函數(shù)的單調(diào)性教案一大全(18篇)

格式:DOC 上傳日期:2023-11-27 13:39:03
函數(shù)的單調(diào)性教案一大全(18篇)
時間:2023-11-27 13:39:03     小編:LZ文人

教案可以幫助教師預(yù)測學(xué)生可能遇到的問題,提前做好教學(xué)準(zhǔn)備。如何編寫一份針對性強、結(jié)構(gòu)合理的教案是每位教師都需要思考的問題。以下是小編為大家整理的一些教案樣本,供大家參考和借鑒。

函數(shù)的單調(diào)性教案一篇一

地位及重要性。

函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi),函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認(rèn)識。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

教學(xué)目標(biāo)。

(1)了解能用文字語言和符號語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;。

(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;。

(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時讓學(xué)生體驗數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點看問題。

教學(xué)重難點。

重點是對函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解,

二.說教法。

根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學(xué)”的.模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學(xué)生的探索精神。

三.說學(xué)法。

在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。

四.說過程。

通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

設(shè)置問題情景。

[引例]學(xué)校準(zhǔn)備建造一個矩形花壇,面積設(shè)計為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。

寫出y與x的函數(shù)表達式;。

(用多媒體出示問題,并讓學(xué)生思考)。

函數(shù)的單調(diào)性教案一篇二

會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

重點。

難點。

一、復(fù)習(xí)引入。

1、函數(shù)的定義域、值域、圖象、表示方法。

(1)單調(diào)增函數(shù)。

(2)單調(diào)減函數(shù)。

(3)單調(diào)區(qū)間。

二、例題分析。

1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

(1)(2)(2)。

2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。

3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。

三、隨堂練習(xí)。

1、判斷下列說法正確的是。

(1)若定義在上的函數(shù)滿足,則函數(shù)是上的單調(diào)增函數(shù);。

(2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);。

(4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。

2、若一次函數(shù)在上是單調(diào)減函數(shù),則點在直角坐標(biāo)平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函數(shù)在上是______;函數(shù)在上是_______。

3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。

4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。

四、回顧小結(jié)。

課后作業(yè)。

一、基礎(chǔ)題。

(1)(2)。

2、畫函數(shù)的圖象,并寫出單調(diào)區(qū)間。

二、提高題。

3、求證:函數(shù)在上是單調(diào)增函數(shù)。

4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。

5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。

三、能力題。

6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。

函數(shù)的單調(diào)性教案一篇三

引入課題1.觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:

yx1-11-1yx1-11-1yx1-11-1。

1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?

2.畫出下列函數(shù)的圖象,觀察其變化規(guī)律:

f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.

yx1-11-1。

2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的`值隨著________.

1在區(qū)間____________上,f(x)的值隨著x的增大而________.

2在區(qū)間____________上,f(x)的值隨著x的增大而________.

函數(shù)的單調(diào)性教案一篇四

各位老師:

你們好!我今天說課的內(nèi)容是全日制普通高中教科書第一冊(上)第二章第三節(jié)《函數(shù)的單調(diào)性》。以下我從六個方面來匯報我是如何研究教材、備課和設(shè)計教學(xué)過程的。

一、教材分析。

1、教材內(nèi)容。

本節(jié)課是人教版第二章《函數(shù)》第三節(jié)函數(shù)單調(diào)性的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

2、教材所處地位、作用。

函數(shù)的單調(diào)性是對函數(shù)概念的延續(xù)和拓展,也是后續(xù)研究幾類具體函數(shù)的單調(diào)性的基礎(chǔ);此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用。在方法上,教學(xué)過程中還滲透了數(shù)形結(jié)合、類比化歸等數(shù)學(xué)思想方法。它是高中數(shù)學(xué)中的`核心知識之一,在函數(shù)教學(xué)中起著承上啟下的作用。

二、學(xué)情分析。

1、知識基礎(chǔ)。

高一學(xué)生已學(xué)習(xí)了函數(shù)的概念等知識,并且接觸了一些特殊的單調(diào)函數(shù)。

2、認(rèn)知水平與能力。

高一學(xué)生已初步具有數(shù)形結(jié)合思維能力,能在教師的引導(dǎo)下解決問題。

3、任教班級學(xué)生特點。

學(xué)生基礎(chǔ)較扎實、思維較活躍,能較好地應(yīng)用數(shù)形結(jié)合解決問題,但歸納轉(zhuǎn)化的能力還有待進一步提高,觀察討論能力有待加強。

三、目標(biāo)分析。

(一)知識技能。

1、讓學(xué)生理解增函數(shù)和減函數(shù)的定義;

3、了解函數(shù)的單調(diào)區(qū)間的概念,并能根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間。

(二)過程與方法。

1、通過證明函數(shù)的單調(diào)性的學(xué)習(xí),培養(yǎng)學(xué)生的邏輯思維能力;。

2、通過運用公式的過程,提高學(xué)生類比化歸、數(shù)形結(jié)合的能力。

(三)情感態(tài)度與價值觀。

讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲。領(lǐng)會用從特殊到一般,再從一般到特殊的方法去觀察分析事物。

由教學(xué)目標(biāo)和學(xué)生的實際水平,我確定本節(jié)課的重、難點:。

教學(xué)難點:利用函數(shù)單調(diào)性定義或者函數(shù)圖象判斷簡單函數(shù)的單調(diào)性。

解決策略:

本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比化歸的思想,層層深入,通過學(xué)生自主觀察、討論、探究得到單調(diào)性概念;同時,借助多媒體的直觀演示,幫助學(xué)生理解,并通過范例后的變式訓(xùn)練和教師的點撥引導(dǎo),師生互動、講練結(jié)合,從而突出重點、突破難點。

四、教學(xué)法分析。

(一)教法:

1、從學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。

2、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并成功地完成書面表達。

3、應(yīng)用多媒體,增大教學(xué)容量和直觀性。

(二)學(xué)法:

