總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗方法以及結(jié)論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結(jié)吧。優(yōu)秀的總結(jié)都具備一些什么特點呢?又該怎么寫呢?以下是小編為大家收集的總結(jié)范文,僅供參考,大家一起來看看吧。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇一
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數(shù)化為1
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
能使不等式成立的未知數(shù)的值,叫做不等式的解。
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變,
性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,
性質(zhì)3:不等式兩邊乘以(或除以)同一個負數(shù),不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性質(zhì)。
誤區(qū)提醒
忽略不等號變向問題。
有理數(shù)乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結(jié)合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。
注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。
轉(zhuǎn)化思維
轉(zhuǎn)化思維,既是一種方法,也是一種思維。轉(zhuǎn)化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉(zhuǎn)換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創(chuàng)新思維
要培養(yǎng)質(zhì)疑的習(xí)慣
在家庭教育中,家長要經(jīng)常引導(dǎo)孩子主動提問,學(xué)會質(zhì)疑、反省,并逐步養(yǎng)成習(xí)慣。
在孩子放學(xué)回家后,讓孩子回顧當天所學(xué)的知識:老師如何講解的,同學(xué)是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。
有時,可以故意制造一些錯誤讓孩子去發(fā)現(xiàn)、評價、思考。通過這樣的訓(xùn)練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質(zhì)疑的習(xí)慣。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇二
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2、異號兩數(shù)相加,取絕對值較大的`符號,并用較大的絕對值減去較小的絕對值;
3、一個數(shù)與0相加,仍得這個數(shù)。
有理數(shù)加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇三
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
3、一個數(shù)與0相加,仍得這個數(shù)。
有理數(shù)加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇四
前蘇聯(lián)數(shù)學(xué)教育家斯托利亞爾言:“數(shù)學(xué)教學(xué)也就是數(shù)學(xué)語言的教學(xué)”。數(shù)學(xué)語言精練、語句嚴謹;所以只有做到對每個句子、每個概念、每個圖表都應(yīng)細致地閱讀分析,領(lǐng)會其內(nèi)容、含義。才能體會到其中的數(shù)學(xué)思想方法,并能正確依據(jù)數(shù)學(xué)原理分析它們之間的邏輯關(guān)系,達到對材料的真正理解,形成知識結(jié)構(gòu)。
(二)學(xué)好初中數(shù)學(xué)需要培養(yǎng)“想要聽、聽得懂、懂得聽”的習(xí)慣
要做到想要聽,就得明白學(xué)習(xí)數(shù)學(xué)的意義:在多年的數(shù)學(xué)學(xué)習(xí)中,數(shù)學(xué)真理的絕對性,數(shù)學(xué)結(jié)論的可靠性,數(shù)學(xué)演算的精確性,數(shù)學(xué)思維的嚴密性,點點滴滴地滲入到我們的思想,這些將在我們?nèi)蘸蟮娜松鷼v程中起著重要的作用。要達到聽得懂,就必須提前預(yù)習(xí),保持專注;要做到懂得聽就是明白聽課重點。
(三)學(xué)好初中數(shù)學(xué)需要養(yǎng)成良好的作業(yè)習(xí)慣
做作業(yè)前先要復(fù)習(xí)鞏固所學(xué)的概念、定理和性質(zhì),聯(lián)想老師所講過的經(jīng)典例題。做題時一要看題準確,即文字、數(shù)學(xué)式子、數(shù)學(xué)符號等不多看、少看或漏看;二要分得清楚,即能分清題目的條件、結(jié)論。由題聯(lián)想到它考查的知識點。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇五
棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個多邊形的公共邊都互相平行,由這些面所圍成的多面體叫做棱柱。棱柱用表示底面各頂點的字母來表示。
