(shí)還要綜合利用前面的知識(shí)解決函數(shù)單調(diào)性的一些問題,有利于學(xué)生數(shù)學(xué)能力的提高。

(3)函數(shù)的單調(diào)性有著廣泛的實(shí)際應(yīng)用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的'數(shù)形結(jié)合思想將貫穿于我們整個(gè)數(shù)學(xué)教學(xué)。因此“函數(shù)的單調(diào)性”在中學(xué)數(shù)學(xué)內(nèi)容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢(shì)和變化特點(diǎn),在利用函數(shù)觀點(diǎn)解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識(shí)和實(shí)踐能力提供了重要方式和途徑。

【學(xué)情分析】從學(xué)生的知識(shí)上看,學(xué)生已經(jīng)學(xué)過一次函數(shù),二次函數(shù),反比例函數(shù)等簡單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫出一些簡單函數(shù)的圖像,從圖像的直觀變化,學(xué)生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調(diào)性的定義應(yīng)該是順理成章的。從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過初中對(duì)函數(shù)的認(rèn)識(shí)與實(shí)驗(yàn),學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問題的經(jīng)驗(yàn),在一定程度上具備了抽象、概括的能力和語言轉(zhuǎn)換能力。從學(xué)生的心理學(xué)習(xí)心理上看,學(xué)生頭腦中雖有一些函數(shù)性質(zhì)的實(shí)物實(shí)例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質(zhì)是學(xué)生關(guān)注的問題,也是學(xué)習(xí)的重點(diǎn)問題。函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個(gè)性質(zhì),學(xué)生也容易產(chǎn)生共鳴,通過對(duì)比產(chǎn)生頓悟,渴望獲得這種學(xué)習(xí)的積極心向是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。但是如何運(yùn)用數(shù)學(xué)符號(hào)將自然語言的描述提升為形式化的定義,學(xué)生接受起來比較困難?在教學(xué)中要多引導(dǎo),讓學(xué)生真正的理解函數(shù)單調(diào)性的定義。

【教學(xué)方法】教師是教學(xué)的主體、學(xué)生是學(xué)習(xí)的主體,通過雙主體的教學(xué)模式方法:啟發(fā)式教學(xué)法——以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,逐步從常識(shí)走向科學(xué),將感性認(rèn)識(shí)提升到理性認(rèn)識(shí),培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。探究教學(xué)法——引導(dǎo)學(xué)生去疑;鼓勵(lì)學(xué)生去探;激勵(lì)學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。合作學(xué)習(xí)——通過組織小組討論達(dá)到探究、歸納的目的?!窘虒W(xué)手段】計(jì)算機(jī)、投影儀.

【教學(xué)過程】一、創(chuàng)設(shè)情境,引入課題(利用電腦展示)1.如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個(gè)氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時(shí)間的增大,氣溫逐漸升高或下降”這一特征?引導(dǎo)學(xué)生識(shí)圖,捕捉信息,啟發(fā)學(xué)生思考.問題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度;(3)某些時(shí)段溫度升高,某些時(shí)段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:股票價(jià)格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小.

〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對(duì)于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識(shí),但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時(shí),函數(shù)值有什么變化規(guī)律?(學(xué)生自己動(dòng)手畫,然后電腦顯示下圖)預(yù)案:生:函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而增大;函數(shù)在整個(gè)定義域內(nèi)y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側(cè)y隨x的增大而減小.在y軸的的右側(cè)y隨x的增大而增大。師:我們學(xué)過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減小.師:這樣表述就比較嚴(yán)密了,很好。由上面的討論可知,函數(shù)的單調(diào)性與自變量的范圍有關(guān),一個(gè)函數(shù)并不一定在整個(gè)正義域內(nèi)是單調(diào)函數(shù),但在定義城的某個(gè)子集上可以是單調(diào)函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。

生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對(duì)于兩種答案,哪一種是正確的,為什么?學(xué)生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導(dǎo)學(xué)生進(jìn)行分類描述(增函數(shù)、減函數(shù)).并引導(dǎo)學(xué)生用區(qū)間明確描述函數(shù)的單調(diào)性從而讓學(xué)生明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).