1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的認(rèn)知飛躍。

五、過程分析。

教學(xué)流程:

(一)問題情景,引出新知(3’)。

(二)學(xué)生活動,歸納特征(5’)。

(三)對比抽象,建構(gòu)定義(7’)。

(四)定義講解,理解概念(3’)。

(五)數(shù)學(xué)應(yīng)用,鞏固提高(18’)。

(六)歸納討論,引導(dǎo)小結(jié)(5’)。

六、評價分析。

1、設(shè)計體現(xiàn)了新課標(biāo)的核心要求:發(fā)展學(xué)生的能力:

a、新課的引入-數(shù)形結(jié)合的能力;

b、直觀性概念提出-由特殊到一般-觀察討論的能力;

c、數(shù)學(xué)語言的提出-由感性到理性-歸納總結(jié)的能力;

d、概念的應(yīng)用-由一般到特殊-學(xué)以致用的能力。

2、目標(biāo)達成:。

概念的形成-知識目標(biāo)1。

數(shù)學(xué)應(yīng)用-知識目標(biāo)2。

深化理解-能力目標(biāo)。

問題解決-情感目標(biāo)。

3、教學(xué)隨想:

數(shù)無形時少直覺,形少數(shù)時難入微。

數(shù)形結(jié)合百般好,隔離分家萬事休?!A羅庚。

以后教學(xué)中,要注意“數(shù)”和“形”的和諧統(tǒng)一。

將本文的word文檔下載到電腦,方便收藏和打印。

函數(shù)的單調(diào)性教案一篇五

函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi)。函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),也是在研究函數(shù)時經(jīng)常要注意的一個性質(zhì),并且在比較幾個數(shù)的大小、對函數(shù)的定性分析以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對函數(shù)的本質(zhì)認(rèn)識。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。

(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;。

(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運動變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時讓學(xué)生體驗數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點看問題。

重點是對函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解。

難點是利用函數(shù)單調(diào)性的概念證明或判斷具體函數(shù)的單調(diào)性。

根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實際水平,我嘗試運用“問題解決”與“多媒體輔助教學(xué)”的模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動參與以達到對知識的“發(fā)現(xiàn)”與接受,進而完成對知識的內(nèi)化,使書本知識成為自己知識;同時也培養(yǎng)學(xué)生的探索精神。

在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個過程學(xué)生學(xué)生主動參與、積極思考、探索嘗試的動態(tài)活動之中;同時讓學(xué)生體驗到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。

通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點撥、啟發(fā)、引導(dǎo)為教師職責(zé)。

設(shè)置問題情景。

[引例]學(xué)校準(zhǔn)備建造一個矩形花壇,面積設(shè)計為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。

寫出y與x的函數(shù)表達式;。

(用多媒體出示問題,并讓學(xué)生思考)。

函數(shù)的單調(diào)性教案一篇六

重點難點。

教學(xué)重點:函數(shù)單調(diào)性的概念、判斷及證明.。

教學(xué)難點:歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.。

教學(xué)方法。

教師啟發(fā)講授,學(xué)生探究學(xué)習(xí).。

教學(xué)手段。

計算機、投影儀.。

教學(xué)過程。

創(chuàng)設(shè)情境,引入課題。

課前布置任務(wù):

(1)由于某種原因,北京奧運會開幕式時間由原定的`7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.

(2)通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況.。

引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考.。

問題:觀察圖形,能得到什么信息?

預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時達到;

(2)在某時刻的溫度;

(3)某些時段溫度升高,某些時段溫度降低.。

問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?

預(yù)案:水位高低、燃油價格、股票價格等.。

歸納:用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變小.。

函數(shù)的單調(diào)性教案一篇七

本節(jié)課采用導(dǎo)學(xué)案引導(dǎo)自學(xué)法。首先,復(fù)習(xí)函數(shù)單調(diào)性的定義,單調(diào)性又名增減性,判斷函數(shù)的單調(diào)性有兩種方法:圖像法和定義法。然后,要求學(xué)生自行閱讀課本p57—p58,完成表格,表格將課本實例分析中的8個函數(shù)全部羅列出來,完成后觀察表格的第3列和第6列,說明導(dǎo)數(shù)的正負(fù)與函數(shù)的單調(diào)性有何關(guān)系?學(xué)生易得出結(jié)論。從而說明判斷函數(shù)的單調(diào)性還可以用導(dǎo)數(shù)法。接下來,講解例1,實際操作,說明如何利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,根據(jù)講解過程,讓學(xué)生總結(jié)求解的一般步驟,并做了2個練習(xí)。很不巧,此時下課鈴聲響了,本節(jié)教學(xué)任務(wù)沒有完成。本節(jié)課,我設(shè)計了三個題型,僅完成了一個。課堂時間之所以把控的不好,原因很多,我反思之后,主要原因有以下兩點:

(1)學(xué)生基礎(chǔ)差,對單調(diào)性的知識點掌握不扎實,且自主學(xué)習(xí)習(xí)慣尚未養(yǎng)成,導(dǎo)致閱讀課本填表格的時間過長。我在想,是否可以讓學(xué)生提前復(fù)習(xí)單調(diào)性的概念,并預(yù)習(xí)課本完成表格,以提高課堂效率。其實,本來也是這樣打算的,但由于對學(xué)生的學(xué)習(xí)態(tài)度不自信,所以放棄了,想著課堂上也能完成,結(jié)果估計不足。應(yīng)該對學(xué)生多一點信心和耐心,行為習(xí)慣的養(yǎng)成不是一朝一夕能做到的。

(2)例1中,求導(dǎo)后的計算涉及到不等式的求解,學(xué)生對此知識點的把握也不是很到位,教師只能先帶領(lǐng)學(xué)生回憶不等式的解法,再進行例1的求解。如此,時間又被耽誤了。對于這一點,我也預(yù)估不足,說明我在備課時,對學(xué)情的分析不足。

函數(shù)的單調(diào)性教案一篇八

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的思想.

