最新數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載匯總(8篇)

格式:DOC 上傳日期:2023-05-19 08:42:49
最新數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載匯總(8篇)
時(shí)間:2023-05-19 08:42:49     小編:zxfb

每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫(xiě)一篇文章。寫(xiě)作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。相信許多人會(huì)覺(jué)得范文很難寫(xiě)?下面是小編為大家收集的優(yōu)秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇一

1、學(xué)習(xí)目標(biāo)描述

知識(shí)目標(biāo)

(a)理解和掌握?qǐng)A錐曲線(xiàn)的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來(lái)解題。

(b)了解圓錐曲線(xiàn)與現(xiàn)實(shí)生活中的聯(lián)系,并能初步利用圓錐曲線(xiàn)的知識(shí)進(jìn)行知識(shí)延伸和知識(shí)創(chuàng)新。

能力目標(biāo)

(a)通過(guò)學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實(shí)踐能力和分析問(wèn)題、解決問(wèn)題的能力。

(b)通過(guò)知識(shí)的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識(shí)。

(c)專(zhuān)題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過(guò)程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。

德育目標(biāo)

讓學(xué)生體會(huì)知識(shí)產(chǎn)生的全過(guò)程,培養(yǎng)學(xué)生運(yùn)動(dòng)變化的辯證唯物主義思想。

2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說(shuō)明

本節(jié)課的內(nèi)容是圓錐曲線(xiàn)的第一定義和圓錐曲線(xiàn)的統(tǒng)一定義,以及利用圓錐曲線(xiàn)的定義來(lái)解決軌跡問(wèn)題和最值問(wèn)題。

學(xué)習(xí)重點(diǎn):圓錐曲線(xiàn)的第一定義和統(tǒng)一定義。

學(xué)習(xí)難點(diǎn):圓錐曲線(xiàn)第一定義和統(tǒng)一定義的應(yīng)用。

明確本課的。重點(diǎn)和難點(diǎn),以學(xué)習(xí)任務(wù)驅(qū)動(dòng)為方式,以圓錐曲線(xiàn)定義和定義應(yīng)用為中心,主動(dòng)操作實(shí)驗(yàn)、大膽分析問(wèn)題和解決問(wèn)題。

抓住本節(jié)課的重點(diǎn)和難點(diǎn),采取的基于學(xué)科專(zhuān)題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點(diǎn)、突破難點(diǎn)。

充分利用《圓錐曲線(xiàn)》專(zhuān)題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。

(說(shuō)明學(xué)生的學(xué)習(xí)特點(diǎn)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點(diǎn)等)

l本課的學(xué)習(xí)對(duì)象為高二下學(xué)期學(xué)生,他們經(jīng)過(guò)近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問(wèn)題、解決問(wèn)題的能力,基本的計(jì)算機(jī)操作較為熟練。

高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在

l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂(lè)于嘗試、勇于探索的。

高二年的學(xué)生在學(xué)習(xí)交往上“個(gè)別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說(shuō)學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時(shí)教師布置的協(xié)作學(xué)習(xí)任務(wù)的。

1.學(xué)習(xí)環(huán)境選擇(打√)

(1)web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)internet(√)

(6)其它

2、學(xué)習(xí)資源類(lèi)型(打√)

(1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專(zhuān)題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫(kù)

(5)案例庫(kù)(6)題庫(kù)(7)網(wǎng)絡(luò)課程(8)其它

3、學(xué)習(xí)資源內(nèi)容簡(jiǎn)要說(shuō)明

(說(shuō)明名稱(chēng)、網(wǎng)址、主要內(nèi)容等)

《圓錐曲線(xiàn)專(zhuān)題網(wǎng)站》:從自然與科技、定義與應(yīng)用、性質(zhì)與實(shí)踐和創(chuàng)新與未來(lái)四個(gè)方面圍繞圓錐曲線(xiàn)進(jìn)行探討與研究。(ip:192.168.3.134)

用flash5、幾何畫(huà)板和authorware6制作可操作且具有交互性的網(wǎng)絡(luò)課件放在專(zhuān)題網(wǎng)站里。

1、學(xué)習(xí)情境類(lèi)型(打√)

(1)真實(shí)性情境(√)(2)問(wèn)題性情境(√)

