教案是教師進行課堂管理和教學(xué)評價的依據(jù)。教案應(yīng)該注重教學(xué)過程中的引導(dǎo)和啟發(fā),要鼓勵學(xué)生思考、探究和合作,培養(yǎng)其自主學(xué)習(xí)的能力。這些教案范文涵蓋了不同學(xué)科、不同年級的內(nèi)容,希望廣大教師能夠根據(jù)自己的實際情況進行借鑒和改編。
高一數(shù)學(xué)教案等比數(shù)列篇一
(2)求數(shù)列的前10項的和。例7已知數(shù)列滿足,,.
(1)求證:數(shù)列是等比數(shù)列;
(2)求的表達式和的表達式。
作業(yè):
1.已知同號,則是成等比數(shù)列的。
(a)充分而不必要條件(b)必要而不充分條件。
(c)充要條件(d)既不充分而也不必要條件。
2.如果和是兩個等差數(shù)列,其中,那么等于。
(a)(b)(c)3(d)。
3.若某等比數(shù)列中,前7項和為48,前14項和為60,則前21項和為。
(a)180(b)108(c)75(d)63。
4.已知數(shù)列,對所有,其前項的積為,求的值,
5.已知為等差數(shù)列,前10項的和為,前100項的和為,求前110項的和。
6.等差數(shù)列中,,,依次抽出這個數(shù)列的第項,組成數(shù)列,求數(shù)列的通項公式和前項和公式。
7.&nbs…p;已知數(shù)列,,
(1)求通項公式;
(2)若,求數(shù)列的最小項的值;
(3)數(shù)列的前項和為,求數(shù)列前項的和.
8.三數(shù)成等比數(shù)列,若第二個數(shù)加4就成等差數(shù)列,再把這個等差數(shù)列的第三個數(shù)加上32又成等比數(shù)列,求這三個數(shù)。
高一數(shù)學(xué)教案等比數(shù)列篇二
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
2、實際問題中的有關(guān)術(shù)語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測量角度問題
例4、在一個特定時段內(nèi),以點e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
高一數(shù)學(xué)教案等比數(shù)列篇三
1.知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。
二、教學(xué)重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動手實踐、討論、類比。
四、教學(xué)過程。
(一)創(chuàng)設(shè)情景,揭開課題。
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
(三)鞏固練習(xí)。
課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。
(四)歸納整理。
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習(xí)題1.2[a組]1。
高一數(shù)學(xué)教案等比數(shù)列篇四
教學(xué)重點:理解等比數(shù)列的概念,認(rèn)識等比數(shù)列是反映自然規(guī)律的重要數(shù)列模型之一,探索并掌握等比數(shù)列的通項公式。
教學(xué)難點:遇到具體問題時,抽象出數(shù)列的模型和數(shù)列的等比關(guān)系,并能用有關(guān)知識解決相應(yīng)問題。
教學(xué)過程:
1.等差數(shù)列的通項公式。
2.等差數(shù)列的前n項和公式。
引入:1“一尺之棰,日取其半,萬世不竭?!?/p>
2細胞分裂模型。
3計算機病毒的傳播。
由學(xué)生通過類比,歸納,猜想,發(fā)現(xiàn)等比數(shù)列的特點。
進而讓學(xué)生通過用遞推公式描述等比數(shù)列。
讓學(xué)生回憶用不完全歸納法得到等差數(shù)列的通項公式的過程然后類比等比數(shù)列的通項公式。
注意:1公比q是任意一個常數(shù),不僅可以是正數(shù)也可以是負數(shù)。
2當(dāng)首項等于0時,數(shù)列都是0。當(dāng)公比為0時,數(shù)列也都是0。
所以首項和公比都不可以是0。
3當(dāng)公比q=1時,數(shù)列是怎么樣的,當(dāng)公比q大于1,公比q小于1時數(shù)列是怎么樣的?