棱柱的底面:棱柱中兩個互相平行的面,叫做棱柱的底面。
棱柱的側(cè)面:棱柱中除兩個底面以外的其余各個面都叫做棱柱的側(cè)面。
棱柱的側(cè)棱:棱柱中兩個側(cè)面的公共邊叫做棱柱的側(cè)棱。
棱柱是由一個由直線構(gòu)成的平面沿著不平行于此平面的直線整體平移而形成的。
在棱柱中,側(cè)面與底面的公共頂點叫做棱柱的頂點。
棱柱的對角線:棱柱中不在表面同一平面上的兩個頂點的連線叫做棱柱的對角線。
棱柱的高:棱柱的兩個底面的距離叫做棱柱的高。
棱柱的對角面:棱柱中過不相鄰的兩條側(cè)棱的截面叫做棱柱的對角面。
斜棱柱:側(cè)棱不垂直于底面的棱柱叫做斜棱柱,畫斜棱柱時,一般將側(cè)棱畫成不與底面垂直。
直棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱。畫直棱柱時,應(yīng)將側(cè)棱畫成與底面垂直。
正棱柱:底面是正多邊形的直棱柱叫做正棱柱。
平行六面體:底面是平行四邊形的棱柱。
直平行六面體:側(cè)棱垂直于底面的平行六面體叫直平行六面體。
長方體:底面是矩形的直棱柱叫做長方體。
我們學(xué)習(xí)的棱柱也包括了斜棱柱、直棱柱、正棱柱,連長方體也是棱柱的一種。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇六
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類。
3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
9.三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;
推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的內(nèi)角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11.三角形外角的性質(zhì)
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;
(3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
16.多邊形的`分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
17.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
21.多邊形對角線的條數(shù):
(1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有n(n-3)/2條對角線。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇七
盡快地掌握科學(xué)知識,迅速提高學(xué)習(xí)能力,由編輯老師為您提供的初一年級新學(xué)期數(shù)學(xué)知識點,希望給您帶來啟發(fā)!
1.通過處理實際問題,讓學(xué)生體驗從算術(shù)方法到代數(shù)方法是一種進步;
2.初步學(xué)會如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念;
3.培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。
從實際問題中尋找相等關(guān)系;
建立列方程解決實際問題的思想方法,學(xué)會合并同類項,會解ax+bx=c類型的一元一次方程。
從實際問題中尋找相等關(guān)系;
分析實際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學(xué)生逐步建立列方程解決實際問題的思想方法。
1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數(shù);
(3)未知數(shù)最高次項為1;
(4)含未知數(shù)的項的系數(shù)不為0.
4.等式的性質(zhì):
等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減去同一個數(shù)或同一個整式,等式仍然成立。
等式的性質(zhì)二:等式兩邊同時擴大或縮小相同的倍數(shù)(0除外),等式仍然成立。
等式的性質(zhì)三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據(jù)等式的這三個性質(zhì)等式的性質(zhì)一:等式兩邊同時加一個數(shù)或減同一個數(shù),等式仍然成立。
5.合并同類項
(1)依據(jù):乘法分配律
(2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項;常數(shù)計算后合并成一項
(3)合并時次數(shù)不變,只是系數(shù)相加減。
6.移項
(1)含有未知數(shù)的項變號后都移到方程左邊,把不含未知數(shù)的項移到右邊。
(2)依據(jù):等式的性質(zhì)
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù);
(2)去括號:先去小括號,再去中括號,最后去大括號;(記住如括號外有減號的話一定要變號)
(4)合并同類項:把方程化成ax=b(a0)的形式;
(5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。
由編輯老師為您提供的初一年級新學(xué)期數(shù)學(xué)知識點,希望給您帶來啟發(fā)!