(3)虛擬性情境(√)(4)其它

2、學(xué)習(xí)情境設(shè)計(jì)

真實(shí)性情境:用flash5制作的一系列教學(xué)軟件。用幾何畫(huà)板制作的《圓錐曲線(xiàn)的統(tǒng)一定義》的教學(xué)軟件。

問(wèn)題性情境:圓錐曲線(xiàn)的截取方法、圓錐曲線(xiàn)的各種定義、典型例題。

虛擬性情境:authorware6制作的《圓錐曲線(xiàn)的截取》,模擬曲線(xiàn)截取。

1、自主學(xué)習(xí)設(shè)計(jì)(打√并填寫(xiě)相關(guān)內(nèi)容)

(1)拋錨式

(2)支架式(√)相應(yīng)內(nèi)容:圓錐曲線(xiàn)的第一定義和統(tǒng)一定義。

使用資源:數(shù)學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

學(xué)生活動(dòng):分析、操作、協(xié)作討論、總結(jié)、提交結(jié)論。

教師活動(dòng):?jiǎn)栴}的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問(wèn)題解答和咨詢(xún)。

(3)隨機(jī)進(jìn)入式(√)相應(yīng)內(nèi)容:圓錐曲線(xiàn)定義的典型應(yīng)用。

使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

學(xué)生活動(dòng):根據(jù)自身情況選題、分析題目、協(xié)作討論、解答題目。

教師活動(dòng):講解例題,總結(jié)點(diǎn)評(píng)學(xué)生做題過(guò)程中的問(wèn)題。

(4)其它

2、協(xié)作學(xué)習(xí)設(shè)計(jì)(打√并填寫(xiě)相關(guān)內(nèi)容)

(1)競(jìng)爭(zhēng)

(2)伙伴(√)

相應(yīng)內(nèi)容:圓錐曲線(xiàn)的第一定義和統(tǒng)一定義

使用資源:數(shù)學(xué)教材、專(zhuān)題網(wǎng)站及專(zhuān)題網(wǎng)站下的多媒體教學(xué)軟件。

分組情況:每組三人

學(xué)生活動(dòng):學(xué)生之間對(duì)圓錐曲線(xiàn)的定義展開(kāi)討論,從而達(dá)到對(duì)定義的理解和掌握。

教師活動(dòng):?jiǎn)栴}的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問(wèn)題解答和咨詢(xún)。

(3)協(xié)同(√)

相應(yīng)內(nèi)容:圓錐曲線(xiàn)定義的典型應(yīng)用。

使用資源:軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型例題以及各個(gè)題目的動(dòng)畫(huà)演示和答案。

分組情況:每組三人。

學(xué)生活動(dòng):通過(guò)協(xié)作討論區(qū),同學(xué)之間互相配合、互相幫助、各種觀點(diǎn)互相補(bǔ)充。

教師活動(dòng):總結(jié)點(diǎn)評(píng)學(xué)生做題過(guò)程中的問(wèn)題。

(4)辯論

(5)角色扮演

(6)其它

4、教學(xué)結(jié)構(gòu)流程的設(shè)計(jì)

1、測(cè)試形式與工具(打√)

(1)堂上提問(wèn)(√)(2)書(shū)面練習(xí)(3)達(dá)標(biāo)測(cè)試(4)學(xué)生自主網(wǎng)上測(cè)試(√)(5)合作完成作品(6)其它

2、測(cè)試內(nèi)容

教師堂上提問(wèn):圓錐曲線(xiàn)的定義、學(xué)生提交的結(jié)論的完整性、學(xué)生協(xié)作討論時(shí)的疑問(wèn)、例題講解過(guò)程中問(wèn)題,課堂總結(jié)。

學(xué)生自主網(wǎng)上測(cè)試:解決軌跡問(wèn)題、最值問(wèn)題、其它問(wèn)題三種典型題目。

(附)圓錐曲線(xiàn)專(zhuān)題網(wǎng)站設(shè)計(jì)分析

(1)設(shè)計(jì)思路

(a)給學(xué)生操作與實(shí)踐的機(jī)會(huì):在每一環(huán)節(jié)中建設(shè)一個(gè)可供學(xué)生操作的實(shí)驗(yàn)平臺(tái)。