4以及等比數(shù)列和指數(shù)函數(shù)的關(guān)系。
5是后一項比前一項。
列:1,2,(略)。
小結(jié):等比數(shù)列的通項公式。
1.教材p59練習(xí)1,2,3,題。
2.作業(yè):p60習(xí)題1,4。
第二課時5.2.4等比數(shù)列(二)。
提問:等差數(shù)列的通項公式。
等比數(shù)列的通項公式。
1.討論:如果是等差列的三項滿足。
由學(xué)生給出如果是等比數(shù)列滿足。
2練習(xí):如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
如果等比數(shù)列=4,=16,=?(學(xué)生口答)。
3等比中項:如果等比數(shù)列。那么,
則叫做等比數(shù)列的等比中項(教師給出)。
4思考:是否成立呢?成立嗎?
成立嗎?
又學(xué)生找到其間的規(guī)律,并對比記憶如果等差列,
5思考:如果是兩個等比數(shù)列,那么是等比數(shù)列嗎?
如果是為什么?是等比數(shù)列嗎?引導(dǎo)學(xué)生證明。
6思考:在等比數(shù)列里,如果成立嗎?
如果是為什么?由學(xué)生給出證明過程。
列3:一個等比數(shù)列的第3項和第4項分別是12和18,求它的第1項和第2項。
解(略)。
列4:略:
練習(xí):1在等比數(shù)列,已知那么。
2p61a組8。
高一數(shù)學(xué)教案等比數(shù)列篇五
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米。
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了。還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(用對數(shù)算也行)。
高一數(shù)學(xué)教案等比數(shù)列篇六
1、掌握等比數(shù)列前項和公式,并能運用公式解決簡單的問題。
(1)理解公式的推導(dǎo)過程,體會轉(zhuǎn)化的思想;
2、通過公式的靈活運用,進一步滲透方程的思想、分類討論的思想、等價轉(zhuǎn)化的思想。
3、通過公式推導(dǎo)的教學(xué),對學(xué)生進行思維的嚴(yán)謹(jǐn)性的訓(xùn)練,培養(yǎng)他們實事求是的科學(xué)態(tài)度。
(1)知識結(jié)構(gòu)。
先用錯位相減法推出等比數(shù)列前項和公式,而后運用公式解決一些問題,并將通項公式與前項和公式結(jié)合解決問題,還要用錯位相減法求一些數(shù)列的前項和。
(2)重點、難點分析。
是等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用。公式的推導(dǎo)中蘊含了豐富的數(shù)學(xué)思想、方法(如分類討論思想,錯位相減法等),這些思想方法在其他數(shù)列求和問題中多有涉及,所以對等比數(shù)列前項和公式的要求,不單是要記住公式,更重要的是掌握推導(dǎo)公式的方法。等比數(shù)列前項和公式是分情況討論的,在運用中要特別注意和兩種情況。
(1)本節(jié)內(nèi)容分為兩課時,一節(jié)為等比數(shù)列前項和公式的推導(dǎo)與應(yīng)用,一節(jié)為通項公式與前項和公式的綜合運用,另外應(yīng)補充一節(jié)數(shù)列求和問題。
(2)等比數(shù)列前項和公式的推導(dǎo)是重點內(nèi)容,引導(dǎo)學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律,歸納總結(jié),證明結(jié)論。
(3)等比數(shù)列前項和公式的推導(dǎo)的其他方法可以給出,提高學(xué)生學(xué)習(xí)的興趣。
(4)編擬例題時要全面,不要忽略的情況。
(5)通項公式與前項和公式的綜合運用涉及五個量,已知其中三個量可求另兩個量,但解指數(shù)方程難度大。
高一數(shù)學(xué)教案等比數(shù)列篇七
對數(shù)函數(shù)(第二課時)是20__人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個課時,這里是第二課時復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學(xué)的實用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
二、教學(xué)目標(biāo)。
根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:
學(xué)習(xí)目標(biāo):
1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)。
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小。
能力目標(biāo):
1、培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力。
2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力。
3、探索出方法,有條理闡述自己觀點的能力。
德育目標(biāo):
培養(yǎng)學(xué)生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)。
三、教材的重點及難點。
教學(xué)中將在以下2個環(huán)節(jié)中突出教學(xué)重點:
1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補不足。
2、通過適當(dāng)?shù)木毩?xí),加強對解題方法的掌握及原理的理解。
教學(xué)中會在以下3個方面突破教學(xué)難點:
1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學(xué)生,增強學(xué)生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學(xué)生學(xué)情分析。
長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認(rèn)識上還顯不足。
五、教法特點。
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學(xué)過程分析。