問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?預(yù)案:如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識(shí)是從圖象的角度得到的,是對(duì)函數(shù)單調(diào)性的直觀,描述性的認(rèn)識(shí).

〖設(shè)計(jì)意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對(duì)函數(shù)單調(diào)性的第一次認(rèn)識(shí).2.探究規(guī)律,理性認(rèn)識(shí)問題1:下圖是函數(shù)的圖象,能說出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學(xué)生分組討論)學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.

〖設(shè)計(jì)意圖〗使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.問題2:如何從解析式的角度說明在為增函數(shù)?預(yù)案:生:在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?222,所以在為增函數(shù).生:僅僅兩個(gè)數(shù)的大小關(guān)系不能說明函數(shù)y=x2在區(qū)間[0,+∞)上為單調(diào)遞增函數(shù),應(yīng)該舉出無數(shù)個(gè)。由于很多學(xué)生不能分清“無數(shù)”和“所有”的區(qū)別,所以許多學(xué)生對(duì)學(xué)生2的說法表示贊同。

生:函數(shù))無數(shù)個(gè)如(2)中的實(shí)數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾啊?師:“無數(shù)個(gè)”能不能代表“所有”呢?比如:2、3、4、5……有無數(shù)個(gè)自然數(shù)都比大,那我們能不能說所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導(dǎo)學(xué)生利用字母表示數(shù)。生:任取且,因?yàn)?即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來表述,并為以后學(xué)習(xí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性做準(zhǔn)備,所以需進(jìn)一步引導(dǎo)學(xué)生利用增量來定義函數(shù)的單調(diào)性。

(5)仿(4)且,由圖象可知,即給自變量一個(gè)增量,,函數(shù)值的增量所以在為增函數(shù)。對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量進(jìn)一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調(diào)性。注意這里的“都有”是對(duì)應(yīng)于“任意”的。

〖設(shè)計(jì)意圖〗把對(duì)單調(diào)性的認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,完成對(duì)概念的第二次認(rèn)識(shí).事實(shí)上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念問題:你能用準(zhǔn)確的數(shù)學(xué)符號(hào)語言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.

(1)板書定義設(shè)函數(shù)的定義域?yàn)閍,區(qū)間ma,如果取區(qū)間m中的任意兩個(gè)值,當(dāng)改變量時(shí),都有,那么就稱函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當(dāng)改變量時(shí),都有,那么就稱函數(shù)在區(qū)間m上是減函數(shù),如圖(2)。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇三

1、了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性。

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

2、通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。

3、通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

一、知識(shí)結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

二、重點(diǎn)難點(diǎn)分析。

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí)。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明。

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn)。

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個(gè)過程當(dāng)中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來。

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇四

教學(xué)任務(wù)分析:

(1)理解冪函數(shù)的概念,會(huì)畫五種常見冪函數(shù)的圖像;

(2)結(jié)合冪函數(shù)的圖像,理解冪函數(shù)圖像的變化情況和性質(zhì);

(3)通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力。

教學(xué)重點(diǎn):

常見冪函數(shù)的的概念、圖像和性質(zhì)。

教學(xué)難點(diǎn):

冪函數(shù)的單調(diào)性及比較兩個(gè)冪值的大小。

教具準(zhǔn)備:

多媒體課件、投影儀、打印好的作業(yè)。

教學(xué)情景設(shè)計(jì)。

問題。

問題2:如果正方形的邊長為x,那么正方形面積y=?

問題3:如果正方體的棱長為x,那么正方體體積y=。

問題4:如果正方形場(chǎng)地的面積為x,那么正方形的邊長?y=?