(b)突出教學(xué)中“主導(dǎo)和主體”的作用:在每一環(huán)節(jié)中建設(shè)一個(gè)可供師生交流的平臺(tái)。

(c)突出知識(shí)的再創(chuàng)新過(guò)程和知識(shí)的延伸:如圓錐曲線(xiàn)的作法和知識(shí)的創(chuàng)新與應(yīng)用。

(d)強(qiáng)調(diào)教學(xué)軟件的交互性:如在題目中給出提示的動(dòng)畫(huà)過(guò)程和解答過(guò)程。

(e)突出和各學(xué)科的聯(lián)系:如斜拋運(yùn)動(dòng)和行星運(yùn)動(dòng)等等。

(f)強(qiáng)調(diào)分層次的教學(xué):

如在知識(shí)應(yīng)用中的配置不同層次的例題和練習(xí):

(2)網(wǎng)站導(dǎo)航圖

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇二

教材分析

圓是學(xué)生在初中已初步了解了圓的知識(shí)及前面學(xué)習(xí)了直線(xiàn)方程的基礎(chǔ)上來(lái)進(jìn)一步學(xué)習(xí)《圓的標(biāo)準(zhǔn)方程》,它既是前面圓的知識(shí)的復(fù)習(xí)延伸,又是后繼學(xué)習(xí)圓與直線(xiàn)的位置關(guān)系奠定了基礎(chǔ)。因此,本節(jié)課在本章中起著承上啟下的重要作用。

教學(xué)目標(biāo)

1、知識(shí)與技能:探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)方程寫(xiě)出圓的坐標(biāo)和圓的半徑。

2、過(guò)程與方法:通過(guò)圓的標(biāo)準(zhǔn)方程的學(xué)習(xí),掌握求曲線(xiàn)方程的方法,領(lǐng)會(huì)數(shù)形結(jié)合的思想。

3、情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)成功的喜悅。

教學(xué)重點(diǎn)難點(diǎn)

以及措施

教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程理解及運(yùn)用

教學(xué)難點(diǎn):根據(jù)不同條件,利用待定系數(shù)求圓的標(biāo)準(zhǔn)方程。

根據(jù)教學(xué)內(nèi)容的特點(diǎn)及高一年級(jí)學(xué)生的年齡、認(rèn)知特征,緊緊抓住課堂知識(shí)的結(jié)構(gòu)關(guān)系,遵循“直觀認(rèn)知――操作體會(huì)――感悟知識(shí)特征――應(yīng)用知識(shí)”的認(rèn)知過(guò)程,設(shè)計(jì)出包括:觀察、操作、思考、交流等內(nèi)容的教學(xué)流程。并且充分利用現(xiàn)代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識(shí),給學(xué)生獨(dú)立操作、合作交流的機(jī)會(huì)。學(xué)法上注重讓學(xué)生參與方程的推導(dǎo)過(guò)程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現(xiàn),討論中明理,合作中成功,讓學(xué)生真正體驗(yàn)知識(shí)的形成過(guò)程。

學(xué)習(xí)者分析

高一年級(jí)的學(xué)生從知識(shí)層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀察、分析和數(shù)據(jù)處理能力,對(duì)數(shù)學(xué)問(wèn)題有自己個(gè)人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數(shù)學(xué)應(yīng)用意識(shí)和語(yǔ)言表達(dá)的能力還有待加強(qiáng)。

教法設(shè)計(jì)

問(wèn)題情境引入法啟發(fā)式教學(xué)法講授法

學(xué)法指導(dǎo)

自主學(xué)習(xí)法討論交流法練習(xí)鞏固法

教學(xué)準(zhǔn)備

ppt課件導(dǎo)學(xué)案

教學(xué)環(huán)節(jié)

教學(xué)內(nèi)容

教師活動(dòng)

學(xué)生活動(dòng)

設(shè)計(jì)意圖

情景引入

回顧復(fù)習(xí)

(2分鐘)

1、觀賞生活中有關(guān)圓的圖片

2、回顧復(fù)習(xí)圓的定義,并觀看圓的生成flas_。

提問(wèn):直線(xiàn)可以用一個(gè)方程表示,那么圓可以用一個(gè)方程表示嗎?