3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

教學(xué)建議。

一、知識結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點難點分析。

(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.

(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

1.使學(xué)生了解奇偶性的概念,回會利用定義判斷簡單函數(shù)的奇偶性.

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和特殊到一般的思想方法.

3.在學(xué)生感受美的同時,激發(fā)的興趣,培養(yǎng)學(xué)生樂于求索的精神.

難點。

重點是奇偶性概念的形成與函數(shù)奇偶性的判斷。

難點是對概念的認(rèn)識。

教學(xué)用具。

投影儀,計算機。

教學(xué)方法。

引導(dǎo)發(fā)現(xiàn)法。

一.引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì).從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì).

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱.最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律.

二.講解新課。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)。

從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立.最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.

(1)偶函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù).(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步認(rèn)識)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù).(板書)。

(由于在定義形成時已經(jīng)有了一定的認(rèn)識,故可以先作判斷,在判斷中再加深認(rèn)識)。

(1);?????????????(2);。

(3);;。

(5);?(6).

(要求學(xué)生口答,選出1-2個題說過程)。

解:(1)是奇函數(shù).(2)是偶函數(shù).?。

(3),是偶函數(shù).

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數(shù).(從這個問題的解決中讓學(xué)生再次認(rèn)識到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論.

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)。

由學(xué)生小結(jié)判斷奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.

例2.?已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)??(試由學(xué)生來完成)。

證明:既是奇函數(shù)也是偶函數(shù),。

=,且,。

=.

即.

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

(1);??????(2);??(3).

由學(xué)生回答,不完整之處教師補充.

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù).

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù).

(3)當(dāng)時,于是,。

當(dāng)時,,于是=,。

綜上是奇函數(shù).

教師小結(jié)(1)(2)注意分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可.

三.小結(jié)。

1.奇偶性的概念。

2.判斷中注意的問題。

四.作業(yè)?略。

五.

2.函數(shù)的奇偶性例1.????????????????例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

具備奇偶性的必要條件。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:。

設(shè)為三角形的三條邊,求證:.

函數(shù)的單調(diào)性教案一篇九

教后記函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì),通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的.概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題。用解析的方法來研究函數(shù)圖象的性質(zhì),如何將圖形特征用嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)語言來刻畫是本節(jié)課的難點之一。另一難點是學(xué)生在高中階段第一次接觸代數(shù)證明,如何進行嚴(yán)格的推理論證并完成規(guī)范的書面表達。圍繞以上兩個難點,在本節(jié)課的處理上,我著重注意了以下幾個問題:

1.重視學(xué)生的親身體驗.具體體現(xiàn)在兩個方面:(1)將新知識與學(xué)生的已有知識建立了聯(lián)系,引導(dǎo)學(xué)生借助已學(xué)過的一次函數(shù)、二次函數(shù)的圖象,從圖象分析入手,使學(xué)生對增、減函數(shù)有一個直觀的感知,完成對函數(shù)單調(diào)性的第一次認(rèn)識。教學(xué)中通過一次函數(shù)、二次函數(shù)兩個具體函數(shù)的圖像及數(shù)值變化特征的研究,得到“圖象是上升的”,相應(yīng)地即“y隨著x的增大而增大”,初步得到單調(diào)性的說法,通過討論交流,讓學(xué)生嘗試就一般情況進行刻畫,提出函數(shù)單調(diào)性的定義,然后通過辨析、練習(xí)等幫助學(xué)生理解這一概念。(2)運用新知識嘗試解決新問題,重視學(xué)生的動手實踐過程,通過對定義的解讀、鞏固,讓學(xué)生動手去實踐運用定義.

2.重視課堂問題的設(shè)計。通過對問題的設(shè)計,引導(dǎo)學(xué)生解決問題。

3.重視方法的生成。用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性,將證明過程步驟化,形成思維定勢,在學(xué)生剛剛接確一個新的知識時,思維定勢對理解知識本身是有益的。使用函數(shù)單調(diào)性定義證明是本節(jié)課的一個難點,學(xué)生剛剛接確這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念。

當(dāng)然本節(jié)課還是有些不足之處,忽視是課本上的一個重要的例題,反比例函數(shù)單調(diào)性的證明。這是一個重點,卻在本節(jié)課的沒有講到,所以本節(jié)課的安排還是顧此失彼了,駕馭課堂的能力還是有所欠缺的。這點我還要繼續(xù)努力。