問題5:如果某人x秒內(nèi)騎車行進(jìn)1千米,那么他騎車的平均速度y=(千米/秒)引導(dǎo)學(xué)生探索發(fā)現(xiàn):

引導(dǎo)學(xué)生歸納結(jié)論。

(1)?指數(shù)為常數(shù)。

1、即(是)。

2、(不是)。

3、(不是)。

定義域。

值域。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇五

理解函數(shù)的奇偶性及其幾何意義。

【過程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

2、具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

3、典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1、教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇六

《函數(shù)的奇偶性》這節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡單的問題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對(duì)所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。

一、這種教學(xué)模式的教學(xué)程序是:

(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。

(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。

(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。

(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會(huì)對(duì)函數(shù)奇偶性的認(rèn)識(shí),并怎樣進(jìn)行判斷。

(五)同學(xué)們?cè)陬I(lǐng)會(huì)的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對(duì)知識(shí)的理解和應(yīng)用。

二、這種教學(xué)模式的優(yōu)勢(shì)是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。

這種教學(xué)模式的`缺點(diǎn)與解決方法是:

還缺乏對(duì)學(xué)生更高層次的參與的調(diào)動(dòng),尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問題。對(duì)配套練習(xí)要進(jìn)一步細(xì)化,要對(duì)每一個(gè)知識(shí)點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識(shí)點(diǎn)的訓(xùn)練,圖像的認(rèn)識(shí)上,要加大同學(xué)們對(duì)生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對(duì)稱情況。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇七

教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

難點(diǎn):函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。

一、復(fù)習(xí)引入。

(1)奇函數(shù)。

(2)偶函數(shù)。

(3)與圖象對(duì)稱性的關(guān)系。

(4)說明(定義域的要求)。

二、例題分析。

例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。

例2、證明函數(shù)在r上是奇函數(shù)。

三、隨堂練習(xí)。

1、函數(shù)()。

是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。

既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。

2、下列4個(gè)判斷中,正確的是_______.

(1)既是奇函數(shù)又是偶函數(shù);

(2)是奇函數(shù);

(3)是偶函數(shù);

(4)是非奇非偶函數(shù)。

3、函數(shù)的圖象是否關(guān)于某直線對(duì)稱?它是否為偶函數(shù)?

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇八

教材分析:

冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)地學(xué)習(xí)了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)之后研究的又一類基本的初等函數(shù)。?冪函數(shù)模型在生活中是比較常見的,學(xué)習(xí)時(shí)結(jié)合生活中的具體實(shí)例來引出常見的冪函數(shù)?.組織學(xué)生畫出他們的圖象,根據(jù)圖象觀察、總結(jié)這幾個(gè)常見冪函數(shù)的性質(zhì)。對(duì)于冪函數(shù),只需重點(diǎn)掌握?這五個(gè)函數(shù)的圖象和性質(zhì)。學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對(duì)兩類不同函數(shù)的表達(dá)式進(jìn)行辨析。學(xué)生已經(jīng)有了學(xué)習(xí)冪函數(shù)和對(duì)象函數(shù)的學(xué)習(xí)經(jīng)歷,這為學(xué)習(xí)冪函數(shù)做好了方法上的準(zhǔn)備。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進(jìn)行合作探究學(xué)習(xí)。

課時(shí)分配1課時(shí)。

教學(xué)目標(biāo)。

重點(diǎn):從五個(gè)具體的冪函數(shù)中認(rèn)識(shí)的概念和性質(zhì)。

難點(diǎn):從冪函數(shù)的圖象中概括其性質(zhì),據(jù)冪函數(shù)的單調(diào)性比較兩個(gè)同指數(shù)的指數(shù)式的大小。

知識(shí)點(diǎn):冪函數(shù)的定義、五個(gè)冪函數(shù)圖象特征。

能力點(diǎn):通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡單的應(yīng)用。

自主探究點(diǎn):通過作圖歸納總結(jié)冪函數(shù)的相關(guān)性質(zhì)。

考試點(diǎn):了解冪函數(shù)的概念,

結(jié)合函數(shù)的圖象了解它們的變化情況。

易錯(cuò)易混點(diǎn):學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆。

拓展點(diǎn):通過指數(shù)函數(shù)的圖象性質(zhì)研究冪函數(shù)指數(shù)的變化。

教具準(zhǔn)備:多媒體輔助教學(xué)。

課堂模式:導(dǎo)學(xué)案。

一、引入新課。

(一)回顧引入。

【師生互動(dòng)】師:數(shù)學(xué)的內(nèi)在美常常讓我感動(dòng),下面我們共同來欣賞運(yùn)算的完美性,

思考:由8、2、3、這四個(gè)數(shù),運(yùn)用數(shù)學(xué)符號(hào)可組成哪些等式?