教師創(chuàng)設(shè)情景,引領(lǐng)學(xué)生感受圓。

教師提出問(wèn)題。引導(dǎo)學(xué)生思考,引出本節(jié)主旨。

學(xué)生觀賞圓的圖片和動(dòng)畫(huà),思考如何表示圓的方程。

生活中的圖片展示,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,讓學(xué)生體會(huì)到園在日常生活中的廣泛應(yīng)用

自主學(xué)習(xí)

(5分鐘)

1、介紹動(dòng)點(diǎn)軌跡方程的求解步驟:

(1)建系:在圖形中建立適當(dāng)?shù)淖鴺?biāo)系;

(2)設(shè)點(diǎn):用有序?qū)崝?shù)對(duì)(x,y)表示曲線(xiàn)上任意一點(diǎn)m的坐標(biāo);

(3)列式:用坐標(biāo)表示條件p(m)的方程;

(4)化簡(jiǎn):對(duì)p(m)方程化簡(jiǎn)到最簡(jiǎn)形式;

2、學(xué)生自主學(xué)習(xí)圓的方程推導(dǎo),并完成相應(yīng)學(xué)案內(nèi)容,

教師介紹求軌跡方程的步驟后,引導(dǎo)學(xué)生自學(xué)圓的標(biāo)準(zhǔn)方程

自主學(xué)習(xí)課本中圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程,并完成導(dǎo)學(xué)案的內(nèi)容,并當(dāng)堂展示。

培養(yǎng)學(xué)生自主學(xué)習(xí),獲取知識(shí)的能力

合作探究(10分鐘)

1、根據(jù)圓的標(biāo)準(zhǔn)方程說(shuō)明確定圓的方程的條件有哪些?

2、點(diǎn)m(x0,y0)與圓(x-a)2+(y-b)2=r2的關(guān)系的判斷方法:

(1)點(diǎn)在圓上

(2)點(diǎn)在圓外

(3)點(diǎn)在圓內(nèi)

教師引導(dǎo)學(xué)生分組探討,從旁巡視指導(dǎo)學(xué)生在自學(xué)和探討中遇到的問(wèn)題,并鼓勵(lì)學(xué)生以小組為單位展示探究成果。

學(xué)生展開(kāi)合作性的探討,并陳述自己的研究成果。

通過(guò)合作探究和自我的展示,鼓勵(lì)學(xué)生合作學(xué)習(xí)的品質(zhì)

當(dāng)堂訓(xùn)練(18分鐘)

1、求下列圓的圓心坐標(biāo)和半徑

c1:x2+y2=5

c2:(x-3)2+y2=4

c3:x2+(y+1)2=a2(a≠0)

2、以c(4,-6)為圓心,半徑等于3的圓的標(biāo)準(zhǔn)方程

3、設(shè)圓(x-a)2+(y-b)2=r2

則坐標(biāo)原點(diǎn)的位置是()

a.在圓外b.在圓上

c.在圓內(nèi)d.與a的取值有關(guān)

4、寫(xiě)出下列各圓的標(biāo)準(zhǔn)方程(1)圓心在原點(diǎn),半徑等于5

(2)經(jīng)過(guò)點(diǎn)p(5,1),圓心在點(diǎn)c(6,-2);

(3)以a(2,5),b(0,-1)為直徑的圓。

5、下列方程分別表示什么圖形

(1)x2+y2=0

(2)(x-1)2=8-(y+2)2

(3)《圓的標(biāo)準(zhǔn)方程》教學(xué)設(shè)計(jì)-賈偉

6、鞏固提升:已知圓心為c的圓經(jīng)過(guò)點(diǎn)a(1,1)和b(2,-2),且圓心在直線(xiàn)l:x-y+1=0上,求圓c的標(biāo)準(zhǔn)方程并作圖

指導(dǎo)學(xué)生就不同條件下給出的圓心和半徑關(guān)系,求解圓的標(biāo)準(zhǔn)方程這兩個(gè)要素展開(kāi)訓(xùn)練。

學(xué)生自主開(kāi)展訓(xùn)練,并糾正學(xué)習(xí)中所遇到的問(wèn)題

鞏固所學(xué)知識(shí),并查缺補(bǔ)漏。

回顧小結(jié)

(1分鐘)

1、你學(xué)到了哪些知識(shí)?