1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。
設(shè)計意圖:明確任務(wù),激發(fā)興趣。
2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。
設(shè)計意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應(yīng)用打下基礎(chǔ)。
3、預(yù)習(xí)后心得交流。
1)同底對數(shù)比大小。
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
設(shè)計意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小。
以例3為例,學(xué)生分組合作探究解題方法,預(yù)計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。
設(shè)計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學(xué)生的主動性,培養(yǎng)主動學(xué)習(xí)的意識,同時也鍛煉學(xué)生各方面能力的很好機會,為以后的探究學(xué)習(xí)積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)。
6、思考題。
以20__高考題為例,讓學(xué)生學(xué)以致用,增強數(shù)學(xué)學(xué)習(xí)興趣。
7、作業(yè)。
包括兩個方面:
1、書寫作業(yè)。
2、下節(jié)課前的預(yù)習(xí)作業(yè)。
通過本節(jié)課的教學(xué)實例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯,既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動性。在自主探究時,學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾?,使學(xué)生都能動起來,課堂都有所收獲,增強學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學(xué)生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達到小結(jié)知識的程度,在以后的訓(xùn)練中還會加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
高一數(shù)學(xué)教案等比數(shù)列篇八
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進行分類討論的數(shù)學(xué)思想。7.總結(jié)歸納,加深理解以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達能力,歸納概括能力。8.故事結(jié)束,首尾呼應(yīng)最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1.84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。9.課后作業(yè),分層練習(xí)必做:p129練習(xí)1、2、3、4選作:(2)“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。四、教法分析對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用“問題――探究”的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。五、評價分析本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
高一數(shù)學(xué)教案等比數(shù)列篇九
在具體的問題情境中,發(fā)現(xiàn)數(shù)列的`等比關(guān)系,能用有關(guān)知識解決相應(yīng)問題。
等比數(shù)列的前n項和的公式及應(yīng)用。
等比數(shù)列的前n項和公式的推導(dǎo)過程。
一、復(fù)習(xí)準(zhǔn)備:
提問:等比數(shù)列的通項公式;
等比數(shù)列的性質(zhì);
等差數(shù)列的前n項和公式;
二、講授新課:
1、教學(xué):
思考:一個細胞每分鐘就變成兩個,那么經(jīng)過一個小時,它會分裂成多少個細胞呢?
分析:公比,因為,一個小時有60分鐘。
思考:那么經(jīng)過一個小時,一共有多少個細胞呢?
又因為。
所以,則=1152921504。
則一個小時一共有1152921504個細胞。
2、練習(xí):
列1(解略)。
列2(解略)。
在等比數(shù)列中:已知求已知求。
在等比數(shù)列中,xx,則xx。
三、小結(jié):等比數(shù)列的前n項和公式。
四、作業(yè):p66,1題。
高一數(shù)學(xué)教案等比數(shù)列篇十
(5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;
(6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的理解.。
1.新課導(dǎo)入。
初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個命題的例子.(板書:命題.)。
(從初中接觸過的“命題”入手,提出問題,進而學(xué)習(xí)邏輯的有關(guān)知識.)。
學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
兩直線平行,同位角相等.…………(2)。
教師提問:“……相等的角是對頂角”是不是命題?……(3)。
(同學(xué)議論結(jié)果,答案是肯定的.)。
教師提問:什么是命題?
(學(xué)生進行回憶、思考.)。
概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
(教師肯定了同學(xué)的回答,并作板書.)。
(教師利用投影片,和學(xué)生討論以下問題.)。
例1判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課。
(片刻后請同學(xué)舉手回答,一共講了四個問題.師生一道歸納如下.)。
(1)什么叫做命題?