生:探討,交流。

師生共同分析:

師:我們知道對(duì)于等式。

1.如果一定,隨著的變化而變化,我們建立了指數(shù)函數(shù)。

2.如果一定,隨著的變化而變化,我們建立了對(duì)數(shù)函數(shù)。

設(shè)想:如果一定,隨著的變化而變化,是不是也可以確定一個(gè)函數(shù)呢?

【設(shè)計(jì)說明】使學(xué)生回憶所學(xué)兩個(gè)基本初等函數(shù),為所要學(xué)習(xí)的冪函數(shù)作鋪墊。

(二)觀察下列對(duì)象:

問題(1):如果張紅購買了每千克1元的蔬菜千克,那么她需要付的錢數(shù)=元,

問題(2):如果正方形的邊長為,那么正方形的面是=。

問題3):如果正方體的邊長為,那么正方體的體積是=。

問題(4):如果正方形場(chǎng)地面積為,那么正方形的邊長=。

問題(5):如果某人s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度=。

【師生互動(dòng)】師:(1)它們的對(duì)應(yīng)法則分別是什么?

(2)以上問題中的函數(shù)有什么共同特征?

讓學(xué)生獨(dú)立思考后交流,引導(dǎo)學(xué)生概括出結(jié)論。

生:(1)乘以1(2)求平方(3)求立方。

(4)求算術(shù)平方根(5)求-1次方。

師:上述的問題涉及到的函數(shù),都是形如:,其中是自變量,是常數(shù)。

師生:共同辨析這種新函數(shù)與指數(shù)函數(shù)的異同。

二、探究新知。

組織探究。

1.冪函數(shù)的定義。

一般地,形如(r)的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。

如等都是冪函數(shù),冪函數(shù)與指數(shù)函數(shù),對(duì)數(shù)函數(shù)一樣,都是基本初等函數(shù)。

【師生互動(dòng)】師:1.冪函數(shù)的定義來自于實(shí)踐,它同指數(shù)函數(shù)、對(duì)數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種“形式定義”的函數(shù),引導(dǎo)學(xué)生注意辨析。

2.研究函數(shù)的圖像。

(1)(2)(3)。

(4)(5)。

生:利用所學(xué)知識(shí)和方法嘗試作出五個(gè)具體冪函數(shù)的圖象,觀察所作圖象,體會(huì)冪函數(shù)的變化規(guī)律。

師:引導(dǎo)學(xué)生應(yīng)用函數(shù)的性質(zhì)畫圖象,如:定義域、奇偶性。

師生共同分析:強(qiáng)調(diào)畫圖象易犯的錯(cuò)誤。

【設(shè)計(jì)意圖】(1)通過具體作圖,可使學(xué)生加深對(duì)圖象的直觀印象,記憶比較牢固;同時(shí)也提高了學(xué)生數(shù)形結(jié)合的思維能力;(2)符合學(xué)生的認(rèn)知規(guī)律,由特殊到一般,從具體到抽象;(3)充分發(fā)揮學(xué)生學(xué)習(xí)的能動(dòng)性,以學(xué)生為主體,展開課堂教學(xué)。

【師生互動(dòng)】師:引導(dǎo)學(xué)生觀察圖象,歸納概括冪函數(shù)的的性質(zhì)及圖象變化規(guī)律。

生:觀察圖象,分組討論,探究冪函數(shù)的性質(zhì)和圖象的變化規(guī)律,并展示各自的結(jié)論進(jìn)行交流評(píng)析,并填表。

定義域值域奇偶性單調(diào)性定點(diǎn)。

師生共同分析冪函數(shù)性質(zhì):