2、你掌握了哪些技能?

3、你體會(huì)到了哪些數(shù)學(xué)思想?

采用提問(wèn)的形式幫助學(xué)生回顧和分析本節(jié)所學(xué)。

學(xué)生思考并從知識(shí)、技能和思想方法上回顧總結(jié)。

培養(yǎng)學(xué)生歸納總結(jié)能力

作業(yè)布置

(1分鐘)

課本87頁(yè)習(xí)題2-2

a組的第1道題

布置訓(xùn)練任務(wù)

標(biāo)記并完成相應(yīng)的任務(wù)

檢測(cè)學(xué)生掌握知識(shí)情況。

教學(xué)反思

本節(jié)教學(xué)主要遵循“回-導(dǎo)-學(xué)-展-講-練-結(jié)”的高效課堂教學(xué)模式,遵循學(xué)生學(xué)習(xí)的主體地位,鼓勵(lì)學(xué)生自主思考和探討。

教學(xué)中要積極鼓勵(lì)學(xué)生多思考總結(jié),在判斷點(diǎn)與圓的位置關(guān)系中,要遵從學(xué)生個(gè)性化的發(fā)展思路,鼓勵(lì)學(xué)生創(chuàng)造性的解決問(wèn)題。

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇三

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式;

(3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

(6)通過(guò)對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;

(7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力。

重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運(yùn)用。

第一課時(shí):四種命題

【練習(xí)】

1.把下列命題改寫(xiě)成“若p則q”的形式:

(l)同位角相等,兩直線(xiàn)平行;

(2)正方形的四條邊相等。

2.什么叫互逆命題?上述命題的 白話(huà)文…逆命題是什么?

將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論。

如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題。

上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”。

值得指出的是原命題和逆命題是相對(duì)的。我們也可以把逆命題當(dāng)成原命題,去求它的逆命題。

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真。但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真。

口答:

(1)若同位角相等,則兩直線(xiàn)平行;

(2)若一個(gè)四邊形是正方形,則它的四條邊相等。

設(shè)計(jì)意圖:

通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)。

【設(shè)問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題。

【提問(wèn)】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等。

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題。

若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定。

【板書(shū)】原命題:若p則q;

否命題:若┐p則q┐。

【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?

學(xué)生活動(dòng):

講論后回答:

原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真。

原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真。

由此可以得原命題真,它的否命題不一定真。

通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。

【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學(xué)生活動(dòng):

討論后回答

【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題。

教師活動(dòng):

【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形的四條邊不相等,則不是正方形。

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題。把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題。

原命題是“若 p則 q ”,則逆否命題為“若┐q 則┐p 。

【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動(dòng):

討論后回答

這兩個(gè)逆否命題都真。

原命題真,逆否命題也真。

教師活動(dòng):

【提問(wèn)】原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說(shuō)明?

【總結(jié)】

1.原命題為真,它的逆命題不一定為真。

2.原命題為真,它的否命題不一定為真。

3.原命題為真,它的逆否命題一定為真。

設(shè)計(jì)意圖:

通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性。

教師活動(dòng):

1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請(qǐng)寫(xiě)在方框內(nèi)?

學(xué)生活動(dòng):筆答

教師活動(dòng):

2.根據(jù)上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?

學(xué)生活動(dòng):討論后回答

設(shè)計(jì)意圖:

通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系。

教師活動(dòng):

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇四

( 1)教材的地位與作用:《等比數(shù)列的前n項(xiàng)和》選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)·數(shù)學(xué)

( 5),是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類(lèi)比、化歸、分類(lèi)討論、整體變換和方程等思

想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

(2)從知識(shí)的體系來(lái)看:“等比數(shù)列的前n項(xiàng)和”是“等差數(shù)列及其前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對(duì)函數(shù)思想的理解,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊

( 1)學(xué)生的已有的知識(shí)結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式和求和公式與方法,等比數(shù)列的概念與通項(xiàng)公式。

( 2)教學(xué)對(duì)象:高二理科班的學(xué)生,學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強(qiáng),邏輯思維能力也初步形成,具有一定的分析問(wèn)題和解決問(wèn)題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴(yán)謹(jǐn)。