函數(shù)的單調(diào)性教案一篇十

【教學(xué)目標(biāo)】【知識目標(biāo)】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.【能力目標(biāo)】通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.【德育目標(biāo)】通過知識的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程.【教學(xué)重點】函數(shù)單調(diào)性的概念、判斷及證明.函數(shù)的單調(diào)性是學(xué)生第一次接觸用嚴(yán)格的邏輯語言證明函數(shù)的性質(zhì),并在今后解決初等函數(shù)的性質(zhì)、求函數(shù)的值域、不等式及比較兩個數(shù)的大小等方面有廣泛的實際應(yīng)用,【教學(xué)難點】歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.由于判斷或證明函數(shù)的單調(diào)性,常常要綜合運用一些知識(如不等式、因式分解、配方及數(shù)形結(jié)合的思想方法等)所以判斷或證明函數(shù)的單調(diào)性是本節(jié)課的難點.【教材分析】函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它把自變量的變化方向和函數(shù)值的變化方向定性的聯(lián)系在一起,所以本節(jié)課在教材中的作用如下(1)函數(shù)的單調(diào)性起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決函數(shù)的某些問題中得到了充分運用,函數(shù)的單調(diào)性與前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù)有密切的聯(lián)系;函數(shù)的單調(diào)性一節(jié)中的知識是它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ)。(2)函數(shù)的單調(diào)性是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,這節(jié)課通過對具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確定義,明確指出函數(shù)的增減性是相對于某個區(qū)間來說的。教材中判斷函數(shù)的增減性,既有從圖像上進行觀察的直觀方法,又有根據(jù)其定義進行邏輯推理的嚴(yán)格證明方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進而用推理證明猜想的體系。同時還要綜合利用前面的知識解決函數(shù)單調(diào)性的一些問題,有利于學(xué)生數(shù)學(xué)能力的提高。(3)函數(shù)的單調(diào)性有著廣泛的實際應(yīng)用。在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的'數(shù)形結(jié)合思想將貫穿于我們整個數(shù)學(xué)教學(xué)。因此“函數(shù)的單調(diào)性”在中學(xué)數(shù)學(xué)內(nèi)容里占有十分重要的地位。它體現(xiàn)了函數(shù)的變化趨勢和變化特點,在利用函數(shù)觀點解決問題中起著十分重要的作用,為培養(yǎng)創(chuàng)新意識和實踐能力提供了重要方式和途徑?!緦W(xué)情分析】從學(xué)生的知識上看,學(xué)生已經(jīng)學(xué)過一次函數(shù),二次函數(shù),反比例函數(shù)等簡單函數(shù),函數(shù)的概念及函數(shù)的表示,能畫出一些簡單函數(shù)的圖像,從圖像的直觀變化,學(xué)生能粗略的得到函數(shù)增減性的定義,所以引入函數(shù)的單調(diào)性的定義應(yīng)該是順理成章的。從學(xué)生現(xiàn)有的學(xué)習(xí)能力看,通過初中對函數(shù)的認(rèn)識與實驗,學(xué)生已具備了一定的觀察事物的能力,積累了一些研究問題的經(jīng)驗,在一定程度上具備了抽象、概括的能力和語言轉(zhuǎn)換能力。從學(xué)生的心理學(xué)習(xí)心理上看,學(xué)生頭腦中雖有一些函數(shù)性質(zhì)的實物實例,但并沒有上升為“概念”的水平,如何“定性”“定量”地描述函數(shù)性質(zhì)是學(xué)生關(guān)注的問題,也是學(xué)習(xí)的重點問題。函數(shù)的單調(diào)性是學(xué)生從已經(jīng)學(xué)習(xí)的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì),學(xué)生也容易產(chǎn)生共鳴,通過對比產(chǎn)生頓悟,渴望獲得這種學(xué)習(xí)的積極心向是學(xué)生學(xué)好本節(jié)課的情感基礎(chǔ)。但是如何運用數(shù)學(xué)符號將自然語言的描述提升為形式化的定義,學(xué)生接受起來比較困難?在教學(xué)中要多引導(dǎo),讓學(xué)生真正的理解函數(shù)單調(diào)性的定義?!窘虒W(xué)方法】教師是教學(xué)的主體、學(xué)生是學(xué)習(xí)的主體,通過雙主體的教學(xué)模式方法:啟發(fā)式教學(xué)法――以設(shè)問和疑問層層引導(dǎo),激發(fā)學(xué)生,啟發(fā)學(xué)生積極思考,逐步從常識走向科學(xué),將感性認(rèn)識提升到理性認(rèn)識,培養(yǎng)和發(fā)展學(xué)生的抽象思維能力。探究教學(xué)法――引導(dǎo)學(xué)生去疑;鼓勵學(xué)生去探;激勵學(xué)生去思,培養(yǎng)學(xué)生的創(chuàng)造性思維和批判精神。合作學(xué)習(xí)――通過組織小組討論達到探究、歸納的目的?!窘虒W(xué)手段】計算機、投影儀.【教學(xué)過程】一、創(chuàng)設(shè)情境,引入課題(利用電腦展示)1.如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時間的增大,氣溫逐漸升高或下降”這一特征?引導(dǎo)學(xué)生識圖,捕捉信息,啟發(fā)學(xué)生思考.問題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時達到;(2)在某時刻的溫度;(3)某些時段溫度升高,某些時段溫度降低.在生活中,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎?預(yù)案:股票價格、水位變化、心電圖等等春蘭股份線性圖.水位變化圖歸納:用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變?。荚O(shè)計意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對于自變量變化時,函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識,但是沒有嚴(yán)格的定義,今天我們的任務(wù)首先就是建立函數(shù)單調(diào)性的嚴(yán)格定義.1.借助圖象,直觀感知問題1:分別作出函數(shù)的圖象,并且觀察自變量變化時,函數(shù)值有什么變化規(guī)律?(學(xué)生自己動手畫,然后電腦顯示下圖)預(yù)案:生:函數(shù)在整個定義域內(nèi)y隨x的增大而增大;函數(shù)在整個定義域內(nèi)y隨x的增大而減小.師:函數(shù)的圖像變化規(guī)律生:在y軸的的左側(cè)y隨x的增大而減?。趛軸的的右側(cè)y隨x的增大而增大。師:我們學(xué)過區(qū)間的表示方法,如何用區(qū)間的概念來表述圖像的變化規(guī)律生:在上y隨x的增大而增大,在上y隨x的增大而減?。畮煟哼@樣表述就比較嚴(yán)密了,很好。由上面的討論可知,函數(shù)的單調(diào)性與自變量的范圍有關(guān),一個函數(shù)并不一定在整個正義域內(nèi)是單調(diào)函數(shù),但在定義城的某個子集上可以是單調(diào)函數(shù)。(3)函數(shù)的圖像變化規(guī)律如何。生:(1)定義域中的減函數(shù)。(2)在上y隨x的增大而減小,在上y隨x的增大而減小.師:對于兩種答案,哪一種是正確的,為什么?學(xué)生分組討論。從定義域,圖像的角度考慮,也可以舉反例引導(dǎo)學(xué)生進行分類描述(增函數(shù)、減函數(shù)).并引導(dǎo)學(xué)生用區(qū)間明確描述函數(shù)的單調(diào)性從而讓學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì).問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?預(yù)案:如果函數(shù)在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù);如果函數(shù)在某個區(qū)間上隨自變量x的增大,y越來越小,我們說函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識是從圖象的角度得到的,是對函數(shù)單調(diào)性的直觀,描述性的認(rèn)識.〖設(shè)計意圖〗從圖象直觀感知函數(shù)單調(diào)性,完成對函數(shù)單調(diào)性的第一次認(rèn)識.2.探究規(guī)律,理性認(rèn)識問題1:下圖是函數(shù)的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?(電腦顯示,學(xué)生分組討論)學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴(yán)密化、精確化的研究.〖設(shè)計意圖〗使學(xué)生體會到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性.問題2:如何從解析式的角度說明在為增函數(shù)?預(yù)案:生:在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為1222,所以在為增函數(shù).生:僅僅兩個數(shù)的大小關(guān)系不能說明函數(shù)y=x2在區(qū)間[0,+∞)上為單調(diào)遞增函數(shù),應(yīng)該舉出無數(shù)個。由于很多學(xué)生不能分清“無數(shù)”和“所有”的區(qū)別,所以許多學(xué)生對學(xué)生2的說法表示贊同。生:函數(shù))無數(shù)個如(2)中的實數(shù),顯然f(x)也隨x的增大而增大,是不是也可以說函數(shù)在區(qū)間上是增函數(shù)?可這與圖象矛盾???師:“無數(shù)個”能不能代表“所有”呢?比如:2、3、4、5……有無數(shù)個自然數(shù)都比大,那我們能不能說所有的自然數(shù)都比大呢?所以具體值取得再多,也不能代表所有的,思考如何體現(xiàn)區(qū)間上的所有值。引導(dǎo)學(xué)生利用字母表示數(shù)。生:任取且,因為,即,所以在為增函數(shù).舊教材的定義在這里就可以歸納出來,但是人教b版新教材使用了自變量的增量和函數(shù)值的增量來表述,并為以后學(xué)習(xí)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性做準(zhǔn)備,所以需進一步引導(dǎo)學(xué)生利用增量來定義函數(shù)的單調(diào)性。(5)仿(4)且,由圖象可知,即給自變量一個增量,,函數(shù)值的增量所以在為增函數(shù)。對于學(xué)生錯誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進行辨析,使學(xué)生認(rèn)識到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個自變量進一步尋求自變量的增量與函數(shù)值的增量之間的變化規(guī)律,判斷函數(shù)單調(diào)性。注意這里的“都有”是對應(yīng)于“任意”的?!荚O(shè)計意圖〗把對單調(diào)性的認(rèn)識由感性上升到理性認(rèn)識的高度,完成對概念的第二次認(rèn)識.事實上也給出了證明單調(diào)性的方法,為證明單調(diào)性做好鋪墊.3.抽象思維,形成概念問題:你能用準(zhǔn)確的數(shù)學(xué)符號語言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.(1)板書定義設(shè)函數(shù)的定義域為a,區(qū)間ma,如果取區(qū)間m中的任意兩個值,當(dāng)改變量時,都有,那么就稱函數(shù)在區(qū)間m上是增函數(shù),如圖(1)當(dāng)改變量時,都有,那么就稱函數(shù)在區(qū)間m上是減函數(shù),如圖(2)(2)鞏固概念(以下問題老師提問后,學(xué)生適當(dāng)討論后回答)師:根據(jù)函數(shù)的單調(diào)性的定義思考:由f(x)是增(減)函數(shù)且f(x1)。