可以判斷真假的語句叫做命題.。
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
命題可分為簡單命題和復(fù)合命題.。
(4)命題的表示:用p,q,r,s,……來表示.。
(教師根據(jù)學(xué)生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
3.鞏固新課。
(1)5;
(2)0.5非整數(shù);
(3)內(nèi)錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0,則a=0.。
(讓學(xué)生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補充.)。
高一數(shù)學(xué)教案等比數(shù)列篇十一
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進一步認(rèn)識三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解。
本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系。
教學(xué)重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。
高一數(shù)學(xué)教案等比數(shù)列篇十二
3.能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
一、預(yù)習(xí)檢查。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
3、雙曲線的漸進線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
(1)過點,離心率.
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為.
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則.
四、知識鞏固。
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是.
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點,相應(yīng)的焦點為,若以為直徑的圓恰好過點,則離心率為.
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
高一數(shù)學(xué)教案等比數(shù)列篇十三
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認(rèn)識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)教案等比數(shù)列篇十四
把實物圓柱放在講臺上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知。
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習(xí)反饋。
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖。
請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影。
投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習(xí),課本p25練習(xí)1,2,3。
三、歸納整理。
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
高一數(shù)學(xué)教案等比數(shù)列篇十五
(2)理解任意角的三角函數(shù)不同的定義方法;。
(4)掌握并能初步運用公式一;。
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認(rèn)識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點的`坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.
教學(xué)重難點。
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一數(shù)學(xué)教案等比數(shù)列篇十六
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識進行相關(guān)的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
高一數(shù)學(xué)教案等比數(shù)列篇十七
1、鞏固集合、子、交、并、補的概念、性質(zhì)和記號及它們之間的關(guān)系。
2、了解集合的運算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點、難點]:會正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時安排]:1課時。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數(shù)分為:有限集和無窮集兩類。
高一數(shù)學(xué)教案等比數(shù)列篇十八
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。 6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(a版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2.問題性:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4.時代性與應(yīng)用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個班一個普高一個職高,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于培養(yǎng)學(xué)生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學(xué)生思考。
3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
俗話說的好,好的教學(xué)計劃是教學(xué)成功的一半,作為一名優(yōu)異的教師,做好一定的教學(xué)計劃很有必要。
總結(jié):制定教學(xué)計劃的主要目的是為了全面了解學(xué)生的數(shù)學(xué)學(xué)習(xí)歷程,激勵學(xué)生的學(xué)習(xí)和改進教師的教學(xué)。希望上面的,能受到大家的歡迎!
高一數(shù)學(xué)教案等比數(shù)列篇十九
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀四、教學(xué)思路。
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7、讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習(xí)題1.1a組第1題。
5、棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
高一數(shù)學(xué)教案等比數(shù)列篇二十
本節(jié)的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運算性質(zhì),還要牽涉到絕對值以及各種非負數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進行分類討論.
本節(jié)的難點是正確理解與應(yīng)用公式.這個公式的表達形式對學(xué)生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計問題引導(dǎo)啟發(fā):由設(shè)計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個方面需要注意:
(1)注意與性質(zhì)進行對比,可出幾道類型不同的題進行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時要注意細分層次加以鞏固,如單個數(shù)字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對比、歸納、總結(jié)
1.重點:理解并掌握二次根式的性質(zhì)
2.難點:理解式子中的可以取任意實數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
1課時
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主
一、導(dǎo)入新課
我們知道,式子()表示非負數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負數(shù)的算術(shù)平方根,即,且,從而可以取任意實數(shù).
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
高一數(shù)學(xué)教案等比數(shù)列篇二十一
突出重點.培養(yǎng)能力.。
三、課堂練習(xí)。
教材第13頁練習(xí)1、2、3、4.。
【助練習(xí)】第13頁練習(xí)4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.。
四、小結(jié)。
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.。
五、作業(yè)。
習(xí)題1至8.。
筆練結(jié)合板書.。
傾聽.修改練習(xí).掌握方法.。
觀察.思考.傾聽.理解.記憶.。
傾聽.理解.記憶.。
回憶、再現(xiàn)內(nèi)容.。
落實。
介紹解題技能技巧.。
內(nèi)容條理化.。
課堂教學(xué)設(shè)計說明。
2.反演律可根據(jù)學(xué)生實際酌情使用.。
【本文地址:http://aiweibaby.com/zuowen/17038748.html】