(3)從學(xué)生的認(rèn)知角度來(lái)看:學(xué)生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類(lèi)比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。

根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和本班學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:(1)知識(shí)技能目標(biāo)————理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題。

(2)過(guò)程與方法目標(biāo)————通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類(lèi)比與轉(zhuǎn)化、分類(lèi)討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

(3)情感,態(tài)度與價(jià)值觀————培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗(yàn),感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對(duì)稱(chēng)美、形式的簡(jiǎn)潔美。

教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。

教學(xué)難點(diǎn):公式的推導(dǎo)方法及公式應(yīng)用中q與1的關(guān)系。

培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不是通過(guò)教師傳授得到的,而是學(xué)生在一定的。情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而

獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學(xué)方法,讓老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。一句話(huà):還課堂以生命力,還學(xué)生以活力。

(一)創(chuàng)設(shè)情境,提出問(wèn)題。(時(shí)間設(shè)定:3分鐘)

[利用投影展示]在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿(mǎn)足你的任何要求。西薩說(shuō):請(qǐng)給我棋盤(pán)的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚。為什么呢?

[設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)]

提出問(wèn)題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇五

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

解三角形及應(yīng)用舉例

一?;A(chǔ)知識(shí)精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題。

二。問(wèn)題討論

思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論。

思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。

例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市o(如圖)的東偏南方向300 km的海面p處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺(tái)風(fēng)的侵襲。

一。 小結(jié):

1.利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

2.利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

(1)已知三邊,求三角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3.邊角互化是解三角形問(wèn)題常用的手段。

三。作業(yè):p80闖關(guān)訓(xùn)練

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇六

教學(xué)目標(biāo):

(1)掌握直線(xiàn)方程的一般形式,掌握直線(xiàn)方程幾種形式之間的互化

(2)理解直線(xiàn)與二元一次方程的關(guān)系及其證明

(3)培養(yǎng)學(xué)生抽象概括能力、分類(lèi)討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn)

教學(xué)重點(diǎn)、難點(diǎn):直線(xiàn)方程的一般式。直線(xiàn)與二元一次方程(不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明

教學(xué)用具:計(jì)算機(jī)

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

教學(xué)過(guò)程:

下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

教學(xué)設(shè)計(jì)思路:

(一)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線(xiàn)方程的方法,看下面問(wèn)題:

問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線(xiàn)的方程,并觀察方程屬于哪一類(lèi),為什么?

答:直線(xiàn)方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述。再看一個(gè)問(wèn)題:

問(wèn):求出過(guò)點(diǎn),的直線(xiàn)的方程,并觀察方程屬于哪一類(lèi),為什么?

答:直線(xiàn)方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。

肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。

啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)??各小組可以討論討論。

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

【問(wèn)題1】“任意直線(xiàn)的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路。

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo)。

經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論。首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線(xiàn)的位置有兩種可能,即斜率存在或不存在。

當(dāng)存在時(shí),直線(xiàn)的截距也一定存在,直線(xiàn)的方程可表示為,它是二元一次方程。

當(dāng)不存在時(shí),直線(xiàn)的方程可表示為形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

平面直角坐標(biāo)系中直線(xiàn)上點(diǎn)的坐標(biāo)形式,與其它直線(xiàn)上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線(xiàn)方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的關(guān)于、的二元一次方程。

至此,我們的問(wèn)題1就解決了。簡(jiǎn)單點(diǎn)說(shuō)就是:直線(xiàn)方程都是二元一次方程。而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”。

同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線(xiàn),都有一條表示這條直線(xiàn)的形如(其中、不同時(shí)為0)的二元一次方程。

啟發(fā):任何一條直線(xiàn)都有這種形式的方程。你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?

【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線(xiàn)嗎?