將本文的word文檔下載到電腦,方便收藏和打印。

函數(shù)的單調(diào)性教案一篇十一

定義:

函數(shù)的單調(diào)性,也叫函數(shù)的增減性,可以定性描述在一個指定區(qū)間內(nèi),函數(shù)值變化與自變量變化的關(guān)系。當(dāng)函數(shù)f(x)的自變量在其定義區(qū)間內(nèi)增大(或減?。r,函數(shù)值也隨著增大(或減?。瑒t稱該函數(shù)為在該區(qū)間上具有單調(diào)性(單調(diào)增加或單調(diào)減少)。在集合論中,在有序集合之間的函數(shù),如果它們保持給定的次序,是具有單調(diào)性的.。

如果說明一個函數(shù)在某個區(qū)間d上具有單調(diào)性,則我們將d稱作函數(shù)的一個單調(diào)區(qū)間,則可判斷出:

dq(q是函數(shù)的定義域)。

區(qū)間d上,對于函數(shù)f(x),(任取值)x1,x2∈d且x1x2,都有f(x1)f(x2)。或,x1,x2∈d且x1x2,都有f(x1)。

函數(shù)圖像一定是上升或下降的。

函數(shù)的單調(diào)性教案一篇十二

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證實,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想.

3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

教學(xué)建議。

一、知識結(jié)構(gòu)。

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點難點分析。

(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實.

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點.

三、教法建議。

(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來.

(2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

教學(xué)目標(biāo)。

1.使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性.

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法.

3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神.

教學(xué)重點,難點。

重點是奇偶性概念的形成與函數(shù)奇偶性的判定。

難點是對概念的熟悉。

教學(xué)用具。

投影儀,計算機。

教學(xué)方法。

引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程。

一.引入新課。

它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì)今天我們繼續(xù)研究函數(shù)的另一個性質(zhì).從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì).

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱.最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律.

二.講解新課。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)。

從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立.最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.

(1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù).(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù).(板書)。

(由于在定義形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)。

(1);(2);。

(3);;。

(5);(6).

(要求學(xué)生口答,選出12個題說過程)。

解:(1)是奇函數(shù).(2)是偶函數(shù).

(3),是偶函數(shù).

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數(shù).(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論.

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)。

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.

例2.已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)(試由學(xué)生來完成)。

證實:既是奇函數(shù)也是偶函數(shù),。

=,且,。

=.

即.

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

(1);(2);(3).

由學(xué)生回答,不完整之處教師補充.

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù).

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù).

(3)當(dāng)時,于是,。

當(dāng)時,,于是=,。

綜上是奇函數(shù).

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可.

