最新高一數(shù)學120個常考必考題型五篇(通用)

格式:DOC 上傳日期:2023-04-05 06:02:29
最新高一數(shù)學120個??急乜碱}型五篇(通用)
時間:2023-04-05 06:02:29     小編:zdfb

范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們該如何寫一篇較為完美的范文呢?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

高一數(shù)學120個??急乜碱}型篇一

函數(shù)的概念:設a、b是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合a中的任意一個數(shù)x,在集合b中都有確定的數(shù)f(x)和它對應,那么就稱f:a---b為從集合a到集合b的一個函數(shù).記作:y=f(x),x∈a.

(1)其中,x叫做自變量,x的取值范圍a叫做函數(shù)的定義域;

(2)與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈a}叫做函數(shù)的值域.

函數(shù)的三要素:定義域、值域、對應法則

函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域

(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。

(3)列表法:選取的自變量要有代表性,可以反應定義域的特征。

4、函數(shù)圖象知識歸納

(1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈a)中的x為橫坐標,函數(shù)值y為縱坐標的點p(x,y)的集合c,叫做函數(shù)y=f(x),(x∈a)的圖象.c上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在c上.

(2)畫法

a、描點法:b、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

(3)函數(shù)圖像平移變換的特點:

1)加左減右——————只對x

2)上減下加——————只對y

3)函數(shù)y=f(x)關于x軸對稱得函數(shù)y=-f(x)

4)函數(shù)y=f(x)關于y軸對稱得函數(shù)y=f(-x)

5)函數(shù)y=f(x)關于原點對稱得函數(shù)y=-f(-x)

6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

函數(shù)y=|f(x)|

7)函數(shù)y=f(x)先作x≥0的圖像,然后作關于y軸對稱的圖像得函數(shù)f(|x|)

高一數(shù)學120個??急乜碱}型篇二

集合與元素

一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;

而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。

.解集合問題的關鍵

解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;

比如用數(shù)軸來表示集合,或是集合的元素為有序實數(shù)對時,可用平面直角坐標系中的圖形表示相關的集合等。

高一數(shù)學120個常考必考題型篇三

冪函數(shù)定義:

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域

性質:

對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);

排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:

如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

而只有a為正數(shù),0才進入函數(shù)的值域。

由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

(3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

(4)當a小于0時,a越小,圖形傾斜程度越大。

(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

(6)顯然冪函數(shù)。

高一數(shù)學120個??急乜碱}型篇四

定義:

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與x軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

表達式:

斜截式:y=kx+b

兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

點斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

補充一下:最基本的標準方程不要忘了,ax+by+c=0,

因為,上面的四種直線方程不包含斜率k不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,k不存在的情況。

高一數(shù)學120個??急乜碱}型篇五

圓錐曲線性質:

一、圓錐曲線的定義

1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.

2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.

3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當01時為雙曲線.

二、圓錐曲線的方程

1.橢圓:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+ =1(a>b>0)

(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)(5)準線:x=±

2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈r(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)準線:x=± (6)漸近線:y=± x

3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈r(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1(5)準線:x=-

【本文地址:http://aiweibaby.com/zuowen/2286575.html】

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