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇九

【過程與方法】。

利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題。

【情感態(tài)度與價(jià)值觀】。

體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

【重點(diǎn)】。

【難點(diǎn)】。

(一)導(dǎo)入新課。

取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:

答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;。

(二)新課教學(xué)。

(1)偶函數(shù)(evenfunction)。

(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。

(2)奇函數(shù)(oddfunction)。

注意:

1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

2.具有奇偶性的函數(shù)的圖象的特征。

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

3.典型例題。

例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。

解:(略)。

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:

1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;。

2確定f(-x)與f(x)的關(guān)系;。

3作出相應(yīng)結(jié)論:

若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。

若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。

(三)鞏固提高。

1.教材p46習(xí)題1.3b組每1題。

解:(略)。

(教材p41思考題)。

規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。

(四)小結(jié)作業(yè)。

課本p46習(xí)題1.3(a組)第9、10題,b組第2題。

三、規(guī)律:

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。

奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十

知識(shí)梳理:

1、軸對(duì)稱圖形:

2中心對(duì)稱圖形:

1、畫出函數(shù),與的圖像;并觀察兩個(gè)函數(shù)圖像的對(duì)稱性。

2、求出,時(shí)的函數(shù)值,寫出。

結(jié)論:

(1)、強(qiáng)調(diào)定義中任意二字,奇偶性是函數(shù)在定義域上的整體性質(zhì)。

(2)、奇函數(shù)偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱。

5、奇函數(shù)與偶函數(shù)圖像的對(duì)稱性:

如果一個(gè)函數(shù)是奇函數(shù),則這個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的__________。反之,如果一個(gè)函數(shù)的圖像是以坐標(biāo)原點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,則這個(gè)函數(shù)是___________。

如果一個(gè)函數(shù)是偶函數(shù),則這個(gè)函數(shù)的圖像是以軸為對(duì)稱軸的__________。反之,如果一個(gè)函數(shù)的圖像是關(guān)于軸對(duì)稱,則這個(gè)函數(shù)是___________。

(1)(2)(3)。

(4)(5)。

練習(xí):教材第49頁,練習(xí)a第1題。

總結(jié):根據(jù)例題,你能給出用定義判斷函數(shù)奇偶性的步驟?

題型二:利用奇偶性求函數(shù)解析式。

例2:若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x(1-x),求當(dāng)時(shí)f(x)的解析式。

練習(xí):若f(x)是定義在r上的奇函數(shù),當(dāng)x0時(shí),f(x)=x|x-2|,求當(dāng)x0時(shí)f(x)的解析式。

已知定義在實(shí)數(shù)集上的奇函數(shù)滿足:當(dāng)x0時(shí),,求的表達(dá)式。

題型三:利用奇偶性作函數(shù)圖像。

例3研究函數(shù)的性質(zhì)并作出它的圖像。

練習(xí):教材第49練習(xí)a第3,4,5題,練習(xí)b第1,2題。

當(dāng)堂檢測(cè)。

1已知是定義在r上的奇函數(shù),則(d)。

a.b.c.d.

2如果偶函數(shù)在區(qū)間上是減函數(shù),且最大值為7,那么在區(qū)間上是(b)。

a.增函數(shù)且最小值為-7b.增函數(shù)且最大值為7。

c.減函數(shù)且最小值為-7d.減函數(shù)且最大值為7。

3函數(shù)是定義在區(qū)間上的偶函數(shù),且,則下列各式一定成立的是(c)。

a.b.c.d.