三.小結(jié)。

1.奇偶性的概念。

2.判定中注重的問題。

四.作業(yè)略。

五.板書設(shè)計。

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

(3)定義域關(guān)于原點對稱是函數(shù)例2.小結(jié)。

具備奇偶性的必要條件。

探究活動。

在此基礎(chǔ)上試?yán)眠@個函數(shù)的單調(diào)性解決下面的問題:。

函數(shù)的單調(diào)性教案一篇十三

1.使學(xué)生了解奇偶性的概念,回會利用定義判斷簡單函數(shù)的奇偶性.

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和特殊到一般的思想方法.

3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神.

教學(xué)重點,難點。

重點是奇偶性概念的形成與函數(shù)奇偶性的判斷。

難點是對概念的認(rèn)識。

教學(xué)用具。

投影儀,計算機。

教學(xué)方法。

引導(dǎo)發(fā)現(xiàn)法。

教學(xué)過程?。

一.引入新課。

前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì).從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì).

(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)。

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱.最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律.

二.講解新課。

學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)。

從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立.最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.

(1)偶函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù).(板書)。

(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步認(rèn)識)。

提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)。

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù).(板書)。

(由于在定義形成時已經(jīng)有了一定的認(rèn)識,故可以先作判斷,在判斷中再加深認(rèn)識)。

(1);?????????????(2);。

(3);;。

(5);?(6).

(要求學(xué)生口答,選出1-2個題說過程)。

解:(1)是奇函數(shù).(2)是偶函數(shù).?。

(3),是偶函數(shù).

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數(shù).(從這個問題的解決中讓學(xué)生再次認(rèn)識到定義中任意性的重要)。

從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論.

(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)。

由學(xué)生小結(jié)判斷奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.

例2.?已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)??(試由學(xué)生來完成)。

證明:既是奇函數(shù)也是偶函數(shù),。

=,且,。

=.

即.

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)。

(1);??????(2);??(3).

由學(xué)生回答,不完整之處教師補充.

解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù).

(2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù).

(3)當(dāng)時,于是,。

當(dāng)時,,于是=,。

綜上是奇函數(shù).

教師小結(jié)(1)(2)注意分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可.

三.小結(jié)。

1.奇偶性的概念。

2.判斷中注意的問題。

四.作業(yè)?略。

五.板書設(shè)計?。

2.函數(shù)的奇偶性例1.????????????????例3.

(1)偶函數(shù)定義。

(2)奇函數(shù)定義。

具備奇偶性的必要條件。

函數(shù)的單調(diào)性教案一篇十四

尊敬的各位評委、各位老師大家好!我說課的題目是《函數(shù)的單調(diào)性》,我將從四個方面來闡述我對這節(jié)課的設(shè)計。

一、教材分析。

函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)。從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、研究函數(shù)的其他性質(zhì)有很強的啟發(fā)與示范作用。

根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;

過程與方法引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)單調(diào)增函數(shù)、單調(diào)減函數(shù)等概念;能運用函數(shù)單調(diào)性概念解決簡單的問題;使學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的.能力。

情感態(tài)度與價值觀在函數(shù)單調(diào)性的學(xué)習(xí)過程中,使學(xué)生體驗數(shù)學(xué)的科學(xué)價值和應(yīng)用價值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

根據(jù)上述教學(xué)目標(biāo),本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念形成和初步運用。雖然高一學(xué)生已經(jīng)有一定的抽象思維能力,但函數(shù)單調(diào)性概念對他們來說還是比較抽象的。因此,本節(jié)課的學(xué)習(xí)難點是函數(shù)單調(diào)性的概念形成。

二、教法學(xué)法。

為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。

2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。

3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评?,并順利地完成書面表達。

在學(xué)法上我重視了:

1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的質(zhì)的飛躍。

2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。

三、教學(xué)過程。

函數(shù)單調(diào)性的概念產(chǎn)生和形成是本節(jié)課的難點,為了突破這一難點,在教學(xué)設(shè)計上采用了下列四個環(huán)節(jié)。

(一)創(chuàng)設(shè)情境,提出問題。

(問題情境)(播放中央電視臺天氣預(yù)報的音樂)。如圖為某地區(qū)元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:

函數(shù)的單調(diào)性教案一篇十五

定義:

函數(shù)的單調(diào)性,也叫函數(shù)的增減性,可以定性描述在一個指定區(qū)間內(nèi),函數(shù)值變化與自變量變化的關(guān)系。當(dāng)函數(shù)f(x)的自變量在其定義區(qū)間內(nèi)增大(或減?。r,函數(shù)值也隨著增大(或減?。?,則稱該函數(shù)為在該區(qū)間上具有單調(diào)性(單調(diào)增加或單調(diào)減少)。在集合論中,在有序集合之間的函數(shù),如果它們保持給定的次序,是具有單調(diào)性的.。

如果說明一個函數(shù)在某個區(qū)間d上具有單調(diào)性,則我們將d稱作函數(shù)的一個單調(diào)區(qū)間,則可判斷出:

dq(q是函數(shù)的定義域)。

區(qū)間d上,對于函數(shù)f(x),(任取值)x1,x2∈d且x1x2,都有f(x1)f(x2)。或,x1,x2∈d且x1x2,都有f(x1)。

函數(shù)圖像一定是上升或下降的。

該函數(shù)在ed上與d上具有相同的單調(diào)性。

函數(shù)的單調(diào)性教案一篇十六

各位老師:

你們好!我今天說課的內(nèi)容是全日制普通高中教科書第一冊(上)第二章第三節(jié)《函數(shù)的單調(diào)性》。以下我從六個方面來匯報我是如何研究教材、備課和設(shè)計教學(xué)過程的。

一、教材分析。

1、教材內(nèi)容。

本節(jié)課是人教版第二章《函數(shù)》第三節(jié)函數(shù)單調(diào)性的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