不難看出上邊的結(jié)論只是直線(xiàn)與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論。那么如何研究呢?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即

(1)當(dāng)時(shí),方程可化為

這是表示斜率為、在軸上的截距為的直線(xiàn)。

(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為

這表示一條與軸垂直的直線(xiàn)。

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線(xiàn)。

為方便,我們把(其中不同時(shí)為0)稱(chēng)作直線(xiàn)方程的一般式是合理。

【動(dòng)畫(huà)演示】

演示“直線(xiàn)各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線(xiàn)。

至此,我們的第二個(gè)問(wèn)題也圓滿(mǎn)解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線(xiàn)與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線(xiàn)方程的一般形式是對(duì)直線(xiàn)特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系。

(三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇七

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫(xiě)出其他三種形式;

(3)理解一個(gè)命題的真假與其他三個(gè)命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;

(6)通過(guò)對(duì)四種命題的存在性和相對(duì)性的認(rèn)識(shí),進(jìn)行辯證唯物主義觀點(diǎn)教育;

(7)培養(yǎng)學(xué)生用反證法簡(jiǎn)單推理的技能,從而發(fā)展學(xué)生的思維能力、

重點(diǎn):四種命題之間的關(guān)系;難點(diǎn):反證法的運(yùn)用、

第一課時(shí):四種命題

一、導(dǎo)入新課

【練習(xí)】1、把下列命題改寫(xiě)成“若p則q”的形式:

(l)同位角相等,兩直線(xiàn)平行;

(2)正方形的四條邊相等、

2、什么叫互逆命題?上述命題的逆命題是什么?

將命題寫(xiě)成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論、

如果第一個(gè)命題的條件是第二個(gè)命題的結(jié)論,且第一個(gè)命題的結(jié)論是第二個(gè)命題的條件,那么這兩個(gè)命題叫做互道命題、

上述命題的道命題是“若一個(gè)四邊形的四條邊相等,則它是正方形”和“若兩條直線(xiàn)平行,則同位角相等”、

值得指出的是原命題和逆命題是相對(duì)的、我們也可以把逆命題當(dāng)成原命題,去求它的逆命題、

3、原命題真,逆命題一定真嗎?

“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真、但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真、

學(xué)生活動(dòng):

口答:

(1)若同位角相等,則兩直線(xiàn)平行;

(2)若一個(gè)四邊形是正方形,則它的四條邊相等、

設(shè)計(jì)意圖:

通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ)、

二、新課

【設(shè)問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線(xiàn)不平行”,這個(gè)命題叫原命題的否命題、

【提問(wèn)】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形不是正方形,則它的四條邊不相等、

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的條件的否定和結(jié)論的否定,這樣的兩個(gè)命題叫做互否命題、把其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題、

若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定、

【板書(shū)】原命題:若p則q;

否命題:若┐p則q┐、

【提問(wèn)】原命題真,否命題一定真嗎?舉例說(shuō)明?

學(xué)生活動(dòng):

講論后回答:

原命題“同位角相等,兩直線(xiàn)平行”真,它的否命題“同位角不相等,兩直線(xiàn)不平行”不真、

原命題“正方形的四條邊相等”真,它的否命題“若一個(gè)四邊形不是正方形,則它的四條邊不相等”不真、

由此可以得原命題真,它的否命題不一定真、

設(shè)計(jì)意圖:

通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、

教師活動(dòng):

【提問(wèn)】命題“同位角相等,兩條直線(xiàn)平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學(xué)生活動(dòng):

討論后回答

【總結(jié)】可以將這個(gè)命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線(xiàn)不平行,則同位角不相等”,這個(gè)命題叫原命題的逆否命題、

教師活動(dòng):

【提問(wèn)】原命題“正方形的四條邊相等”的逆否命題是什么?

學(xué)生活動(dòng):

口答:若一個(gè)四邊形的四條邊不相等,則不是正方形、

教師活動(dòng):

【講述】一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論的否定和條件的否定,這樣的兩個(gè)命題叫做互為逆否命題、把其中一個(gè)命題叫做原命題,另一個(gè)命題就叫做原命題的逆否命題、

原命題是“若p則q”,則逆否命題為“若┐q則┐p、

【提問(wèn)】“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學(xué)生活動(dòng):

討論后回答

這兩個(gè)逆否命題都真、

原命題真,逆否命題也真、

教師活動(dòng):

【提問(wèn)】原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說(shuō)明?

【總結(jié)】1、原命題為真,它的逆命題不一定為真、

2、原命題為真,它的否命題不一定為真、

3、原命題為真,它的逆否命題一定為真、

設(shè)計(jì)意圖:

通過(guò)設(shè)問(wèn)和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動(dòng)學(xué)生學(xué)的積極性、

教師活動(dòng):

三、課堂練習(xí)

1、若原命題是“若p則q”,其它三種命題的形式怎樣表示?請(qǐng)寫(xiě)在方框內(nèi)?