4已知函數(shù)為奇函數(shù),若,則-1。

5若是偶函數(shù),則的單調(diào)增區(qū)間是。

6下列函數(shù)中不是偶函數(shù)的是(d)。

abcd。

7設(shè)f(x)是r上的偶函數(shù),切在上單調(diào)遞減,則f(-2),f(-),f(3)的大小關(guān)系是(a)。

abf(-)f(-2)f(3)cf(-)。

8奇函數(shù)的圖像必經(jīng)過點(diǎn)(c)。

a(a,f(-a))b(-a,f(a))c(-a,-f(a))d(a,f())。

9已知函數(shù)為偶函數(shù),其圖像與x軸有四個(gè)交點(diǎn),則方程f(x)=0的所有實(shí)根之和是(a)。

a0b1c2d4。

11若f(x)在上是奇函數(shù),且f(3)_f(-1)。

12、解答題。

已知函數(shù)在區(qū)間d上是奇函數(shù),函數(shù)在區(qū)間d上是偶函數(shù),求證:是奇函數(shù)。

已知分段函數(shù)是奇函數(shù),當(dāng)時(shí)的解析式為,求這個(gè)函數(shù)在區(qū)間上的解析表達(dá)式。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十一

1.復(fù)習(xí)因式分解的概念,以及提公因式法,運(yùn)用公式法分解因式的方法,使學(xué)生進(jìn)一步理解有關(guān)概念,能靈活運(yùn)用上述方法分解因式.

2.通過因式分解綜合練習(xí),提高觀察、分析能力;通過應(yīng)用因式分解方法進(jìn)行簡便運(yùn)算,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的意識(shí).

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十二

按照描點(diǎn)法分三步畫圖:

(2)描點(diǎn)按照表中所列出的函數(shù)對(duì)應(yīng)值,在平面直角坐標(biāo)系中描出相應(yīng)的7個(gè)點(diǎn);

(3)邊線用平滑曲線順次連接各點(diǎn),即得所求y=x2的圖象。

注意兩點(diǎn):

(1)由于我們只描出了7個(gè)點(diǎn),但自礦業(yè)量取值范圍是實(shí)數(shù),故我們只畫出了實(shí)際圖象的一部分,即畫出了在原點(diǎn)附近、自變量在-3到3這個(gè)區(qū)間的一部分。而圖象在x3或x-3的`區(qū)間是無限延伸的。

(2)所畫的圖象是近似的。

3.在原點(diǎn)附近較精確地研究二次函數(shù)y=x2的圖象形狀到底如何?――我們c1與1之間每隔0.2的間距取x值表和圖13-14。按課本p118內(nèi)容講解。

4.引入拋物線的概念。

關(guān)于拋物線的頂點(diǎn)應(yīng)從兩方面分析:一是從圖象上看,y=x2的圖象的頂點(diǎn)是最低點(diǎn);一是從解析式y(tǒng)=x2看,當(dāng)x=0時(shí),y=x2取得最小值0,故拋物線y=x2的頂點(diǎn)是(0,0)。

小結(jié)。

(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十三

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期。

3會(huì)用代數(shù)方法求等函數(shù)的周期。

4理解周期性的幾何意義。

“周期函數(shù)的概念”,周期的求解。

1、是周期函數(shù)是指對(duì)定義域中所有都有,即應(yīng)是恒等式。

2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。

例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示。

(1)求該函數(shù)的周期;

(2)求時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)。

總結(jié):(1)函數(shù)(其中均為常數(shù),且的周期t=xx)。

(2)函數(shù)(其中均為常數(shù),且的周期t=xx)。

例3、求證:的周期為。

總結(jié):函數(shù)(其中均為常數(shù),且的周期t=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)。

課后思考:能否利用單位圓作函數(shù)的圖象。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十四

講授新課前,做一份完美的教案,能夠更大程度的調(diào)動(dòng)學(xué)生在上課時(shí)的積極性,以下是白話文為大家整理的人教版高一數(shù)學(xué)《指數(shù)函數(shù)》教案,希望可以幫助到有需要的朋友。

1。使學(xué)生掌握的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。

(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象。

2。通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。

(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。

(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。

(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的.函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。

(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。

關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

1。理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。

2。通過的圖象和性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析,歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3。通過對(duì)的研究,使學(xué)生能把握函數(shù)研究的基本方法,激發(fā)學(xué)生的學(xué)習(xí)興趣。