2、教材所處地位、作用。

函數(shù)的單調(diào)性是對函數(shù)概念的延續(xù)和拓展,也是后續(xù)研究幾類具體函數(shù)的單調(diào)性的基礎(chǔ);此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用。在方法上,教學(xué)過程中還滲透了數(shù)形結(jié)合、類比化歸等數(shù)學(xué)思想方法。它是高中數(shù)學(xué)中的`核心知識之一,在函數(shù)教學(xué)中起著承上啟下的作用。

二、學(xué)情分析。

1、知識基礎(chǔ)。

高一學(xué)生已學(xué)習(xí)了函數(shù)的概念等知識,并且接觸了一些特殊的單調(diào)函數(shù)。

2、認(rèn)知水平與能力。

高一學(xué)生已初步具有數(shù)形結(jié)合思維能力,能在教師的引導(dǎo)下解決問題。

3、任教班級學(xué)生特點。

學(xué)生基礎(chǔ)較扎實、思維較活躍,能較好地應(yīng)用數(shù)形結(jié)合解決問題,但歸納轉(zhuǎn)化的能力還有待進一步提高,觀察討論能力有待加強。

三、目標(biāo)分析。

(一)知識技能。

1、讓學(xué)生理解增函數(shù)和減函數(shù)的定義;

2、根據(jù)定義證明函數(shù)的單調(diào)性;

3、了解函數(shù)的單調(diào)區(qū)間的概念,并能根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間。

(二)過程與方法。

1、通過證明函數(shù)的單調(diào)性的學(xué)習(xí),培養(yǎng)學(xué)生的邏輯思維能力;。

2、通過運用公式的過程,提高學(xué)生類比化歸、數(shù)形結(jié)合的能力。

(三)情感態(tài)度與價值觀。

讓學(xué)生積極參與觀察、分析、探索等課堂教學(xué)的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發(fā)求知欲。領(lǐng)會用從特殊到一般,再從一般到特殊的方法去觀察分析事物。

由教學(xué)目標(biāo)和學(xué)生的實際水平,我確定本節(jié)課的重、難點:。

教學(xué)難點:利用函數(shù)單調(diào)性定義或者函數(shù)圖象判斷簡單函數(shù)的單調(diào)性。

解決策略:

本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比化歸的思想,層層深入,通過學(xué)生自主觀察、討論、探究得到單調(diào)性概念;同時,借助多媒體的直觀演示,幫助學(xué)生理解,并通過范例后的變式訓(xùn)練和教師的點撥引導(dǎo),師生互動、講練結(jié)合,從而突出重點、突破難點。

四、教學(xué)法分析。

(一)教法:

1、從學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)學(xué)生求知欲,調(diào)動學(xué)生主體參與的積極性。

2、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_。

3、應(yīng)用多媒體,增大教學(xué)容量和直觀性。

(二)學(xué)法:

1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的認(rèn)知飛躍。

五、過程分析。

教學(xué)流程:

(一)問題情景,引出新知(3’)。

(二)學(xué)生活動,歸納特征(5’)。

(三)對比抽象,建構(gòu)定義(7’)。

(四)定義講解,理解概念(3’)。

(五)數(shù)學(xué)應(yīng)用,鞏固提高(18’)。

(六)歸納討論,引導(dǎo)小結(jié)(5’)。

六、評價分析。

1、設(shè)計體現(xiàn)了新課標(biāo)的核心要求:發(fā)展學(xué)生的能力:

a、新課的引入-數(shù)形結(jié)合的能力;

b、直觀性概念提出-由特殊到一般-觀察討論的能力;

c、數(shù)學(xué)語言的提出-由感性到理性-歸納總結(jié)的能力;

d、概念的應(yīng)用-由一般到特殊-學(xué)以致用的能力。

2、目標(biāo)達成:。

概念的形成-知識目標(biāo)1。

數(shù)學(xué)應(yīng)用-知識目標(biāo)2。

深化理解-能力目標(biāo)。

問題解決-情感目標(biāo)。

3、教學(xué)隨想:

數(shù)無形時少直覺,形少數(shù)時難入微。

數(shù)形結(jié)合百般好,隔離分家萬事休?!A羅庚。

以后教學(xué)中,要注意“數(shù)”和“形”的和諧統(tǒng)一。

函數(shù)的單調(diào)性教案一篇十七

1.教材的地位和作用。

其次,從函數(shù)角度來講。函數(shù)的單調(diào)性是學(xué)生學(xué)習(xí)函數(shù)概念后學(xué)習(xí)的第一個函數(shù)性質(zhì),也是第一個用數(shù)學(xué)符號語言來刻畫的概念。函數(shù)的單調(diào)性與函數(shù)的奇偶性、周期性一樣,都是研究自變量變化時,函數(shù)值的變化規(guī)律;學(xué)生對于這些概念的認(rèn)識,都經(jīng)歷了直觀感受、文字描述和嚴(yán)格定義三個階段,即都從圖象觀察,以函數(shù)解析式為依據(jù),經(jīng)歷用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果的過程。因此,函數(shù)單調(diào)性的學(xué)習(xí)為進一步學(xué)習(xí)函數(shù)的其它性質(zhì)提供了方法依據(jù)。

最后,從學(xué)科角度來講。函數(shù)的單調(diào)性是學(xué)習(xí)不等式、極限、導(dǎo)數(shù)等其它數(shù)學(xué)知識的重要基礎(chǔ),是解決數(shù)學(xué)問題的常用工具,也是培養(yǎng)學(xué)生邏輯推理能力和滲透數(shù)形結(jié)合思想的重要素材。

2.教學(xué)的重點和難點。

對于函數(shù)的單調(diào)性,學(xué)生的認(rèn)知困難主要在兩個方面:

首先,要求用準(zhǔn)確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,把對單調(diào)性直觀感性的認(rèn)識上升到理性的高度,這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的.學(xué)生來說比較困難。