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇八
本學(xué)期的工作即將結(jié)束,本期來在學(xué)校領(lǐng)導(dǎo)和廣大教師的支持下,在工作中取得了較好的成績,同時自身素質(zhì)也得到了較大的提高,為了能更好地做好今后的工作,現(xiàn)將本期所作工作總結(jié)如下。 一學(xué)期來,本人認真?zhèn)湔n、上課、聽課、評課,及時批改作業(yè)、講評作業(yè),做好課后輔導(dǎo)工作,形成比較完整的知識結(jié)構(gòu),嚴格要求學(xué)生,尊重學(xué)生,發(fā)揚教學(xué)民主,使學(xué)生學(xué)有所得,不斷提高,從而不斷提高自己的教學(xué)水平和思想覺悟,并順利完成教育教學(xué)任務(wù)。 初一學(xué)生大多數(shù)是13、14歲的少年,處于人生長身體、長知識的階段,他們好奇、熱情、活潑、各方面都朝氣蓬勃;但是他們的自制力卻很差,注意力也不集中??傊?,初一學(xué)生處于半幼稚、半成熟階段,掌握其規(guī)律教學(xué),更應(yīng)善于引導(dǎo),使他們旺盛的精力,強烈的好奇化為強烈的求知欲望和認真學(xué)習(xí)的精神,變被動學(xué)習(xí)為主動自覺學(xué)習(xí)。我在教學(xué)中的主要環(huán)節(jié)是以下幾方面:
1、課前準備工作
認真鉆研教材,對教材的基本思想、基本概念,每句話、每個字都弄清楚,了解教材的結(jié)構(gòu),重點與難點,掌握知識的邏輯,能運用自如,知道應(yīng)補充哪些資料,怎樣才能教好。在了解學(xué)生的基礎(chǔ)上考慮教法,解決如何把已掌握的教材傳授給學(xué)生,包括如何組織教材、如何安排每節(jié)課的活動。把教材和學(xué)生實際很好地結(jié)合起來,確定課堂上要講的主要內(nèi)容。
2、課堂工作
(1)首先搞好組織教學(xué),這是順利進行正常教學(xué)的保證。
(2)其次是復(fù)習(xí)舊課,引入新課。
(3)再次是學(xué)生根據(jù)教師要求獨立進行學(xué)習(xí)活動。
3、課后輔導(dǎo)工作
在輔導(dǎo)工作中,我善于根據(jù)學(xué)生的不同情況,設(shè)計不同的問題,采用不同的方式,主動地去引導(dǎo)、啟發(fā)學(xué)生,可問他是怎樣想的?怎樣理解的?聽一聽他們的見解掌握他們的情況,并進行有針對性,切合實際的個別輔導(dǎo),真正做到因材施教。這對于提高差生,大面積提高初中數(shù)學(xué)教學(xué)質(zhì)量是會起到一定作用的。差生形成的原因雖然是多方西的,但是學(xué)生的學(xué)習(xí)基礎(chǔ),學(xué)習(xí)興趣,學(xué)習(xí)動機,學(xué)習(xí)方法等方面是值得引起我們注意的問題。只要老師堅持不懈,會逐漸增強學(xué)生的學(xué)習(xí)興趣,從而產(chǎn)生強烈的學(xué)習(xí)動機,不斷地提高學(xué)習(xí)水平。
在教學(xué)教研上我積極參與聽課、評課,虛心向同行學(xué)習(xí)教學(xué)方法,博采眾長,提高教學(xué)水平。培養(yǎng)多種興趣愛好,博覽群書,不斷拓寬知識面,為教學(xué)內(nèi)容注入新鮮血液。
“金無足赤,人無完人”,在教學(xué)工作中難免有缺陷,例如,課堂語言過急,平時考試較多,語言不夠生動。
走進21世紀,社會對教師的素質(zhì)要求更高,在今后的教育教學(xué)工作中,我將更嚴格要求自己,努力工作,發(fā)揚優(yōu)點,改正缺點,開拓前進,為美好的明天奉獻自己的力量。
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇九
1.因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉(zhuǎn)化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.
3.公因式的確定:系數(shù)的最大公約數(shù)?相同因式的最低次冪.
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事項:
(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;
(2)使用因式分解公式時要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個因式的首項符號為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式.
6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數(shù)系數(shù);(9)展開部分括號或全部括號;(10)拆項或補項.
7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q,有“x2+px+q是完全平方式?”.
初一數(shù)學(xué)知識點總結(jié)歸納完整版篇十
(1)號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
(3)互為相反數(shù)的兩個數(shù)相加得零。
(4)一個數(shù)同零相加,仍得這個數(shù)。
2、有理數(shù)加法的運算律
(1)加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。即a+b=b+a
(2)加法結(jié)合律:三個數(shù)相加,先把前面兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)
【本文地址:http://www.aiweibaby.com/zuowen/19706656.html】