重點(diǎn)是理解的定義,把握?qǐng)D象和性質(zhì)。

難點(diǎn)是認(rèn)識(shí)底數(shù)對(duì)函數(shù)值影響的認(rèn)識(shí)。

投影儀。

啟發(fā)討論研究式。

一。引入新課。

我們前面學(xué)習(xí)了指數(shù)運(yùn)算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)———————。

1。6。(板書)。

這類函數(shù)之所以重點(diǎn)介紹的原因就是它是實(shí)際生活中的一種需要。比如我們看下面的問題:

由學(xué)生回答:與之間的關(guān)系式,可以表示為。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了次后繩子剩余的長度為米,試寫出與之間的函數(shù)關(guān)系。

由學(xué)生回答:。

在以上兩個(gè)實(shí)例中我們可以看到這兩個(gè)函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

一。的概念(板書)。

1。定義:形如的函數(shù)稱為。(板書)。

教師在給出定義之后再對(duì)定義作幾點(diǎn)說明。

2。幾點(diǎn)說明(板書)。

(1)關(guān)于對(duì)的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學(xué)生感到有困難,可將問題分解為若會(huì)有什么問題?如,此時(shí),等在實(shí)數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。

若對(duì)于都無意義,若則無論取何值,它總是1,對(duì)它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定且。

(2)關(guān)于的定義域(板書)。

教師引導(dǎo)學(xué)生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時(shí)教師可指出,其實(shí)當(dāng)指數(shù)為無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無理指數(shù)冪,學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則它都適用,所以將指數(shù)范圍擴(kuò)充為實(shí)數(shù)范圍,所以的定義域?yàn)?。擴(kuò)充的另一個(gè)原因是因?yàn)槭顾叽砀袘?yīng)用價(jià)值。

(3)關(guān)于是否是的判斷(板書)。

剛才分別認(rèn)識(shí)了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認(rèn)識(shí)一下,根據(jù)定義我們知道什么樣的函數(shù)是,請(qǐng)看下面函數(shù)是否是。

(1),?(2),?(3)。

(4),?(5)。

學(xué)生回答并說明理由,教師根據(jù)情況作點(diǎn)評(píng),指出只有(1)和(3)是,其中(3)可以寫成,也是指數(shù)圖象。

最后提醒學(xué)生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時(shí)研究的關(guān)鍵在于畫出它的圖象,再細(xì)致歸納性質(zhì)。

3。歸納性質(zhì)。

作圖的用什么方法。用列表描點(diǎn)發(fā)現(xiàn),教師準(zhǔn)備明確性質(zhì),再由學(xué)生回答。

函數(shù)。

1。定義域:

2。值域:

3。奇偶性:既不是奇函數(shù)也不是偶函數(shù)。

4。截距:在軸上沒有,在軸上為1。

對(duì)于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對(duì)第3條還應(yīng)會(huì)證明。對(duì)于單調(diào)性,我建議找一些特殊點(diǎn)。,先看一看,再下定論。對(duì)最后一條也是指導(dǎo)函數(shù)圖象畫圖的依據(jù)。(圖象位于軸上方,且與軸不相交。)。

在此基礎(chǔ)上,教師可指導(dǎo)學(xué)生列表,描點(diǎn)了。取點(diǎn)時(shí)還要提醒學(xué)生由于不具備對(duì)稱性,故的值應(yīng)有正有負(fù),且由于單調(diào)性不清,所取點(diǎn)的個(gè)數(shù)不能太少。

此處教師可利用計(jì)算機(jī)列表描點(diǎn),給出十組數(shù)據(jù),而學(xué)生自己列表描點(diǎn),至少六組數(shù)據(jù)。連點(diǎn)成線時(shí),一定提醒學(xué)生圖象的變化趨勢(shì)(當(dāng)越小,圖象越靠近軸,越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(zhì)(板書)。

1。圖象的畫法:性質(zhì)指導(dǎo)下的列表描點(diǎn)法。

2。草圖:

當(dāng)畫完第一個(gè)圖象之后,可問學(xué)生是否需要再畫第二個(gè)?它是否具有代表性?(教師可提示底數(shù)的條件是且,取值可分為兩段)讓學(xué)生明白需再畫第二個(gè),不妨取為例。

此時(shí)畫它的圖象的方法應(yīng)讓學(xué)生來選擇,應(yīng)讓學(xué)生意識(shí)到列表描點(diǎn)不是唯一的方法,而圖象變換的方法更為簡單。即=與圖象之間關(guān)于軸對(duì)稱,而此時(shí)的圖象已經(jīng)有了,具備了變換的條件。讓學(xué)生自己做對(duì)稱,教師借助計(jì)算機(jī)畫圖,在同一坐標(biāo)系下得到的圖象。

最后問學(xué)生是否需要再畫。(可能有兩種可能性,若學(xué)生認(rèn)為無需再畫,則追問其原因并要求其說出性質(zhì),若認(rèn)為還需畫,則教師可利用計(jì)算機(jī)再畫出如的圖象一起比較,再找共性)。

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個(gè)表,如下:

以上內(nèi)容學(xué)生說不齊的,教師可適當(dāng)提出觀察角度讓學(xué)生去描述,然后再讓學(xué)生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學(xué)生仿照此例再列一個(gè)的表,將相應(yīng)的內(nèi)容填好。為進(jìn)一步整理性質(zhì),教師可提出從另一個(gè)角度來分類,整理函數(shù)的性質(zhì)。

3。性質(zhì)。

(1)無論為何值,都有定義域?yàn)?,值域?yàn)?,都過點(diǎn)。

(2)時(shí),在定義域內(nèi)為增函數(shù),時(shí),為減函數(shù)。

(3)時(shí),,???時(shí),。

總結(jié)之后,特別提醒學(xué)生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。

三。簡單應(yīng)用??(板書)。

1。利用單調(diào)性比大小。?(板書)。

一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1。比較下列各組數(shù)的大小。

(1)與;?(2)與;。

(3)與1。(板書)。

首先讓學(xué)生觀察兩個(gè)數(shù)的特點(diǎn),有什么相同?由學(xué)生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個(gè)特點(diǎn),用什么方法來比較它們的大小呢?讓學(xué)生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個(gè)數(shù)看作某個(gè)函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解:在上是增函數(shù),且。

(板書)。

教師最后再強(qiáng)調(diào)過程必須寫清三句話:

(1)構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。

(2)自變量的大小比較。

(3)函數(shù)值的大小比較。

后兩個(gè)題的過程略。要求學(xué)生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小。

(1)與;?(2)與?;。

(3)與。(板書)。

先讓學(xué)生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導(dǎo)學(xué)生發(fā)現(xiàn)對(duì)(1)來說可以寫成,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(duì)(2)來說可以寫成,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學(xué)生思考解決。(教師可提示學(xué)生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)。

最后由學(xué)生說出1,1,。

解決后由教師小結(jié)比較大小的方法。

(1)構(gòu)造函數(shù)的方法:數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)。

(2)搭橋比較法:用特殊的數(shù)1或0。

三。鞏固練習(xí)。

練習(xí):比較下列各組數(shù)的大?。ò鍟?。

(1)與???(2)與;。

(3)與;(4)與。解答過程略。

四。小結(jié)。

1。的概念。

2。的圖象和性質(zhì)。

3。簡單應(yīng)用。

五。板書設(shè)計(jì)。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十五

1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì)。

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如。

的圖象。

2、通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。

3、通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。

時(shí),函數(shù)值變化情況的區(qū)分。

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點(diǎn)差異,諸如。

(2)對(duì)底數(shù)。

的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。

高一數(shù)學(xué)函數(shù)的奇偶性教案設(shè)計(jì)篇十六

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫出形如。

的圖象.

2.通過對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.

3.通過對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

教學(xué)建議。

教材分析。

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.

教法建議。

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是。

的樣子,不能有一點(diǎn)差異,諸如。

(2)對(duì)底數(shù)。

的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

【本文地址:http://aiweibaby.com/zuowen/15567844.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