其次,單調(diào)性的證明是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的。

根據(jù)以上的分析和教學(xué)大綱對單調(diào)性的教學(xué)要求,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念,判斷、證明函數(shù)的單調(diào)性;難點是引導(dǎo)學(xué)生歸納并抽象出函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性。

二、教學(xué)目標(biāo)的確定。

根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認(rèn)知水平,我從三個方面確定了以下教學(xué)目標(biāo):

三、教學(xué)方法的選擇。

1.教學(xué)方法。

本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認(rèn)知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法。教學(xué)過程中,根據(jù)教材提供的線索,安排適當(dāng)?shù)慕虒W(xué)情境,讓學(xué)生展示相應(yīng)的數(shù)學(xué)思維過程,使學(xué)生有機會經(jīng)歷數(shù)學(xué)概念抽象的各個階段,引導(dǎo)學(xué)生獨立自主地開展思維活動,深入探究,從而創(chuàng)造性地解決問題,最終形成概念,獲得方法,培養(yǎng)能力。

2.教學(xué)手段。

四、教學(xué)過程的設(shè)計。

為達到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為四個階段:創(chuàng)設(shè)情境,引入課題;歸納探索,形成概念;掌握證法,適當(dāng)延展;歸納小結(jié),提高認(rèn)識。具體過程如下:

(一)創(chuàng)設(shè)情境,引入課題。

在課前,我給學(xué)生布置了兩個任務(wù):

(1)由于某種原因,20xx年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因。

課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事。

(2)通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況。

課上我引導(dǎo)學(xué)生觀察20xx年8月8日的氣溫變化曲線圖,引導(dǎo)學(xué)生體會在某些時段溫度升高,某些時段溫度降低。

(二)歸納探索,形成概念。

在本階段的教學(xué)中,為使學(xué)生充分感受數(shù)學(xué)概念的發(fā)生與發(fā)展過程和數(shù)形結(jié)合的數(shù)學(xué)思想,經(jīng)歷觀察、歸納、抽象的探究過程,加深對函數(shù)單調(diào)性的本質(zhì)的認(rèn)識,我設(shè)計了三個環(huán)節(jié),引導(dǎo)學(xué)生分別完成對單調(diào)性定義的三次認(rèn)識。

1.借助圖象,直觀感知。

本環(huán)節(jié)的教學(xué)主要是從學(xué)生的已有認(rèn)知出發(fā),即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認(rèn)識。

在本環(huán)節(jié)的教學(xué)中,我主要設(shè)計了兩個問題:

問題1:分別作出函數(shù),所以上為增函數(shù).。

(2)仿(1),取很多組驗證均滿足,所以,然后求差比較函數(shù)值的大小,從而得到正確的回答:

各位專家、評委,本節(jié)課我在概念教學(xué)上進行了一些嘗試。在教學(xué)過程中,我努力創(chuàng)設(shè)一個探索數(shù)學(xué)的學(xué)習(xí)環(huán)境,通過設(shè)計一系列問題,使學(xué)生在探究問題的過程中,親身經(jīng)歷數(shù)學(xué)概念的發(fā)生與發(fā)展過程,從而逐步把握概念的實質(zhì)內(nèi)涵,深入理解概念。

不足之處,懇請各位專家批評指正.謝謝!

函數(shù)的單調(diào)性教案一篇十八

根據(jù)函數(shù)單調(diào)性在整個教材內(nèi)容中的地位與作用,本節(jié)課教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標(biāo):

知識與技能使學(xué)生理解函數(shù)單調(diào)性的概念,初步掌握判別函數(shù)單調(diào)性的方法;

二、教法學(xué)法。

為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取了:

在學(xué)法上我重視了:

三、教學(xué)過程。

(一)創(chuàng)設(shè)情境,提出問題。

(問題情境)(播放中央電視臺天氣預(yù)報的音樂).如圖為某地區(qū)元旦這一天24小時內(nèi)的氣溫變化圖,觀察這張氣溫變化圖:

[教師活動]引導(dǎo)學(xué)生觀察圖象,提出問題:

問題1:說出氣溫在哪些時段內(nèi)是逐步升高的或下降的?

問題2:怎樣用數(shù)學(xué)語言刻畫上述時段內(nèi)“隨著時間的增大氣溫逐漸升高”這一特征?

(二)探究發(fā)現(xiàn)建構(gòu)概念。

[學(xué)生活動]對于問題1,學(xué)生容易給出答案.問題2對學(xué)生來說較為抽象,不易回答.。

在學(xué)生對于單調(diào)增函數(shù)的特征有一定直觀認(rèn)識時,進一步提出:

[教師活動]為了獲得單調(diào)增函數(shù)概念,對于不同學(xué)生的表述進行分析、歸類,引導(dǎo)學(xué)生得出關(guān)鍵詞“區(qū)間內(nèi)”、“任意”、“當(dāng)時,都有”,告訴他們“把滿足這些條件的函數(shù)稱之為單調(diào)增函數(shù)”,之后由他們集體給出單調(diào)增函數(shù)概念的數(shù)學(xué)表述.提出:

問題4:類比單調(diào)增函數(shù)概念,你能給出單調(diào)減函數(shù)的概念嗎?

最后完成單調(diào)性和單調(diào)區(qū)間概念的整體表述.。

(三)自我嘗試運用概念。

1.為了理解函數(shù)單調(diào)性的概念,及時地進行運用是十分必要的.。

[教師活動]問題6:證明在區(qū)間(0,+∞)上是單調(diào)減函數(shù).。

(四)回顧反思深化概念。

[教師活動]給出一組題:

[學(xué)生活動]學(xué)生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結(jié)本節(jié)課的內(nèi)容和方法.

[設(shè)計意圖]通過學(xué)生的主體參與,使學(xué)生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認(rèn)識的再次深化.

[教師活動]作業(yè)布置:

(1)閱讀課本p34-35例2。

(2)書面作業(yè):

必做:教材p431、7、11。

四、教學(xué)評價。

【本文地址:http://www.aiweibaby.com/zuowen/15664843.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