總結是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達不到總結的目的??偨Y書寫有哪些要求呢?我們怎樣才能寫好一篇總結呢?下面是小編帶來的優(yōu)秀總結范文,希望大家能夠喜歡!
高三數學重要知識點總結篇一
通項公式:
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用歸納法證明。
n=1時,a(1)=a+(1-1)r=a。成立。
假設n=k時,等差數列的通項公式成立。a(k)=a+(k-1)r
則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通項公式也成立。
因此,由歸納法知,等差數列的通項公式是正確的。
求和公式:
s(n)=a(1)+a(2)+...+a(n)
=a+(a+r)+...+[a+(n-1)r]
=na+r[1+2+...+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等于0)的等比數列
通項公式:
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用歸納法證明等比數列的通項公式。
求和公式:
s(n)=a(1)+a(2)+...+a(n)
=a+ar+...+ar^(n-1)
=a[1+r+...+r^(n-1)]
r不等于1時,
s(n)=a[1-r^n]/[1-r]
r=1時,
s(n)=na.
同樣,可用歸納法證明求和公式。
高三數學重要知識點總結篇二
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個平面平行的方法:
(1)根據定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;
(3)證明兩平面同垂直于一條直線。
3.兩個平面平行的主要性質:
(1)由定義知:“兩平行平面沒有公共點”;
(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;
(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
(5)夾在兩個平行平面間的平行線段相等;
(6)經過平面外一點只有一個平面和已知平面平行。
高三數學重要知識點總結篇三
1.函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(-x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;
2.復合函數的有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數的單調性由“同增異減”判定;
3.函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像c1與c2的對稱性,即證明c1上任意點關于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;
(3)曲線c1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線c1:f(x,y)=0關于點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0;
(5)若函數y=f(x)對x∈r時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;
4.函數的周期性
(1)y=f(x)對x∈r時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈r時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5.方程k=f(x)有解k∈d(d為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈r+);
(2)logan=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;
(4)alogan=n(a>0,a≠1,n>0);
8.判斷對應是否為映射時,抓住兩點:
(1)a中元素必須都有象且;
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;
9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10.對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為a,值域為b,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a);
11.處理二次函數的問題勿忘數形結合
二次函數在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;
12.依據單調性
利用一次函數在區(qū)間上的保號性可解決求一類參數的范圍問題;
13.恒成立問題的處理方法
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
高三數學重要知識點總結篇四
一、函數的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數大于等于零;
3、對數的真數大于零;
4、指數函數和對數函數的底數大于零且不等于1;
5、三角函數正切函數y=tanx中x≠kπ+π/2;
6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。
二、函數的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數法;
4、函數方程法;
5、參數法;
6、配方法
三、函數的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調性法;
7、直接法
四、函數的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調性法
五、函數單調性的常用結論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數,則f(x)+g(x)在這個區(qū)間上也為增(減)函數。
2、若f(x)為增(減)函數,則-f(x)為減(增)函數。
3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。
4、奇函數在對稱區(qū)間上的單調性相同,偶函數在對稱區(qū)間上的單調性相反。
5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。
六、函數奇偶性的常用結論:
1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。
2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。
3、一個奇函數與一個偶函數的積(商)為奇函數。
4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。
5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。
高三數學重要知識點總結篇五
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
2、直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無關;
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
3、直線方程
點斜式:
直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
【本文地址:http://aiweibaby.com/zuowen/2060530.html】