學(xué)生活動(dòng):筆答

教師活動(dòng):

2、根據(jù)上圖所給出的箭頭,寫(xiě)出箭頭兩頭命題之間的關(guān)系?舉例加以說(shuō)明?

學(xué)生活動(dòng):討論后回答

設(shè)計(jì)意圖:

通過(guò)學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系、

教師活動(dòng):

略。

數(shù)學(xué)高中教學(xué)設(shè)計(jì)免費(fèi)下載篇八

1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類(lèi)似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習(xí)活動(dòng),通過(guò)自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神??梢?jiàn),探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過(guò)程和探究知識(shí)的過(guò)程統(tǒng)一起來(lái),充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。

2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類(lèi)似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來(lái)展開(kāi)的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現(xiàn)規(guī)律。

3、探究式教學(xué)模式的特征。

(1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯?wèn)題會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維?,F(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程?!彼耘囵B(yǎng)學(xué)生的問(wèn)題意識(shí)是探究式教學(xué)的重要使命。

(2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達(dá)到清楚、全面理解的境界?!碧骄渴浇虒W(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來(lái)組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。

(3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長(zhǎng)處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機(jī)遇與挑戰(zhàn)。

1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。

2、教學(xué)目標(biāo)。

(1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。

(2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。

(3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過(guò)程。

3、教學(xué)方法:談話(huà)探究法,討論探究法。

4、教學(xué)過(guò)程。

(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問(wèn)題占有重要位置。我們?cè)?jīng)做過(guò)的有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?

(2)提出問(wèn)題。

問(wèn)題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

a、36個(gè)b、18個(gè)c、12個(gè)d、24個(gè)

問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

(3)探究思考。點(diǎn)評(píng):乍一看問(wèn)題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問(wèn)題的途徑。

教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫(xiě)出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?

學(xué)生:它們都滿(mǎn)足“各位數(shù)字之和能被9整除”。

教師:此結(jié)論的正確性如何?

學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?

教師:好。

學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。

設(shè)n=1000a+100b+10c+d(a,b,c,d∈n)依條件,有a+b+c+d=9m(m∈n)

則n=1000a+100b+10c+d

=(999a+a)+(99b+b)+(9c+c)+d

=(999a+99b+9c)+(a+b+c+d)

=9(111a+11b+c)+9m

=9(111a+11b+c+m)

∵ a,b,c,m∈n

∴ 111a+11b+c+m∈n

所以n能被9整除

同理可證定理的后半部分。

教師:看來(lái)上述結(jié)論正確。所以得到如下定理。

定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。

教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問(wèn)題,請(qǐng)同學(xué)們先解答問(wèn)題1。

學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

教師:?jiǎn)l(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問(wèn)學(xué)生。

學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數(shù)字之和都不是9的倍數(shù)。

教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。

學(xué)生:3+4+5+6=18是9的倍數(shù)。

教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。

故應(yīng)選d。

(4)學(xué)以致用。

問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問(wèn)題2有何想法?

學(xué)生討論:

學(xué)生1:被6整除的。五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類(lèi):一類(lèi)是5個(gè)數(shù)字中無(wú)0,另一類(lèi)是5個(gè)數(shù)字中有0(但不含3)。

學(xué)生3:第一類(lèi):5個(gè)數(shù)字中無(wú)0的五位偶數(shù)有。

第二類(lèi):5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類(lèi),第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。

學(xué)生4:由分類(lèi)計(jì)數(shù)原理得:能被6整除的無(wú)重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。

(5)概括強(qiáng)化。

重點(diǎn):了解數(shù)字排列問(wèn)題的特點(diǎn),理解掌握數(shù)字排列中3、9問(wèn)題的規(guī)律。

難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。

關(guān)鍵:證明的思路以及定理的得出。

新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。

(6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類(lèi)問(wèn)題的目的。

總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來(lái)的,新課程改革強(qiáng)調(diào)改變課程過(guò)于注重知識(shí)的傳授和過(guò)于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂(lè)于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過(guò)程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過(guò)程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。

【本文地址:http://www.aiweibaby.com/zuowen/2935524.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